• Keine Ergebnisse gefunden

Welcome to the 11th Meeting of the European MELCOR and MACCS User Group (EMUG)

N/A
N/A
Protected

Academic year: 2022

Aktie "Welcome to the 11th Meeting of the European MELCOR and MACCS User Group (EMUG)"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Welcome to the 11th Meeting of the European MELCOR and MACCS User Group (EMUG)

11

th

EMUG Meeting, 04/04/2019, FHNW Brugg

Andreas Pautz     ::     Division Head Nuclear Energy and Safety (NES)     ::      PSI  

(2)

Where You are Today

Page 2

(3)

Where You are Today

Page 3

~10 min.

To PSI: ~10 km

Königsfelden Monastery

Roman Amphitheater 500 m

Brugg‐Windisch University of Applied Sciences

(4)

Context of Nuclear Power 

in Switzerland

(5)

No new builds of Nuclear Power Plants in Switzerland (due to acceptance  of the «Energy Strategy 2050» on May 21, 2017)

No legal lifetime limit on operating NPP, as long as they are safe (rejection  of the «Nuclear Phase‐out Initiative» on November 27, 2016)

National context: Nuclear Power in Switzerland

Swiss Electricity Mix 2017

(6)

National context: Nuclear Power in Switzerland

NPP Type  Shut down 50 yrs 60 yrs Net Elect. Power

Beznau I PWR 2019 2029  365 [MWe]

Beznau II PWR 2021 2031  365 [MWe]

Mühleberg BWR 2019 ‐ ‐ 373 [MWe]

Gösgen PWR 2029  2039 1010 [MWe]

Leibstadt BWR 2034 2044 1220 [MWe]

X

(7)

No reprocessing or export of nuclear waste, but an advanced “sectoral  plan” for deep geological disposal in Switzerland («Swiss Federal Nuclear  Act», Art.9)

Research on Nuclear Safety has to be continued, and future technologies  to be monitored («Swiss Federal Nuclear Act», Art. 74a)

National context: Nuclear Power in Switzerland

The Potential Swiss Siting Regions for High Level Waste The Molten Salt Reactor Concept

(8)

Sectoral plan for the Deep Geological Repository

‐ Switzerland has identified three sites  (out of six candidate sites) that are  suitable for a deep geological disposal  in opalinus clay

‐ The so‐called sectoral plan determines  the roadmap of scientific 

investigations, and political decisions  that will eventually lead to the 

selection of one site

‐ This process is expected to last until  2029; the disposal of HLW is not 

expected before 2060, for LILW before 

2050.

(9)

The Paul Scherrer Institute: (Very) brief

Overview 

(10)

Aerial View of the Paul Scherrer Institut (PSI)

Page 10

synchrotron light source

neutron source energy research solar concentrator

muon source

proton therapy proton accelerator

SwissFEL nanotechnology

radio chemistry radio pharmacy

biology material sciences

Basel Germany  Aarau/Bern  Zürich 

PSI west

PSI east hotlab

particle physics

(11)

Mission of PSI

Page 11

Matter and  materials

Energy and  environment

Human health

Large research  facilities

Swiss and foreign users from academia and industry

Development Construction

Operation

Knowledge &

expertise

Education

Technology  transfer more that 2400 external

users/year (39 beamports)

(12)

Budget

Page 12

Particle Physics 8 %

Nuclear Energy and Safety

14 % Materials Research

34 %

Energy and Environment   20 %

Life Sciences 24 %

Distribution to main research areas (first‐ and third‐party funding)

(13)

NES provides the scientific foundation for the safe operation of nuclear  facilities in Switzerland:

Support in licensing and oversight for the Swiss Nuclear Regulator ENSI in its role  as TSO (Technical Safety Organization)

 NES has the mandate of “Technology Monitoring” of Gen‐III/Gen‐IV reactor  developments (Membership GIF: Generation‐IV International Forum)

 Research programs in support of Long‐Term Operation (LTO) and behavior of  (enhanced) fuels of the Swiss NPP

 Center of excellence for geochemistry of deep geological waste disposal systems,  and R&D contributions to the 3rd stage of the Sectoral Plan

 NES is strongly involved in the education and training of the next generation of  nuclear engineers and scientists

The Nuclear Energy and Safety Division

Long‐Term Intermediate Dry Storage Outline of the Swiss waste disposal concept

Activation studies of reactor components

(14)

With the Hot Laboratory, PSI maintains the capability of handling and  fostering investigations of highly radioactive materials:

 The only facility in Switzerland (and one of the very few in Europe) that can  handle highly‐radioactive waste and spent reactor fuel

 Important demand from Swiss NPP, in particular for Post‐Irradiation  Examination (PIE)

Highly relevant for PSI, in particular for waste treatment and target inspection

 Unique analytical capabilities in combination with PSI’s Large‐Scale Facilities

Deliver of Fuel Rods to Hot Cell Hot Lab Shielded FIB Microsample Preparation Imaging at the Swiss Light Source (SLS)

The Nuclear Energy and Safety Division: Hot Lab

(15)

Organization of Energy Research at PSI

216 NES staff (210 FTE), as of January 2019

120 scientists/technicians with permanent positions,  40 PhD students, 25 Postdocs

Annual Expenditures (Budget 2019): 35.0 Mio. CHF  (27.9 Mio. Salary, 7.1 Mio. operating expenses.)

Annual Revenues (Budget 2019): 15.3 Mio. CHF 

«Erstmittel» (43%), 19.7 Mio CHF 2ndand 3rdparty  funding (57%)

(16)

Groups Groups

Experimental  Thermal Hydraulics

Experimental  Thermal Hydraulics

System Behavior

System Behavior

Severe  Accidents

Severe  Accidents Core Behavior Core Behavior

Research Programs Research Programs

LRT Landscape Organization

(17)

Recent Severe Accident Research Topics

 Pool scrubbing

 Filtered containment venting systems (FCVS)

 Iodine transport

 Hydrodynamics

 Fukushima Daiichi activities

 Cladding oxidation during air ingress – effect of nitrogen

 Severe accident analysis for advanced reactors

Severe Accident

Page 17

(18)

Industrial scale experiments of FCVS

 Third party qualification tests in industrial scale

 Thermal‐hydraulic characterization of 1:1 size venturi

Small‐scale parametric tests

 Iodine (I2) and CH3I retention

 Simultaneous measurement of mass transfer and  hydrodynamics

Lab‐scale tests

 Iodine mass transfer

 CH3I and effect of additives

Model development

 Improved representation of the hydrodynamics

Pool Scrubbing

Page 18

(19)

Pool Scrubbing - FCVS

• Iodine retention tests in mini‐VEFITA facility

• Effect of flow regime

• Effect of iodine concentration in the injection zone

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

10 50 100 500

1000 churn turbulent

DF (‐)

Residence time (s)

bubbly

(20)

Fukushima Daiichi activities #1

Page 20

OECD/NEA BSAF‐2 project

• PSI analysis Unit 3 with MELCOR 2.1

(21)

Fukushima Daiichi activities #2

Page 21

Unit 3 with MELCOR 2.1

• The major fraction of the core as debris or molten

50% in the reactor pressure vessel

50% in the containment

No molten core‐concrete interaction due to water in the containment

Hydrogen generation

1200 kg hydrogen generated

500 kg in Unit 3 before the explosion

Fission product release to the environment

96% of the noble gases

0.12% of Cs‐137

0.33% of I‐131

Location Fraction [% i.i]

Cs‐137 I‐131

Released from fuel 91 80

In the reactor pressure vessel 13 0.009 In the water in the suppression pool 56 59 In the water in the drywell 9.5 10 In the water in the auxiliary building 11 11 Released to the atmosphere 0.1 0.2

(22)

Fukushima Daiichi activities #4

Page 22

BSAF finished

 Special session at NURETH 2019

TCOFF

 Thermo‐dynamic modelling

 PSI In‐house code GEMS coupling with MELCOR

ARC‐F

 Refined sequence analysis

 Focus on separate phenomena

Pre‐ADES

 Preparation for debris sampling and analysis

 PSI Hotlab

(23)

Cladding oxidation

Page 23

PSI air oxidation model => add the effect of nitriding

 Pre‐oxidation

 Nitriding

 Re‐oxidation

(24)

Advanced reactors – HTR #1

Page 24

• MELCOR2.2 to simulate HTR‐PM, 250 MWth

• Pebble‐bed reactor with one‐zone cylindrical core

• Simulation of:

Pressurized Loss of Forced Cooling (PLOFC)

Depressurized Loss of Forced Cooling (DLOFC)

• Comparison with INET analysis using THERMIX (Zheng et al., ANE2009)

(25)

Advanced reactors – HTR #2

Page 25

• Simulation of Pressurized/Depressurized Loss of Forced Cooling (P/DLOFC)

• Zheng: P/DLOFC in HTR‐PM using a THERMIX code:

Thermohydraulics steady state and transient code for pebble bed reactor primary circuit, including a  neutron point kinetics and graphite corrosion models

• Peak fuel temperature

 Uncertainties in geometry

 Decay heat and power distribution  differ between the two simulations Sequence MELCOR [C] INET [C]

DLOFC 1457 1492

PLOFC 1165 1134

(26)

Advanced reactors – MSR #1

Page 26

Molten salt reactor (MSR)

 Existing severe accident codes have only limited (or no) applicability to MSR

=> Needed: Chemical and physical properties of the salts and their decomposition products  in the relevant temperature and pressure range

• Preliminary simulations using MELCOR2.1

 Heat‐up of the core, release of salts and fission products

→ behavior of released species

 Simple geometry with natural convective flow

 Initially, CsI and LiF added to the atmosphere as vapor

 Vapor pressure and molecular weight of LiF added to MELCOR

 For vapor diffusivity default values

(27)

Page 27

Have a great meeting!

Referenzen

ÄHNLICHE DOKUMENTE

Hosted by Czech Republic State Office for Nuclear Safety Prague, Czech Republic.. March

Auglaire Michèle Tractebel Engineering Belgium michele.auglaire@gdfsuez.com Welcome address.. 5

• Areva claims that corium should relocate through Heavy Reflector to the downcomer and to lower plenum.. • only a slight part of the HR is expected

02:05 pm  Analysis of Severe Accident in Safety Upgraded Krško NPP   Matjaž Leskovar, IJS  02:25 pm 

11 55 – 12 15 Volatile Iodine Release Challenges in Case of External Re- actor Vessel Cooling Combined with Filtered

● A MELCOR model of a German PWR was modified to model an IVMR based on – gravity driven flow from the spend fuel pool and. – pump driven injections to the

7 Sonnenkalb, Martin GRS, Köln Germany Martin.Sonnenkalb@grs.de 8 Steinrötter, Thomas GRS Germany Thomas.Steinroetter@grs.de 9 Müller, Klaus AREVA/D Germany

weaknesses and strengths of MELCOR models in reproducing the individual severe accident phenomena and interplay between them occurring in the nuclear and balance of plant systems