• Keine Ergebnisse gefunden

Machine  Learning  I

N/A
N/A
Protected

Academic year: 2022

Aktie "Machine  Learning  I"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Machine  Learning  I  

Introduc1on  

(2)

Prerequisites:  Math  

One  should  be  able  at  least  to  guess,  what  does  it  mean.  

Examples:  

               

In  par1cular:  linear  algebra  (vectors,  matrices,  SVD,  scalar  products),   a  bit  geometry,  func1ons  (deriva1ve,  gradients,  integrals,  series),   op1miza1on,  probability  theory  …  

(3)

Topics  

1.  Probability  theory:  probabilis1c  inference  and  learning  (3  DS)   2.  Discrimina1ve  learning  (1  DS)  

3.  Linear  classifiers,  complex  classifiers  by  combina1on,  basic   algorithms,  learning  (2  DS)  

4.  Support  Vector  Machines:  large  margin  learning,  complex  

classifiers  by  generaliza1on,  kernels,  a  bit  of  sta1s1cal  learning   theory,  empirical  risk  minimiza1on  (3  DS)    

5.  Decision  trees,  regression  trees,  randomized  forests  (1-­‐2  DS)   6.  Introduc1on  to  graphical  models,  MRF-­‐s  (1  DS)  

(4)

Seminars  

•  2  Groups.  Please,  par11on  you  by  yourself  

•  Prac1cal  assignments  (no  computers,  on  the  board)  –  lectures   supplement  

•  Assignments  pair  of  days  before  on  the  page  

•  Homework  !!!  

•  Credits:  ac1ve  par1cipa1on  is  assessed  –  points  during  the   semester,  op1onal  –  wri`en  test  

 

Exam:  oral  (graded),  with  seminars  –  4SWS,  without  –  2SWS  

(5)

Miscellaneous  

 

•  Scripts,  info  etc.  

   h`p://www.inf.tu-­‐dresden.de/index.php?node_id=2092&ln=de    

•  Literature:  

•  Christopher  M.  Bishop:  „Pa`ern  Recogni1on  and  Machine   Learning“  (prac1cally  all  the  stuff)  

•  Michail  I.  Schlesinger,  Václav  Hlavác:  „Ten  Lectures  on  Sta1s1cal  and   Structural  Pa`ern  Recogni1on“  (especially  sta1s1cal  PR)  

•  During  the  semester  –  papers  (see  www1.inf...)  

•  Forum:  

h`ps://auditorium.inf.tu-­‐dresden.de/courses/2154651  

 

•  Comments,  requests,  ques1ons,  cri1cism  are  welcome      (anonym  via  mail-­‐form  as  well).  

Referenzen

ÄHNLICHE DOKUMENTE

– Discriminative Learning – Empirical Risk minimization (sub-gradient algorithms), Large Margin learning (quadratic optimization) etc.. The difference to unstructured models –

In particular: linear algebra (vectors, matrices, SVD, scalar products), a bit geometry, functions (derivative, gradients, integrals, series), optimization, probability theory

Probability of any particular real value is zero → a „direct“ definition of a „probability distribution“ is senseless .. It is indeed possible through the

Design a network (weights and biases for each neuron) so that the energy of a configuration is proportional to the number of cracks, i.e..

Example: Objects are nodes of a weighted graph, is the length of the shortest path from to4. Distances for “other”

Let (in addition to the training data) a loss function be given that penalizes deviations between the true class and the estimated one (the same as the cost function in

The Bayesian view allows any self-consistent ascription of prior probabilities to propositions, but then insists on proper Bayesian updating as evidence arrives. For example P(cavity)

Bayesian concept learning: the number game The beta-binomial model: tossing coins The Dirichlet-multinomial model: rolling dice... Bayesian