• Keine Ergebnisse gefunden

Density Estimation P robability D ensity F unction DENSITY ESTIMATION Estimating an Unknown

N/A
N/A
Protected

Academic year: 2022

Aktie "Density Estimation P robability D ensity F unction DENSITY ESTIMATION Estimating an Unknown"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

0

DENSITY ESTIMATION

Estimating an Unknown

Probability Density Function

Th&Ko §2.5 / DHS §3.1-3.4

Density Estimation 1

• Parametric techniques

• Maximum Likelihood

• Maximum A Posteriori

• Bayesian Inference

Gaussian Mixture Models (GMM) – EM-Algorithm

• Non-parametric techniques

• Histogram

• Parzen Windows

• k-nearest-neighbor rule

(2)

Estimation of an unknown PDF

1 1,1 ,

T ask :

E stim ate th e p aram eters o f a p d f w ith k n o w n stru ctu re fro m a set o f d ata .

( ( ) ( ; ) is k n o w n to b e G au ssian ( ), w ith u n k n o w n [ , ..., l, , ...., l l] )T X

e.g . p x p x N μ , Σ

     

 

 

1 2 1 2

1 2

F o rm al:

L et , , ...., k n o w n an d in d ep en d en t (i.i.d .) , , ...

L et ( ) b e k n o w n w ith in a vecto r p aram eter : ( ) ( ; )

( ; ) ( , , ... ; )

N N

N

x x x X x x x

p x p x p x

p X p x x x

 

 

1

( ; ) w h ich is k n o w n as th e lik elih o o d o f

N k k

p x   w .r. to X

3

M L 1

ˆ : arg m ax (

k

; )

k

p x

 

 Maximum Likelihood Method ( ML )

 Search for the parameter Θ

ML

that maximizes

0 )

(

)

( ;

1

k

N

k p x

– a necessary condition

( ) ln ( ; )

L

p X

– since ln is monotonic we can write the log-likelihood

0 ) (

) ( ) (

1 )

( ) (

ˆ : ;

;

1

 

 

 

k

k N

ML k

x p x p L

Estimation of an unknown PDF

1ln ( ; )

N

k p xk

 

(3)

4

If there is a true value Θ

0

, the ML estimate Θ

ML

has the following properties (no proofs):

a) Θ

ML

is asymptotically unbiased and converges in the mean.

N 0

0

) , then

lim [ ˆ ]

; x p(

) x

p(     



E

ML

Properties of Maximum Likelihood Method

ˆ 1

prob lim

0

N



ML

  

b) Θ

ML

is asymptotically consistent and converges in probability.

 ˆ  0

lim

2 N 0



E

ML

 

c) Θ

ML

is asymptotically consistent and converges in mean square.

5

ln ( ; ) )

(

1

N k

k

x p L

)

; ( ) (

,..., ,

unknown

: ) , ( : ) (

2 1

k k

N

x p x p

x x x

N x p

ML Example 1:

 

A A

A A

T

T ( ) 2

if :

Remember

1

1

1( ) ( )

2

N

T

k k

k

C x x

 

     

 

)) ( ) ( 2 exp( 1 ) 2 (

1 1

2 1 2

k T

l xk x

1

( ) 2

. ( )

.

l

L

L L

L

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

k N

ML k x

N 1 1

 

0 )

1(

1

k

N

k

x

(4)

ln ( ; , ) )

,

( 2

1

2  

N k

k

x p L

2

1 2

2

( ): ( , ): , u n k n o w n , , ...,

( ) ( ; , )

l N

k k

p x N Σ σ I

x x x

p x p x σ

 

 

 

ML Example 2 :

) ) ( 2 exp( 1 ) 2 (

1 2

2 2

2 1

 

k

l

x

0 )

( ) (

2









 

L L L

k N

ML k x

N 1 1

 

N

k k

ML x

N 1

2

2 1 ( )

 









N

k

k N

k N

k k

x x

1

2 4

1 2

1 2

) ( 2

1 2

1

) 1 (

 

 

H o w ever, th e tru e is u n k n o w n , th erefo re w e h ave to u se

 M L

Maximum Likelihood estimates are only asymptotically unbiased, so N should be large enough !

2 2

1 1 2

1 1

ln ( 2 ) ( )

2 2

N N

l

k k k

  x

    

7

2

1 2

( ): ( , ): , u n k n o w n , , ...,

( ) ( ; , )

l N

k k

p x N Σ σ I

x x x

p x p x Σ

 

 

 

ML Example (3) :

WARNING: An unbiased estimator is also no guarantee for a correct result!!

)) ( ) ( 2 exp( 1 ) 2 (

1 1

2 1 2

k T

l xk x

ln ( ; , ) )

,

( 2

1

2  

N k

k

x p

L 1

1

ln ( 2 ) 1 ( ) ( )

2 2

N

l T

k k

k

Nx x

      

0 ..

...

. ) (

)

( 11





















 

ll

L L L

L

k N

ML k x

N 1 1

 

1

1 ( )( )

N

T

k k

M L k M L M L

x x

N  

     

Maximum Likelihood estimates are only asymptotic unbiased, so we need a large

N

!

(5)

Estimation of an unknown PDF 8

M aximum A posteriori P robability estimation (MAP)

 ( In ML θ was considered as a parameter ) Here we shall look at θ as a random vector described by a pdf p(θ), assumed to be known

x

1

, x

2

,..., x

N

X

) X ( p

 Given

Compute the maximum of

) ( ) ( ) ( )

( p X p X p X

p    

 From Bayes theorem

) (

) ( ) ( ) ( or

X p

X p p X

p  

 

9

 The method:

ˆ a rg m a x ( ) o r

ˆ : ( ( ) ( ) ) 0

If ( ) is u n ifo rm o r b ro a d e n o u g h ˆ

M A P

M A P

M A P M L

p X

P p X

p

  

  

 

(6)

 MAP Example:

 

) 2 exp(

) 2 ( ) 1 (

unknown ),

, ( : ) (

2 2 0

2 1

2

 

l l N

p

x ,..., x X

I N

x p

0 )) ( ) ( ln(

:

1

 

 

  p xk p

N

MAP k

N xk

N

k MAP

2 2 2 1 2

0

1 ˆ

 

N for or , 1 2

2

 

For

2 2 0

1

1 1

ˆ ˆ

o r ( ) ( ) 0

N k k

x

  

 

   

k N

ML k x

N 1

MAP

ˆ 1 ˆ

    

Referenzen

ÄHNLICHE DOKUMENTE

[r]

To avoid messy formulae, one can express partial derivatives of J (·) in terms of higher order versions of J (·) by means of the recursion (3).. Here we collect and extend some

• Iterative algorithm for ML-estimation of systems with hidden/missing values. • Calculates expectance for hidden values based on observed data and joint distribution. • Slow

• Number of required samples may be very large (much larger than would be required if we knew the form of the unknown density). • In case of PW and KNN computationally

Empirical results reveal that, at first, the hedging strat- egy based on the kernel density estimation method is of highly efficiency, and then it achieves better performance than

Lepskii 20], Brown and Low 3] showed that for pointwise estimation on the Holder classes optimal rate adaptive estimators can not be found, both in Gaussian white noise and

It should not be surprising that maxent can severely overfit training data when the constraints on the output distribution are based on empirical averages, as described

In this paper we propose a new nonparametric kernel based density estimator for which reduction in the order of the bias, relative to the Rosenblatt-Parzen estimator, is attained