• Keine Ergebnisse gefunden

Hereditary artinian rings of finite representation type

N/A
N/A
Protected

Academic year: 2022

Aktie "Hereditary artinian rings of finite representation type"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

H E R E D I T A R Y ARTINI~J~ R I N G S OF F I N I T E R E P R E S E N T A T I O N T Y P E P.Dowbor, C . H . R i n g e l , D . S i m s o n

R e c a l l [ 1 1 , 6 ] t h a t a h e r e d i t a r y f i n i t e d i m e n s i o n a l a l g e b r a i s of f i n i t e t y p e i f and o n l y i f a c o r r e s p o n d i n g diagram i s a d i s j o i n t u n i o n o f t h e Dynkin diagrams A n , B n, C n, D n, E 6, E 7, E 8, F 4, G 2 o c c o u r i n g i n L i e t h e o r y . H e r e , we w i l l c o n s i d e r t h e g e n e r a l case o f a h e r e d i t a r y a r t i n i a n r i n g A and a s s o c i a t e t o i t a diagram F ( A ) . I t t u r n s o u t t h a t A i s o f f i n i t e t y p e i f and o n l y i f C(A) i s t h e d i s j o i n t u n i o n o f t h e C o x e t e r diagrams A n , B n ( = Cn), D n, E 6, E 7, ES, F4, G2, H3, H4a I2~ p) w h i c h c l a s s i f y t h e i r r e d u c i b l e C o x e t e r groups [ 3 ] . However, t h e e x i s t e n c e of r i n g s o f t y p e H 3, H 4 and I 2 ( p ) w i t h p = 5 o r p ~ 7 r e m a i n s open: i t depends on r a t h e r d i f f i c u l t q u e s t i o n s c o n c e r n i n g d i v i s i o n r i n g s . On t h e o t h e r hand, we d e f i n e f o r any C o x e t e r diagram " b r a n c h s y s t e m " w h i c h g e n e r a l i z e

t h e r o o t systems o f t h e Oynkin d i a g r a m s . The d i m e n s i o n t y p e s o f a h e r e d i t a r y a r t i n i a n r i n g of f i n i t e r e p r e s e n t a t i o n t y p e j u s t form such a branch s y s t e m .

The r e s u l t s o f s e c t i o n s 1, 2 and 5 were o b t a i n e d by P.Dowbor and O.Simson who announced p a r t of them i n t h e p a p e r s ~9, 101]

and at t h e Ottawa C o n f e r e n c e 1979. The r e s u l t s were o b t a i n e d i n d e p e n d e n t l y by C . M . R i n g e l who announced them at t h e O b e r w o l f a c h m e e t i n g on d i v i s i o n r i n g s i n 1978.

1. Bimodules o f f i n i t e r e p r e s e n t a t i o n t y p e

L e t F and G be d i v i s i o n r i n g s , and FMG a b i m o d u l e . Denote by

~(FMG ) t h e c a t e g o r y o f f i n i t e d i m e n s i o n a l r e p r e s e n t a t i o n s o f FHG, a r e p r e s e n t a t i o n b e i n g of t h e form V = ( X F , YG o ~ : X F~FMG --~YG ) w i t h d i m e n s i o n t y p e dim V = (dim XF, dim YG). Given FMG , l e t

H R = HomG(FHG,GGG), H L : HomF(FNG,FFF) , and ~ # ( i + I ) = (MRi)R, M L ( i + l ) : (MLi) L, w i t h H R° = M = M L ° . Note t h a t i f dim H G i s f i n i t e ,

(2)

~ L E Ht whereas i f dimFH i s f i n i t e 0 t h e n HLR~ M. We say t h a t i 8 a b i m o d u l e w i t h f i n i t e d u a l i s a t i o n i f a l l b i m o d u l e s N R i and M L i are f i n i t e d i m e n s i o n a l on e i t h e r s i d e .

P r o p p s i t i g n 1. Assume EMG i s of f i n i t e r e p r e s e n t a t i o n t y p e , w i t h i n d e c o m p o s a b l e r e p r e s e n t a t i o n s P I ' " . . . . Pm" Let dim Pi = ( x i ' Y i ) ' and assume we have choosen an o r d e r i g w i t h x i / Y i ~ X i + l / Y i + 1. Then t h i s o r d e r i n 9 i s u n i q u e , an d theE9 are A u s l a n d e r - R e i t e n sequences

0 ) P i - 1 ) M L ( i - 1 ) ~ Pi ) P i + l ) O

The b i m o d u l e H has f i n i t e d u a l i s a t i o n ; H L i i s o n e - d i m e n s i o n a l as a r i g h t v e c t o r space, f o r some i~ and the b i m o d u l e s N and M Lm 9re ( s e m l l i n e a r ) i s o m o r p h i c .

Let o u t l i n e t h e main s t e p s of the p r o o f :

I f dim ~ i s f i n i t e , we d e f i n e a f u n c t o r C~:E(FH G) - - - ~ ( H L) as u s u a l E 2 , 7 ] : g i v e n ( X F ~ F t 4 G ~ YG ), l e t A G = k e r ~ . Using X F@FHG ~ Hom(M L, XF), we g e t from the k e r n e l map A g ---)Hom(M L, XF)

as a d j o i n t a map of the form A G ~ H L - - ~ X F. C l e a r l y , under ~1' the f u l l s u b c a t e g o r y ~I(FF1G ) of ~(FHG ) of o b j e c t s w i t h o u t s i m p l e p r o j e c t i v e d i r e c t summands i s e q u i v a l e n t t o the fuZZ s u b - c a t e g o r y ~ 2 ( H L) of ~ ( H L) of o b j e c t s w i t h o u t s i m p l e i n j e c t i v e d i r e c t summande. I n p a r t i c u l a r , ~ ( H L) and ~ H ) have the same r e p r e s e n t a t i o n t y p e .

SimiZary. if dim(MR~ is finite,

define

C;:~(FHG) -'-)~(H R)

mapping (XF®FMG " ~ YG) o n t o the c o k e r n e l of the a d j o i n t map XF " ~ H°mG(FHG ' YG ) ~ YG ~ HR' and t h u s e s t a b l i s h i n g an e q u i v a l a n c e

between . ~ 2 ( M ) and ~ I ( H R ) .

I f dimFH o r dim H G i s i n f i n i t e , t h e n c l e a r l y ~ ( H ) cannot be of bounded r e p r e s e n t a t i o n t y p e . Thus, the f u n c t o r $ C i ~+ and ~i"- show t h a t N has t o be a b i m o d u l e w i t h f i n i t e d u a l i s a t i o n i f ~ t t ) i s of f i n i t e r e p r e s e n t a t i o n t y p e .

(3)

The functors C 1 + , C[ have nice properties: I f (XF' YG' ~ ) is indecomposable in ~ ( H ) , then its image in ~ ( M R) is either zero.

in which case [XF" YG' q) =(FF' O, o ) is simple injective, or else dim C~(X, Y, ~) : ( y , y b - x ) , where di..~m (X , Y , ~ ) : ( x , y) and b = dim(MR)F . I n p a r t i c u l a r , t h e r e i s a u n i q u e r e p r e s e n t a t i o n i n

~ ( M ) of t y p e ( x , y ) # ( 1 , 0 ) i f and o n l y i f t h e r e i s a u n i q u e one i n

~ ( M R) of t y p e ( y , y b - x ) # ( 0 , 1 ) .

Let C+:Z(["1)i ~-~Z(r'IL~ , C ~ : ~ M ) ~ ~ H R ~ be the i t e r a t e d f u n c t o r e C a l l (X, Y, ¢ ) i n ~ ( M ) p r e p r o j e c t i v e p r o v i d e d

C ~ ( X , y , ~ ) : 0 f o r some i , and p r e i n j e c t i v e

provided C~(X,Y,~)

: o

f o r some i . O b v i o u s l y , t h e s e modules are c h a r a c t e r i z e d by t h e i r d i m e n s i o n t y p e s . Let Pi be the i n d e c o m p o s a b l e module ( i f i t e x i s t s ) w i t h C~z Pi = 0 and Ci-l+ Pi # O. Being d e t e r m i n e d by t h e i r

d i m e n s i o n t y p e s , P i ' Pj can be i s m o r p h i c o n l y f o r i = j . Let Pm be the l a s t such module w h i c h e x i s t s (assuming .~(M ) of f i n i t e

r e p r e s e n t a t i o n t y p e ) . Then a l l Pi w i t h 1 ~ i 5 m e x i s t , and P m - l ' Pm have t o be i n j e c t i v e . Since the s e t of p r e p r o j e c t i v e modules i s c l o s e d under indecomposable submodules of d i r e c t sums, and c o n t a i n s the indecomposable i n j e c t i v e modules, i t c o n t a i n s a l l indecomposable modules. Similary, all indecomposable modules are also preinjective.

N e x t , one p r o v e s t h a t Hom(P1,P2) ~ FHG , and t h e r e f o r e ML(i-1)

Hom(Pi,Pi+&~ : . A l s o , t h e r e i s an o b v i o u s e x a c t secuence

0 ) Pi-i ) H°m(Pi-l'Pi ) L ~ Pi > Pi+l ~ 0 , and it is left almost split [1] Cprove it by induction using the f u n c t o r s

c[).

S i m i l a r y , l e t I i be the indecomposable module w i t h C[ I i = 0 and Ci_ 1 I i ~ O. Then H o m ( i 2 , i i ) ~ [.~2. Since Pm-& = I 2 ' Pm = I I ' we c o n c l u d e t h a t M L(m-2) ~ I ~ 2, t h u s M Lm ; H.

F i n a l l y , i f the r i g h t d i m e n s i o n o f a l l H L i w o u l d be ~ 2, t h e n

(4)

one p r o v e s by i n d u c t i o n on i , t h a t P i e x i s t s ~ o r any i ~ 1 ) and that di..._mm P1 =(xi" Yi ) w i t h 0 ~ x i < Yi " Thls produces a c o u n t a b l e number of i s o m o r p h i s m c l a s s e s of i n d e o o m p o s a b l s modules.

.2.. D i m e n s i o n s e q u e n c e s

A sequence a = ( a 1 . . . am) o f l e n g t h l a l = m ~ 2 w i t h a i ~ tN i s c a l l e d a d i m e n s i o n sequence p r o v i d e d t h e r e e x i s t s x i ' Y i 6 IN ( 1 -< i ~< m), w i t h

aixi = xi-I + xi+l ' aiYi = Yi-1 + Yi+l ( i .< i < m),

= O, x m = i, and Yo = O, Yl = I, Ym = O. The set of x 0 = - I , x I xi

/ , with I --< i ~ m, is c a l l e d the branch system

vectors Yi - "'

defined by a. Note that it is u n i q u e l y d e t e r m i n e d by a, and conversly, it d e t e r m i n e s a. This g e n e r a l i z e s the positive part of the u s u a l rank 2 root systems: for the d i m e n s i o n sequences ( 0 , 0 ) , ( 1 , 1 , 1 ) , ( 1 , 2 , 1 , 2 ) and ( 1 , 3 , 1 , 3 , 1 , 3 ) t h e b r a n c h s y s t e m s a r e j u s t t h e p o s i t i v e r o o t s o f A 1 x A1, A2, R 2 and G2~ r e s p e c t i - v e l y .

P r o p o s i _ t i o n , 2 . The b r a n c h s y s t e m i n iR 2 can be c o n s t r u c t e d as follo ,s: {(I,o>, (o,i) I is a branch system, is a br nch

s y s t e m , and. p , q a r e neig, h b o r s i n ~ , t h e n ~ v ~ p + q t i s a b r a n c h system.

Here, in a finite subset -~ of IR 2 consisting of pairwise l i n e a r l y intependent elements, we call two e l e m e n t s n e i g h b o r s in case the lines through these elements are n e i g h b o r s in the set of all lines through elements of ~ . G. Bergman has pointed out that the branch systems ~ ( x i, Y±~ I I 5 i < m I C o r r e s p o n d just to the

x.

Farey s e q u e n c e s ~ (see [16]). In particular, the numbers Yi

xi' Yi always are w i t h o u t common divisor.

The p r o p o s i t i o n above can be r e f o r m u l a t e d as follows.

(5)

P r o p o s i t i o n 2~ The s e t ~ of d i m e n s i o n sequences can be o b t a l n e d as f o l l o w s : ( 0 , 0 ) ~ , and i f ( a l , . . . . am) ~ , t h e n a l l t h e sequences ( a l , . . . , a i _ l , a t + l , 1, a i + 1 + 1 , a i + 2 . . . a m ) fo_._r 1 ~ i < m belon~ t o , ~ .

Note that for any o t h e r d i m e n s i o n s e q u e n c e a, we have a i = 1 f o r some i ~ 2 . An easy consequence i s t h e following

C o r o l l a r y , The s e t ~ o f d i m e n s i o n sequences i s c l o s e d u n d e r c y c l i c p e r m u t a t i o n @ .

Given a d i m e n s i o n sequence a = ( a l , . . . , a m ) , l e t a + =

= (am,a I . . . a m . l ) . L e t us g i v e t h e l i s t of a l l d i m e n s i o n sequences o f l e n g t h ~ 7, up t o t h e c y c l i c p e r m u t a t i o n s and r e v e r s i o n :

CO,0); ( 1 , 1 , 1 ) ; ( 1 , 2 , 1 , 2 ) $ ( 1 , 2 , 2 , 1 , 3 ) ;

~ 1 , 2 , 2 , 2 , 1 , 4 ) , ( 1 , 2 , 3 , 1 , 2 , 3 ) , ~ 1 , 3 , 1 , 3 , 1 , 3 ) ; ( 1 , 2 , 2 , 2 , 2 , 1 , 5 ) , ( 1 , 2 , 2 , 3 , 1 , 2 , 4 ) , ( 1 , 2 , 3 , 2 , 1 , 3 , 3 ) ,

~ 1 , 4 , 1 , 2 , 3 , 1 , 3 ) .

3 t C o x e t e r d i a q r a m s

L e t P : ~1 . . . . ,n } and assume t h e r e i s g i v e n a s e t map d: I ~ I ~ - - - ) ~ . Note t h a t d d e f i n e s on

C

t h e s t r u c t u r e o f an o r i e n t e d g r a p h , i f we draw an a r r o w i - - > j i n case d ( i , j ) # ( 0 , 0 ) . With ( P , d ) we a l s o w i l l c o n s i d e r t h e u n o r l e n t e d graph g i v e n by IP , J d l ) , where two d i f f e r e n t p o i n t s are c o n n e c t e d by at most two

e d g e s , and any edge has a s s i g n e d a number $ 3. I f i i s a s i n k f o r

~the o r i e n t a t i o n d e f i n e d by) d, d e f l n e ( ~ i d ) C i , J ) = d ( 3 , i ) +, (]Tid) ( j , i I = { 0 , 0 ) , and C~id ) Cj,kl = d ( j , k ) for a l l j , k # i .

For any sink i , define on IR n a l i n e a r transformation E i = ECd)i as follows: i f x = C x j ) ~ IR n, l e t

( ~ i x ) j = x3 f o r j # i , and ( ~ i x ) i = - x i + ~ ' d C i ' J ) l i x j .

I f i l , . . . , i t i s a (+)-admissible sequence "(thus i s i s a sink for d, for a l l I s t ) , define

(6)

~-it...i 1 = ~(~t.l...~d)it o\t_l...il •

We c a l l y e PN n ~ f e P r o j e c t i v e p r o v i d e d t h e r e e x i s t s a ( + ) - a d m i s s i b - l e sequence i l , . . . , i t such t h a t ~ i t . . . i l ( x ) i s one of t h e

c a n o n i c a l base v e c t o r s CO, . . . . 1 , 0 . . . 0 ) . Vie say t h a t ( r , d ) i s o f f i n i t 9 .t.ype p r o v i d e d t h e r e a r e o n l y f i n i t e l y many p r e p r o j e c t i v e v e c t o r s , and t h e n we c a l l t h e s e t o f p r e p r o j e c t i v e v e c t o r s t h e branch s~stem of ~1 ~ , d ) .

Theore.m 1 . ( r , d ) i s of f i n i t e t y p e i f and o n l y i f ( C , ~ d l ) i $ t h e d i s j o i n t u n i o n o f C o x e t e r d i a g r a m s An, B n ( = C n ) , D n, E 6, E 7, E 8, F 4, O 2 , H 3, H 4, I 2 ~ P ) ~p=5 o r p ~ 7 ) . I f ( C , I d [ / i s one of t h e

C o x e t e r diagrams o f rank n and w i t h C o x e t e r number h, then t h e branch system for (P,d) has precisely ½ nh elements.

Of c o u r s e , t h e b r a n c h systems f o r t h e d i a g r a m s A n, O n, E 6, E 7, E 8, F 4, G 2 are p r e c i s e l y t h e p o s i t i v e r o o t s of t h e c o r r e s p o n d i n g r o o t s y s t e m ; t h e r e are two p o s s i b l e branch systems f o r Bn, namely t h e p o s i t i v e r o o t s o f B n , o r C n. The b r a n c h systems o f t h e t y p e 12(P) , H3~and H 4 have p, 15, and 60 e l e m e n t s , r e s p e c t i v e l y .

As an e x a m p l e , l e t us w r i t e down t h e branch system f o r

- ~ • ~ ) • , w i t h second d i m e n s i o n sequence ( 2 , 1 , 3 , 1 , 2 ) . I t c o n t a i n s t h e f o l l o w i n g 15 v e c t o r s

~1 0 0~, (0 1 0 ) , (0 0 1 ) , C1 1 0 ) , (0 1 1 ) , [ 1 1 1~, (0 I 2 ) , CO 2 1 ) , C1 I 2 ) , (1 2 1 ) , (1 2 2 ) , ~2 2 1 ) , ~1 3 2 ) , (1 3 3 ) , (1 4 2 ) ,

and i $ d e p e n d e n t on t h e o r i e n t a t i o n and t h e g i v e n d i m e n s i o n s e q u e n c e .

The p r o o f o f t h e theorem i s r a t h e r t e c h n i c a l . F i r s t , one

constructs . x p l i c i t y for every pair ( r , d ) with ( r , l d l ) e Coxeter diagram the corresponding branch system. For the converse,one only

(7)

has t o c o n s i d e r t h e p a i r s ( F , d ) f o r w i c h all p r o p e r s u b d i a g r a m s o f ( C , I d l ) a r e C o x e t e r d i a g r a m s , and a g a i n an e x p l i c i t c a l c u l a t i o n shows t h a t i n thmse c a s e s t h e r e are i n f i n i t e l y many p r e p r o j e c t i v e v e c t o r s .

4. Here,dltar,? artinian rin.qs

Given an artinian ring A, let A ° be its basic ring, A ° / r a d A °=

n n

= T'T F i , and r a d A O / ( r a d A ° ) 2 = ~ i M j as ~-r F i - b i m o d u ] ~ . Then

i=l i,j i=I

= ( F i , i M j ) i s c a l l e d t h e s p e c i e s o f A . L e t d ( i , j ) be t h e d i m e n s i o n s e q u e n c e o f t h e b i m o d u l e i H j , t h u s we h a v e a s s o c i a t e d t o A a p a i r

(r,d)

and we d e n o t e b y

r(A)

t h e p a i r ( P , I d l ) .

Theorem 2. The hereditary artinian rin~ A ±_s of finite represeqr ratio ~ type if and only if i~(A) is disjoint union of Coxeter dia~

grams An, B n (=Cnl , Dn, E6, ET, E8, F4, G2, H3, H4, I2(P) [ p = 5 9L p ~ 7). In this case r the dimension types of the indecomposable A-modules form the branch system for [1~,d).

As in the case of an algebra L6], one sees that for a hereditary artinian ring A of finite representation type, the basic ring A ° always is the tensor ring over its species.

5 . P r o b l e m s on d i v i s i o n r i n R s

The main p r o b l e m w h i c h a r i s e s and w h i c h we a r e n o t a b l e t o a n s w e r i s t h e q u e s t i o n a b o u t t h e p o s s i b l e d i m e n s i o n s e q u e n c e s a o f b i m o d u l e s FHG o f f i n i t e r e p r e s e n t a t i o n t y p e . We may assume t h a t a 2 = & ~ u a i n g a c y c l i c p e r m u t a t i o n o f a, t h u s r e p l a c i n g M by some M L i ) . Then t h e r e i s g i v e n a d i v i s i o n r i n g i n c l u s i o n G c - - ~ F , end FMG = FFG . S i n c e H L = GFF , t h e d i m e n s i o n s e q u e n c e o f FFG s t a r t s as follows:

a 1 = dim F G , a 2 = 1 , a 3 = dim G F .

T h u s , i m m e d i a t l y , we a r e c o n f r o n t e d w i t h t h e q u e s t i o n o f d i f f e r r e n t l e f t o r r i g h t i n d e x o f a d i v i s i o n s u b r i n g G o f F , ( s e e [ 4 ] ~

(8)

Of p a r t i c u l a r i n t e r e s t i s t h e q u e s t i o n w h e t h e r t h e r e e x i s t s a b l m o d u l e w i t h t h e d i m e n s i o n s e q u e n c e o f t y p e I 2 ( 5 ) , s a y

( 2 , 1 , 5 , 1 , 2 ) , s i n c e i t w o u l d g i v e r i s e t o r i n g s o f t y p e H 5 and H 4 . I n f a c t , i t i s e a s y t o see t h a t t h e o n l y d i m e n s i o n s e q u e n c e s t a r t i n g w i t h ( 2 , 1 , 5 , 1 . . . . ) i s ( 2 , 1 , 3 , I , 2 ) o T h u s , we w o u l d need G ~ F w i t h dim F G = 2 , d i m G F = 5 , and dlmFHOm(GFF,GG) = a 4 = 1 . L e t us p o i n t o u t c e r t a i n c o n s e q u e n c e s o f t h e s e c o n d i t i o n s . S i n c e t h e l e n g t h o f ~ 2 , 1 , 5 , 1 , 2 ) i s 5 , i t f o l l o w s f r o m M L5 ~ H t h a t F , G have t o be i s o m o r p h i c . A l s o F c o n t a i n s a d i v i s i o n s u b r i n g H a g a i n i s o m o r p h i c t o F w i t h dim F H = S , dimHF = 2 , s i n c e

(FFG)L3 has the dimension

sequence ( 3 , 1 , 2 , 2 , 1 ) .

B i m o d u l e s w i t h s u i t a b l e d i m e n s i o n s e q u e n c e s w o u l d p r o d u c e i n t e r ~ e s t t n g e x a m p l e s o f a r t i n i a n r i n g s . F o r e x a m p l e , we may a s k w h e t h e r t h e r e e x i s t s a b i m o d u l e FHG o f f i n i t e r e p r e s e n t a t i o n t y p e w i t h dimFM = 2 : d i m M G , t h u s d i m e n s i o n s e q u e n c e ( 2 , 2 , a 3 . . . . , a m ) . Of c o u r s e , a c c o r d i n g t o [ 1 3 ] such a b i m o d u l e has t o be s i m p l e as a b i m o d u l e ( t h i s a l s o f o l l o w s f r o m p r o p o s i t i o n 1 , s i n c e d u a l i s a t i o n l e a d s t o a b i m o d u l e w h i c h i s o n e - d i m e n s i o n a l on one s i d e ) . N o t e t h a t i n case o f odd m, t h e d i v i s i o n r i n g s F , G have t o be i s o m o r p h i c , so t h a t we a l s o can f o r m t h e t r i v i a l r i n g e x t e n s i o n R : F K M , and t h i s t h e n w o u l d be a l o c a l r i n g w i t h ( r a d R ) 2 = 0 , l e f t l e n g t h 3 , r i g h t l e n g t h 3 , and w i t h p r e c i s e l y m-1 i n d e c o m p o s a b l e m o d u l e s . I n p a r t i c u l a r , t h e d i m e n s i o n s e q u e n c e s o f t y p e I 2 ( 5 ) w o u l d g i v e a l o c a l r i n g R w i t h ( r a d R ) 2 : 0 , l e f t l e n g t h 3 , r i g h t l e n g t h 3 , and p r e c i s e l y 4 i n d e c o m p o s a b l e m o d u l e s .

S i m i l a r y , a b i m o d u l e w i t h d i m e n s i o n s e q u e n c e ( a 1 . . . au+v+ 1 ) w h e r e a I = u , a 2 : 1 , au+ 1 = 3 , au+ v = I , au+v+ 1 = v , and t h e

r e m a i n i n g a i = 2 w o u l d be o f l o c a l - c o l o c a l r e p r e s e n t a t i o n t y p e ( a n y i n d e c o m p o s a b l e m o d u l e s has a u n i q u e m i n i m a l s u b m o d u l e o r u n i q u e m a x i m a l s u b m o d u l e ) . I n c o n t r a s t , t h e f i n i t e d i m e n s i o n a l a l g e b r a s w i t h t h i s P r o P e r t y a l l have been c l a s s i f i e d i n [ 1 5 ] .

(9)

T h i s shows v e r y c l e a r l y the dependence o f the r e p r e s e n t a t i o n t h e o r y of a r t i n i a n r i n g s on q u e s t i o n s c o n c e r n i n g d i v i s i o n r i n g s , a f a c t which t o have been e x h i b i t e d f o r the f i r s t t i m e i n [ 1 4 ] .

I n p a r t i c u l a r , under the a s s u m p t i o n t h a t t h e r e are no p a i r s o f d i v i s i o n r i n g s F D G w i t h dimGF = 2 , and dim F G = 2 , but f i n i t e , the C o x e t e r d i a g r a m s H3, H4, and I 2 ( P ) cannot be r e a l i z e d as P(A) f o r any a r t i n i a n r i n g A , so t h e y c o u l d be e x c l u d e d from theorem 2 .

Of course, in case we assume that the division rings F are finitely generated over their centers, then we exclude immediately the cases H3,H4, and I2(p), thus one has the following (see also

[8]):

Theorem 3 .

The

h e r e d i t a r y a r t i n i a n r i n 9 A w i t h A / r a d A f i n i t e l y g e n e r a t e d o v e r i t s c e n t e r i s of f i n i t e r e p r e s e n t a t i o n typ~

i f and o n l y i f r ( A ) i s the d i s j o i n t union o f O o x e t e r d i a g r a m s A n , B n ( = C n ) , D n, E 6, E 7, E 8, F 4, G 2 .

Re,ferences

[ 1 ] A u s l a n d e r , H . , R e i t e n , I . : R e p r e s e n t a t i o n t h e o r y of a r t i n a l g e b r a s I I I : Almost s p l i t sequences. Comm. A l g e b r a 3

( 1 9 7 5 ) , 2 3 9 - 2 9 4 .

[ 2 ] B e r s t e i n , I . N . , G e l f a n d , I . H. Ponomarev, V. A . : C o x e t e r f u n c t o r s and G a b r i e l ' s t h e o r e m . U s p i e c h i H a t . Nauk 28, 19-33 ( 1 9 7 3 ) , t r a n s l a t i o n : Russian H a t h . S u r v e y s 28 ( 1 9 7 3 ) , 1 7 - 3 2 .

[ 3 ] B o u r b a k i , No: Groupes e t a l g e b r e s de L i e , Ch. 4 , 5 , 6 . P a r i s : Hermann 1968 .

[ 4 ] Cohn, P. H . : Skew f i e l d c o n s t r u c t i o n s . London H a t h . Soc.

L e c t u r e Note S e r i e s 27~ Cambridge 1977 .

[ 5 ] D l a b , V . , R i n g e l , C. N . : D e c o m p o s i t i o n of modules o v e r r i g h t u n i s e r i a l r i n g s . Math. Z. 129 ( 1 9 7 2 ) , 2 0 7 . 2 3 0 .

(10)

[6]

- , - : On a l g e b r a s of f i n i t e r e p r e s e n t a t i o n t y p e . U. A l g e b r a 33 ( 1 9 7 5 ) , 3 0 6 - 3 9 4 .

67] - , - : I n d e c o B p o s a b l e r e p r e s e n t a t i o n s of g r a p h s and a l g e b r a s . Memoirs Amer. Math. Soc. 173 ( 1 9 7 6 ) .

[ 8 ] Dowbor, Po, Simeon, D , : Q u a s i - a r t i n s p e c i e s and r i n g s of f i n i t e r e p r e s e n t a t i o n t y p e . J . A l g e b r a e t o a p p e a r . [ 9 ] - , - : A c h a r a c t e r i z a t i o n of h e r e d i t a r y r i n g s of f i n i t e

r e p r e s e n t a t i o n t y p e . to a p p e a r .

i 1 ~ - , - : On b i m o d u l e s of f i n i t e r e p r e s e n t a t i o n t y p e . p r e p r i n t . [ 1 ~ G a b r i e l , P . : U n z e r l e g b a r e D a r s t e l l u n g e n I . N a n u s c r i p t a H a t h . 6

( 1 9 7 2 ) , 7 1 - 1 0 3 .

[14 - : I n d e c o B p o e a b l e r e p r e s e n t a t i o n s I I . $ympoeia H a t h . I s t . Naz. A l t a H a t . V o l . XI ~ 9 7 3 ) , 8 1 - 1 0 4 .

[13] R i n g e l , C. M.: R e p r e s e n t a t i o n s of K - s p e c i e s and b i m o d u l e e . 9 . A l g e b r , 41 ~ 9 7 6 ) , 2 9 6 - 3 0 2 .

[ 1 4 Rosenberg, A . , Z e l i n e k y , D . : On the f i n i t e n e s s of the i n j e c t i v e h u l l . H a t h . Z. 70 ~ 9 5 9 ) , 3 7 2 - 3 8 0 .

[ 1 ~ T a c h i k a w e , H . : On a l g e b r a s of w h i c h e v e r y lndecompoeable r e p r e s e n t a t i o n has an i r r e d u c i b l e one as the t o p o r the bottom Loewy c o n s t i t u e n t . H a t h . Z. 75 ~ 9 6 1 ) , 2 1 5 - 2 2 7 . [1~ V i n o g r a d o v , I . M.: Elements of number t h e o r y . Dover

publications

~ 9 5 4 ) .

P. Dowbor , D. Simeon I n s t i t u t e of M a t h e m a t i c s , N i c h o l a s C o p e r n i c u s U n i v e r s i t y ,

87-100 Toru~

C. H. R i n g e l

Fakultat fur 14athematik,

U n i v e r e i t a t ,

D-4800 B i e l e f e l d

Referenzen

ÄHNLICHE DOKUMENTE

Gruppenalgebran Gber nicht--zyklischen p-Gruppen~ J.Reine Ang.Math.. The indecozposable representations of the dihedral

I Modules of finite groups of finite representation type, or more generally, of finite-dimensional Hopf algebras of finite representation type.. I Projective/injective modules of

R¨ utsche: Absolute Irreducibility of the Residual Representation and Adelic Openness in generic characteristic for Drinfeld modules, Diss.. Serre: Abelian ℓ-adic representations

In this section we prove the absolute irreducibility of the residual representation for a Drinfeld module of arbitrary characteristic over a general finitely generated field K over

Representation theory in a nutshell where the main ideas of modern representation theory are explicitly floating on the surface?.

The way we presented the Lie algebra sl 2 ( C ) is not convenient for our purpose to study the representation theory of this algebra (infinitely many elements), that’s why it is

Die Emittentin verpflichtet sich, solange Schuldverschreibungen der Emittentin ausstehen, jedoch nur bis zu dem Zeitpunkt, an dem alle Beträge an Kapital und Zinsen unter

Beginnen Sie in einer Position mit den Kurzhanteln seitlich von der Brust und halten Sie die Arme dabei leicht gebeugt2. Das Ziel eines Übungsablaufs ist, die Han- teln über der