• Keine Ergebnisse gefunden

II. When resting state experiments (part I)?

N/A
N/A
Protected

Academic year: 2022

Aktie "II. When resting state experiments (part I)? "

Copied!
80
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Controlling spontaneous brain activity - a paradox?

Institut für Systemische Neurowissenschaften 13.09.2012

helmut@laufs.com

Department of Neurology and Brain Imaging Center Goethe-University, Frankfurt am Main, Germany

(2)

Structure

I. background

II. When resting state experiments (part I)?

III. Caveats (part I)

IV. When resting state experiments (part II)?

V. Caveats (part II)

(3)

Structure

I. background

II. When resting state experiments (part I)?

III. Caveats (part I)

IV. When resting state experiments (part II)?

V. Caveats (part II)

(4)

Resting state brain activity

correlations despite task absence

left: Van Dijk et al. Journal of neurophysiology 2010; right: Beckmann et al. Phil Trans Roy Soc London 2005

sensory motor

(5)

Resting state brain activity

(fMRI, functional connectivity)

Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F., 2006.

Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103, 13848-13853.

lateral visual

memory (left)

medial visual

auditory executive

control sensory-motor

memory (right) default mode

ventral stream (visual)

(6)

Resting state brain activity

correlations despite task absence

left: Van Dijk et al. Journal of neurophysiology 2010; right: Beckmann et al. Phil Trans Roy Soc London 2005

sensory motor

Number of publications per year on resting-state functional connectivity. Birn, R.M Neuroimage 2012

(7)

Resting state brain activity

correlations despite task absence

left: Van Dijk et al. Journal of neurophysiology 2010; right: Beckmann et al. Phil Trans Roy Soc London 2005

sensory motor

Number of publications per year on resting-state functional connectivity. Birn, R.M Neuroimage 2012

…established

Biswal et al. Magn Reson Med 1995

…en vogue

~300 PubMed citations past year

…unknown

what is the biological origin?

Buckner and Vincent, 2007; Greicius et al., 2003;

Gusnard et al., 2001, Shmuel et al. 2008, 2002

…uncontrolled

eyes closed rest, no task

4 – 12 min (Van Dijk et al. J Neurophys 2010)

(8)

Structure

I. background

II. When resting state experiments (part I)?

III. Caveats (part I)

IV. When resting state experiments (part II)?

V. Caveats (part II)

(9)

Three scenarios

I. subjects cannot engage in a paradigm

II. spontaneously occurring phenomena are of interest

III.Network comparison between healthy and patient groups

(10)

scenario I

I. subjects cannot engage in a paradigm

• Sleep

e.g. Dang-Vuet al. Proc Natl Acad Sci U S A 2008

• Coma

e.g. Owen et al. Prog Brain Res 2009

• epileptic seizure

e.g. Tyvaert, Hawco et al. Brain 2008

• studies of infants

e.g. Ment, Hirtz et al. Lancet Neurol 2009

• studies of (untrained) animals

e.g. Vincent, Patel et al. Nature 2007

(11)

I. subjects cannot engage in a paradigm:

sleep, coma, seizure

? ? ?

(12)

scenario II

II. spontaneously occurring (EEG) phenomena of interest

• epileptic spikes

e.g. Gotman et al. J Magn Reson Imaging 2006; Laufs et al. Curr Opin Neurol 2007

• sleep spindles, vertex sharp waves, K-complexes

e.g. Schabus et al. Proc Natl Acad Sci U S A 2007; Laufs et al. Brain 2007; Jahnke et al. Neuroimage 2012

• resting EEG oscillations

e.g. Laufs Hum Brain Mapp 2008

(13)

II. spontaneously occurring (EEG) phenomena of interest epileptic spikes, K-complexes, beta oscillations

? ? ?

(14)

quiz

(15)

17-23 Hz beta oscillations

K-complexes vs. N2 background temporal lobe spikes vs. background

seizure vs. no seizure

coma vs. awake

sleep vs. awake

(16)

Wie mach ich’s?

Was bedeutet’s?

(17)

Wie mach ich’s?

Was bedeutet’s?

(18)

sleep

general anaesthesia

tasks

vegetative state

Gusnard and Raichle 2001 Laureys et al. 2004

perception and action

rest

(default mode) states of reduced

consciousness

Laufs et al. 2006, 2007

3/s GSW

TLE

(19)

Wie mach ich’s?

Was bedeutet’s?

(20)

EEG

resting state brain activity

fMRI

(21)

EEG

resting state brain activity

fMRI

(22)

Scanner-Raum

optisches Kabel Computer

Verstärker und Digitalwandler

EEG Haube

verdrillte Kabel

(Goldman et al. 2000)

Vakuumkissen, Sandsäcke

Flachbandkabel

(Mandelkow et al. 2006)

(Bénar et al. 2003)

MR Tomograph

Simultane Aufzeichnung von EEG/fMRT

(23)

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 Eog Ekg1 Ekg2

scan interval

~3 sec

scan interval

~3 sec

(24)

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 Eog Ekg1 Ekg2

(25)

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 Eog Ekg1 Ekg2

(26)

polysomnography-fMRI

(Jahnke et al. 2012)

(27)

I. subjects cannot engage in a paradigm:

sleep, coma, seizure

sleep vs. awake coma vs. awake seizure vs. no seizure

Fp2-FC2 FC2-CP2 CP2-O2 Fp1-FC1 FC1-CP1 CP1-O1 F4-C4 C4-P4 P4-O2 F3-C3 C3-P3 P3-O1 F8-FC6 FC6-T8 T8-TP10 TP10-P8 F7-FC5 FC5-T7 T7-TP9 TP9-P7 Fz-Cz Cz-Pz Eog-Ref Ekg2-Ekg1

Scan Start Scan Start Scan Start Scan Start Scan Start

(28)

II. spontaneously occurring (EEG) phenomena of interest epileptic spikes, K-complexes, beta oscillations

temporal lobe spikes vs. background

TLE

K-complexes vs. N2 background

17-23 Hz

beta oscillations

(29)

Structure

I. background

II. When resting state experiments (part I)?

III. Caveats (part I)

IV. When resting state experiments (part II)?

V. Caveats (part II)

(30)

If you do not have EEG…?

(31)

If you do not have EEG…?

Data driven approaches

I. functional connectivity

II. ICA

(32)

Resting state brain activity functional connectivity

left: Van Dijk et al. Journal of neurophysiology 2010; right: Beckmann et al. Phil Trans Roy Soc London 2005

sensory motor

(33)

Resting state brain activity

(fMRI, functional connectivity via ICA)

Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F., 2006.

Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103, 13848-13853.

lateral visual

memory (left)

medial visual

auditory executive

control sensory-motor

memory (right) default mode

ventral stream (visual)

(34)

contributions to the BOLD signal unrelated to neuronal activity

1. Scanner drift

2. Subject motion 3. Circulation

4. Respiration

(35)

contributions to the BOLD signal unrelated to neuronal activity

1. Scanner drift

2. Subject motion 3. Circulation

4. Respiration

=> „false positive“ correlations in the BOLD signal

(36)

the brain at rest

...credit?!

(37)

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 Eog bEKG

Scan Start Scan Start Scan Start Scan Start Scan Start

R R R R R R R

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

2000 µV

Cardiac noise

(38)

Cardiac noise

(39)

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 Eog bEKG

Scan Start Scan Start Scan Start Scan Start Scan Start

R R R R R R R

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

100 µV

2000 µV

Maps of functional connectivity and cardiac noise

Cardiac noise not modelled (compare Kaufmann et al.)

A) A)

B) B)

C) C)

Cardiac noise modelled using RETROICOR

Activations related to cardiac noise (RETROICOR)

D)

Original hypothalamic connectivity map (Kaufmann et al.)

Kaufmann et al. 2006, Laufs et al. 2007

Cardiac noise

(40)

take a deep breath

...credit?!

(41)

respiratory noise

(42)

Birn et al. 2006

(43)
(44)

after RVT regression

respiration and envelope

fMRI signal from 1 voxel

respiratory noise

Birn et al. 2006

(45)

solution

(46)

know your enemy!

(47)
(48)
(49)
(50)

Controlling spontaneous brain activity

- a paradox?

(51)

Controlling spontaneous brain activity

not a paradox - but a necessity

(52)

The subject at rest

(53)

subjects steadily awake over time

time [min]

0 10 20 30 40 50

0 10 20 30 40 50 60

0 10 20 30 40 50

0 20 40 60 80 100

n %

(54)

subjects steadily awake over time

time [min]

0 10 20 30 40 50

0 10 20 30 40 50 60

0 10 20 30 40 50

0 20 40 60 80 100

n %

4:17 min

• state changes: up to 1/min

• 50% of subjects do not maintain wakefulness for 5 min

(55)

generalizable?

Chinese

76 young adults (18-26 yrs)

EPI, 33 slices, 225 images, TR = 2 s 7.5 min resting state fMRI

German

55 young adults (23 +-3 yrs)

EPI, 32 slices, 1500 images, TR = 2.08 s 52 min resting state fMRI

http://www.nitrc.org/frs/?group_id=296

Biswal et al. "Toward discovery science of human brain function." PNAS 2010

(56)

generalizable?

Chinese

76 young adults (18-26 yrs)

EPI, 33 slices, 225 images, TR = 2 s 7.5 min resting state fMRI

German

55 young adults (23 +-3 yrs)

EPI, 32 slices, 1500 images, TR = 2.08 s 52 min resting state fMRI

http://www.nitrc.org/frs/?group_id=296

Biswal et al. "Toward discovery science of human brain function." PNAS 2010

No EEG! Vigilance?

(57)

support vector machine

fMRI sleep classification

sleep staging based on RS correlations

training

INPUT

OUTPUT

Tagliazucchi et al. Neuroimage 2012

(58)

visual sens‘motor DMN

classifier performance

as a function of input regions w.r.t. manual scoring (AASM 2007)

(59)

visual sens‘motor DMN + thalamus

classifier performance

as a function of input regions w.r.t. manual scoring (AASM 2007)

%

(60)

visual sens‘motor DMN + thalamus all

classifier performance

as a function of input regions w.r.t. manual scoring (AASM 2007)

%

(61)

• RSN configuration is sleep stage specific

• DMN + [subcortical] thalamus -> outperforms cortical

interim summary II

(62)

• RSN configuration is sleep stage specific

• DMN + [subcortical] thalamus -> outperforms cortical

Hypothesis I. Friston 1996:

cortical resting state activity influenced by thalamus

interim summary III

(63)

• RSN configuration is sleep stage specific

• DMN + [subcortical] thalamus -> outperforms cortical

Hypothesis I. Friston 1996:

cortical resting state activity influenced by thalamus

interim summary III

(64)

classifier trained on fMRI data

0 10 20 30 40 50

0 20 40 60 80 100

time [min]

%

manual (EEG, AASM 2007)

automatic (fMRI, SVM)

Tagliazucchi et al. Neuroimage 2012

(65)

0 10 20 30 40 50 0

20 40 60 80 100

time [min]

%

manual (EEG, AASM 2007)

automatic (fMRI, SVM)

performance: 87%

classifier trained on fMRI data

Tagliazucchi et al. Neuroimage 2012

(66)

0 10 20 30 40 50 0

20 40 60 80 100

time [min]

%

manual (EEG, AASM 2007)

automatic (fMRI, SVM)

performance: 87%

5 min

classifier trained on fMRI data

Tagliazucchi et al. Neuroimage 2012

(67)

not steadily awake over time

time [min]

%

German Chinese

Tagliazucchi et al. Neuroimage 2012

(68)

Implications

expect 50% of subjects not to be steadily awake for >5 min - unless proven otherwise

vigilance changes affect resting state functional connectivity

can resting state functional connectivity serve as

biomarker?

(69)

Implications

expect 50% of subjects not to be steadily awake for >5 min - unless proven otherwise

vigilance changes affect resting state functional connectivity

can resting state functional connectivity serve as a

biomarker?

(70)

Structure

I. background

II. When resting state experiments (part I)?

III. Caveats (part I)

IV. When resting state experiments (part II)?

V. Caveats (part II)

(71)

scenario III

III. Network comparison between healthy and patient groups

• Identification of biomarkers

e.g. Greicius Curr Opin Neurol 2008

• Study subclinical disease stages/covert behavioural changes

e.g. Laufs Hum Brain Mapp 2008

(72)
(73)

Quiz (for experts)

(74)

II.

I.

biomarker of which condition?

III.

(75)

d ee p slee p ( N3 ) l igh te r slee p ( N2 ) w ak efulne ss

(76)

vigilance fluctuations –

a potential confound in resting state studies?

Mayer, G. et al. Sleep med. reviews 2011. Insomnia in central neurologic diseases--occurrence & management.

Sateia, M.J. et al. Seminars in clinical neuropsychiatry 2000. Sleep in neuropsychiatric disorders.

Ford, D.E., Kamerow, D.B., JAMA 1989. Epidemiologic study of sleep disturbances and psychiatric disorders […].

(77)

vigilance fluctuations –

another confound in resting state studies!

(78)

Conclusion I

add control to your resting state data

(79)

Conclusion II

add control to your resting state data

(80)

Alena Kuhn

Astrid Morzelewski Enzo Tagliazucchi Frederic von Wegner Helmut Laufs

Kolja Jahnke Paul Knaut Sergey Borisov Verena Brodbeck

http://user.uni-frankfurt.de/~laufs/spm_talk.pdf/

Referenzen

ÄHNLICHE DOKUMENTE

Parameter estimates Design matrix..

What else to do..... Second part: Dynamic RS-FC.. seed correlation) remains static in time, so that the connectivity between two regions is the same when computed at a certain time,

Relative to a control soft drink, the sugary soft drink caused negligible difference in resting state alpha power and BCI performance.. A caffeine soft drink decreased resting

Moreover, regression analysis demonstrates that the amount of the observed increase in sensorimotor activity across resting stages in an early adaptation phase of the motor task

Their functional activations were observed mostly in the inferior pari- etal lobule, bilateral occipital gyrus, superior frontal gyrus, and superior medial gyrus [1], whereas

Interestingly, RSN changes seem to better display intensity-dependent modulations of brain function than the regional assessment of brain activity due to EEG, as a down- regulation

Between-sex comparisons showed: decreased FC in the right middle frontal gyrus and in the precuneus within the default mode network (DMN), in affected men compared to affected

In the present study, using a cross-decoding MVPA based on machine learning, we report that task-similar brain activity related to wrist and finger movements exists in the resting