• Keine Ergebnisse gefunden

Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics

N/A
N/A
Protected

Academic year: 2022

Aktie "Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics

Bearbeitet von

Victor G. Zvyagin, Dmitry A. Vorotnikov

1. Auflage 2008. Buch. XII, 230 S. Hardcover ISBN 978 3 11 020222 9

Format (B x L): 17 x 24 cm Gewicht: 539 g

Weitere Fachgebiete > Mathematik > Numerik und Wissenschaftliches Rechnen >

Numerische Mathematik

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.

Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

(2)

Preface v

1 Non-Newtonianflows 1

1.1 Principles offlow description . . . 1

1.1.1 The basic characteristics of aflow . . . 1

1.1.2 Newtonianfluid . . . 2

1.1.3 Equation of motion . . . 3

1.1.4 No-slip condition . . . 5

1.2 One-dimensional models of viscoelastic media . . . 5

1.2.1 Method of mechanical models . . . 5

1.2.2 The Maxwell body . . . 6

1.2.3 The Jeffreys body . . . 7

1.3 Multidimensional models of viscoelastic media . . . 10

1.3.1 Passage to multidimensional models . . . 10

1.3.2 Partial derivative . . . 10

1.3.3 Substantial derivative . . . 11

1.3.4 Principle of material frame-indifference. Frame-indifferent functions . . . 14

1.3.5 The Zaremba–Zórawski theorem . . . .˙ 16

1.3.6 Objective derivatives . . . 17

1.3.7 Examples of objective derivatives . . . 19

1.4 Nonlinear effects in viscous media . . . 21

1.4.1 Nonlinear viscosity and viscoelasticity . . . 21

1.4.2 Noll’s theorem and the Stokes conjecture. . . 21

1.4.3 The Wang and Rivlin–Ericksen theorems . . . 23

1.4.4 Oldroyd’s method. Models of Prandtl and Eyring . . . 25

1.5 Combined models of nonlinear viscoelastic media . . . 27

1.5.1 Nonlinear differential constitutive relations . . . 27

1.5.2 Combined models . . . 29

2 Basic function spaces. Embedding and compactness theorems 31 2.1 Function spaces and embeddings . . . 31

2.1.1 Lebesgue and Sobolev spaces . . . 31

2.1.2 The spaces used in hydrodynamics . . . 39

2.2 Spaces of vector functions . . . 40

2.2.1 Preliminaries . . . 40

(3)

2.2.2 Classical criteria of compactness . . . 46

2.2.3 Compactness inLp.0; TIE/ . . . 47

2.2.4 Compactness of sets of vector functions with values in an “in- termediate” space . . . 51

2.2.5 The Aubin–Simon theorem . . . 52

2.2.6 Theorem on “partial” compactness . . . 56

2.2.7 Lemma on weak continuity of essentially bounded functions . 56 2.2.8 Lemma on differentiability of the quadrate of the norm of a vector function . . . 57

2.2.9 Two lemmas on absolutely continuous vector functions . . . . 57

3 Operator equations in Banach spaces 61 3.1 Linear equations . . . 61

3.1.1 The Lax–Milgram theorem . . . 61

3.1.2 Characterization of the gradient of a distribution . . . 61

3.1.3 An existence lemma . . . 64

3.1.4 Strongly positive operators and parabolic equations . . . 64

3.2 Nonlinear equations . . . 69

3.2.1 An existence theorem . . . 69

3.2.2 The Leray–Schauder degree . . . 74

4 Attractors of evolutionary equations in Banach spaces 77 4.1 Attractors of autonomous equations: classical approach . . . 77

4.1.1 Attractor of a semigroup . . . 77

4.1.2 Global.E; E0/-attractors of evolutionary equations . . . 78

4.2 Attractors of autonomous problems without uniqueness of the solution 79 4.2.1 Basic definitions . . . 80

4.2.2 Simple properties of attracting sets and auxiliary statements . 82 4.2.3 Existence of a minimal trajectory attractor . . . 86

4.2.4 Existence of a global attractor . . . 87

4.2.5 The case when a trajectory attractor is contained in the trajectory space . . . 91

4.2.6 Structure of the minimal trajectory attractor and of the homo- geneous trajectory quasiattractor . . . 92

4.2.7 Correspondence between two concepts of global attractor . . . 95

4.3 Attractors of non-autonomous equations . . . 97

5 Strong solutions for equations of motion of viscoelastic medium 103 5.1 The Guillopé–Saut theorem . . . 103

5.2 Initial-value problem for combined model of nonlinear viscoelastic medium . . . 112

(4)

5.2.1 Formulation of the initial-value problem . . . 112

5.2.2 The Leray projection inRnand some additional notations . . 113

5.2.3 The main existence and uniqueness theorem . . . 115

5.3 Operator treatment of the problem . . . 116

5.4 Auxiliary problem . . . 118

5.4.1 Solvability of the auxiliary problem . . . 118

5.4.2 Operator estimates . . . 119

5.4.3 Properties of the operatorA0 . . . 126

5.4.4 Uniqueness lemma . . . 128

5.4.5 A priori estimate . . . 130

5.4.6 Proof of Theorem 5.4.1 . . . 131

5.5 Proof of the main theorems . . . 133

5.5.1 Proof of Theorem 5.3.1 . . . 133

5.5.2 Proof of Theorem 5.2.1 . . . 136

5.5.3 The caser > 1 . . . 137

5.6 Continuous dependence of solutions on data . . . 137

6 Weak solutions for equations of motion of viscoelastic medium 141 6.1 Preliminaries . . . 141

6.1.1 Weak solutions for equations offluid dynamics: general scheme141 6.1.2 Integration by parts . . . 144

6.2 Initial-boundary value problem and its weak form . . . 149

6.2.1 Statement of the problem . . . 149

6.2.2 Weak formulation of the problem . . . 149

6.2.3 An existence result . . . 151

6.3 Auxiliary problem . . . 152

6.4 Passage to the limit. . . 158

6.5 Existence of a weak solution for the Jeffreys model . . . 163

6.5.1 Existence of velocity and stress . . . 163

6.5.2 Existence of pressure . . . 166

6.6 Uniqueness of the weak solution . . . 170

6.6.1 Differential energy inequality . . . 170

6.6.2 Uniqueness of the weak solution . . . 172

6.7 Minimal trajectory and global attractors for the Jeffreys model . . . . 178

6.7.1 Integral energy estimate: autonomous case . . . 178

6.7.2 Existence and structure of attractors . . . 181

6.8 Uniform attractors for the Jeffreys model . . . 184

6.8.1 Integral energy estimate: non-autonomous case . . . 184

6.8.2 Existence and structure of uniform attractors . . . 188

6.9 Stationary boundary-value problem for the Jeffreys model . . . 191

6.9.1 Strong and weak statements of the stationary problem . . . . 191

6.9.2 Auxiliary problem and a priori bound . . . 192

(5)

6.9.3 Solvability of the auxiliary problem . . . 193

6.9.4 Proof of Theorem 6.9.1. . . 194

7 The regularized Jeffreys model 197 7.1 Formulation of the problem and the main results . . . 197

7.2 Properties of the operators . . . 201

7.3 A priori estimates of solutions and solvability of the approximating equations . . . 206

7.4 A priori estimate and existence of solutions for the regularized problem 208 7.5 Another weak formulation for the regularized Jeffreys model . . . 211

7.6 Behaviour of solutions of regularized problems ası!0 . . . 216

7.7 Two constructions of regularization operator . . . 218

7.7.1 Thefirst construction . . . 218

7.7.2 The second construction . . . 220

References 223

Index 229

Referenzen

ÄHNLICHE DOKUMENTE

When the objective function is a lower semicontinuous convex extended function (which happens when one minimizes problems with constraints), the subgradient algorithm

The most widely proposed MP techniques are the hlSD formulation (Freed and Glover 198lb), which minimizes the sum of absolute exterior deviations from the classification

The theorem formulated above shows t h a t the problem of constructing the optimal strategy in game G2 is reduced to that of solving a nonlinear program- ming problem

This work focuses on mitigating the PMHT’s main problems and presents the integration of a sequential likelihood-ratio test for track extraction.. The PMHT works on a

If we write v, k, and t instead of N, 3, and 2, respectively, then we arrive at the following contemporary definition: A Steiner system S ( t , k , v ) is a finite set ᐂ of

In all plots the vertical axis is the zero-one error on the test set and the horizontal axis is the number of iterations divided by training set size (corresponding to the number

For sparse linear eigenvalue problems Ax = λx, iterative projection methods like the Lanczos, Arnoldi, rational Krylov or Jacobi–Davidson method are well established.. The basic idea

In [47], [48], [50] Ruhe generalized the rational Krylov approach for linear eigen- problems [49] to sparse nonlinear eigenvalue problems by nesting the linearization of problem (1)