• Keine Ergebnisse gefunden

Wireless Communications

N/A
N/A
Protected

Academic year: 2022

Aktie "Wireless Communications"

Copied!
44
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Wireless Communications

Engineering Basics

(2)

Outline

Wireless Signals and Wireless Transmission

Electromagnetic waves

Complex numbers recap/tutorial

Time domain and frequency domain

The relation between input and output

Representing signals with complex exponentials

Antennas

Logarithmic representation of quantities

Wireless Communications - Engineering Basics

WS 19/20 2

(3)

WIRELESS SIGNALS AND WIRELESS TRANSMISSION

Wireless Communications - Engineering Basics

WS 19/20 3

(4)

Wireless Communications - Engineering Basics

Signals

Physical representation of data

Signal parameters: Parameters whose value or value curve represent the data

Classification by properties:

time-continuous or time-discrete

value continuous or discrete

Analog signal = time and value continuous

Digital signal = time and value discrete

In the following we consider signals as a function s(t) in time t

Here we a considering wireless signals represented by parameters of electromagnetic waves

WS 19/20 4

(5)

Problem: Wireless = Analog

0110 1001 1000 1010

Transmitter Receiver

0110 1001 1000 1010

Definition: Transmitter + Receiver = Transceiver

Wireless Communications - Engineering Basics

WS 19/20 5

(6)

Passband Transmission Principle

0110 1001 1000 1010

Transmitter Receiver

0110 1001 1000 1010 Carrier wave with

carrier frequency f

Amplitude Frequency Phase

Wireless Communications - Engineering Basics

WS 19/20 6

(7)

Terminology

1011

Bit(s) Symbol

Modulation

Demodulation

symbol rate:

number of symbols per second

data rate:

number of bits per seconds

N-ary modulation scheme: number of different symbols!

i.e., this can convey log(N) Bits per symbol

Wireless Communications - Engineering Basics

WS 19/20 7

(8)

Wireless Communications - Engineering Basics

Different representations of a signal:

Amplitude spectrum (amplitude over time)

Frequency spectrum (amplitude or phase over frequency)

Phase state diagram (amplitude M and phase angle φ are plotted in polar coordinates)

Compound signals can be split into frequency components by Fourier transformation

Digital signals have rectangular edges

in the frequency spectrum infinite bandwidth

transmission requires modulation to analog carrier signals

Preview: we will look into some details about

f [Hz]

A [V]

I = M cos φ (In-phase) Q = M sin φ (Quadrature)

A [V]

t[s]

WS 19/20 8

(9)

Wireless Communications - Engineering Basics

Frequency ranges used for communication

VLF = Very Low Frequency UHF = Ultra High Frequency LF = Low Frequency (long wave radio) SHF = Super High Frequency MF = Medium Frequency (medium wave radio) EHF = Extra High Frequency HF = High Frequency (short wave-Radio) UV = ultraviolet light

VHF = Very High Frequency (UKW-Radio)

1 Mm 300 Hz

10 km 30 kHz

100 m 3 MHz

1 m 300 MHz

10 mm 30 GHz

100 m 3 THz

1 m 300 THz

visible light

VLF LF MF HF VHF UHF SHF EHF Infra red UV

optical transmission wave guide

coax cable twisted

pair

WS 19/20 9

(10)

Wireless Communications - Engineering Basics

Frequencies and regulations

The ITU-R regularly organizes conferences to negotiate and manage the frequency bands

(WRC, World Radio Conferences)

Examples of operating frequencies in mobile communications:

E u r o p e U S A J a p a n

C e llu la r P h o n e s

G S M 4 5 0 -4 5 7 , 4 7 9 - 4 8 6 /4 6 0 -4 6 7 ,4 8 9 - 4 9 6 , 8 9 0 -9 1 5 /9 3 5 - 9 6 0 ,

1 7 1 0 -1 7 8 5 /1 8 0 5 - 1 8 8 0

U M T S (F D D ) 1 9 2 0 - 1 9 8 0 , 2 1 1 0 -2 1 9 0 U M T S (T D D ) 1 9 0 0 - 1 9 2 0 , 2 0 2 0 -2 0 2 5

A M P S, T D M A, C D M A 8 2 4 -8 4 9 ,

8 6 9 -8 9 4

T D M A, C D M A, G S M 1 8 5 0 -1 9 1 0 ,

1 9 3 0 -1 9 9 0

P D C 8 1 0 -8 2 6 , 9 4 0 -9 5 6 , 1 4 2 9 -1 4 6 5 , 1 4 7 7 -1 5 1 3

C o r d le s s P h o n e s

C T 1 + 8 8 5 -8 8 7 , 9 3 0 - 9 3 2

C T 2 8 6 4 -8 6 8 D E C T 1 8 8 0 -1 9 0 0

P A C S 1 8 5 0 -1 9 1 0 , 1 9 3 0 - 1 9 9 0

P A C S -U B 1 9 1 0 -1 9 3 0

P H S 1 8 9 5 -1 9 1 8 J C T

2 5 4 -3 8 0

W ir e le s s L A N s

IE E E 8 0 2 .1 1 2 4 0 0 -2 4 8 3 H IP E R L A N 2 5 1 5 0 -5 3 5 0 , 5 4 7 0 - 5 7 2 5

9 0 2 -9 2 8 IE E E 8 0 2 .1 1 2 4 0 0 -2 4 8 3

5 1 5 0 -5 3 5 0 , 5 7 2 5 -5 8 2 5

IE E E 8 0 2 .1 1 2 4 7 1 -2 4 9 7 5 1 5 0 -5 2 5 0

O th e r s R F -C o n tr o l

2 7 , 1 2 8 , 4 1 8 , 4 3 3 , 8 6 8

R F -C o n tr o l 3 1 5 , 9 1 5

R F -C o n tr o l 4 2 6 , 8 6 8

WS 19/20 12

(11)

ELECTROMAGNETIC WAVES

Wireless Communications - Engineering Basics

WS 19/20 16

(12)

Principle

Wireless Communications - Engineering Basics

E-Field M-Field

Image source: http://de.wikipedia.org/wiki/Elektromagnetische_Welle

Side note:

• Fraunhofer distance

• near field

• far field

• (Maxwell's equations)

WS 19/20 17

(13)

Characterization of an electromagnetic wave

Wireless Communications - Engineering Basics

Time representation of the

E-field

Wave length

distance

WS 19/20 19

(14)

Far Field and Fraunhofer Distance

WS 19/20 Wireless Communications - Engineering Basics 21

rappaport02wireless: 4.2

far field

near field When are we located in the far field?

This is related to:

• largest physical linear dimension D of the transmitter antenna

• carrier wavelength λ 

• Fraunhofer distance df

To be in the far field the distance d to the transmitter antenna must satisfy:

(15)

Far Field and Fraunhofer Distance

WS 19/20 Wireless Communications - Engineering Basics 22

rappaport02wireless: 4.2

The expressions d >> D and d >> λ are somewhat vague.

Consider an example

• 12 cm WLAN antenna

• Carrier frequency 2,4 GHz

(16)

Free space propagation and an omnidirectional radiator

Wireless Communications - Engineering Basics

Wave front Fraunhofer distance

Near field Far Field

WS 19/20 23

(17)

We will discuss later: transmitted power per square meter on the wave front

Wireless Communications - Engineering Basics

s

1m 1m

Power P:

spherical surface

WS 19/20 26

(18)

Remark: Energy and Power

1 m

Gravitation:

9,81 m/s^2 Weight:

102 g

Force (Newton)

Energy (Joule)

Power (Watts)

1 sec

Wireless Communications - Engineering Basics

WS 19/20 27

(19)

Remark: Voltage, Current and Power

Voltage [U in V]

Current [I in A]

Power [P in W]

Resistance [R in ]

Wireless Communications - Engineering Basics

WS 19/20 28

(20)

ANTENNAS

Wireless Communications - Engineering Basics

WS 19/20 100

(21)

Operating Principle of Antennas

WS 19/20 Wireless Communications - Engineering Basics 101

Antenna: electrical conductor or system of conductors used either  for radiating or for collecting electromagnetic energy

Isotropic radiator (isotropic antenna)

Idealized antenna which radiates power in all directions equally Real antennas do not perform equally well in all directions

Receiving antenna captures a constant area of the energy  distributed over the sphere centered at the sender antenna

Reciprocity: characteristics are essentially the same whether the an  antenna is sending or receiving electromagnetic energy

stallings05wireless: 5.1

Transmit

antenna Receive

antenna 1

Receive antenna 2

Image: lecture slides

„Mobilkommunikation“, Prof. Dr. Holger Karl

(22)

Example of a Real Antenna

WS 19/20 Wireless Communications - Engineering Basics 102

stallings05wireless: 5.1

Conductor

Conductor Gap

Image: http://www.elektronik-

kompendium.de/sites/kom/0810171.htm

Image: http://de.wikipedia.org/

wiki/Dipolantenne

Resonant Circuit

/2

Electric Field E Magnetic Field H

How differs a half-wave dipole from an isotropic radiator?

Half-Wave Dipole (Hertz Antenna)

(23)

Radiation Pattern

WS 19/20 Wireless Communications - Engineering Basics 103

stallings05wireless: 5.1

Image: http://en.wikipedia.org/

wiki/Radiation_pattern

Example: radiation pattern of a half-wave dipole

x y

z y

x z

• a common way to characterize  the performance of  an antenna

• due to reciprocity: radiation pattern characterizes  both transmission and reception performance

• when an antenna is used for reception, the 

radiation pattern becomes a reception pattern

(24)

The size of the pattern does not matter

WS 19/20 Wireless Communications - Engineering Basics 104

stallings05wireless: 5.1

What is important is the relative distance from the antenna position in each direction. The relative distance characterizes the relative power in that direction compared to other

directions.

Examples

Difference between two directions A and B for an isotropic radiator?

In which direction A will a directed radiator radiate with half of the power than in direction B?

(25)

Beam Width

WS 19/20 Wireless Communications - Engineering Basics 105

stallings05wireless: 5.1

The angle within which the power radiated by the antenna is at least half of what it is in the most preferred direction

Beispiel

(26)

Antenna Gain

WS 19/20 Wireless Communications - Engineering Basics 106

stallings05wireless: 5.1

Power output in a particular direction compared to the power output produced in any direction by a perfect isotropic antenna.

(i.e. total area of both radiation patterns of the isotropic antenna and the considered one are the same)

Example: what is the antenna gain into the strongest direction?

(Note: an increase of power in one direction means a lowering of power

into another one; antenna gain does not mean amplification of the total

power!)

(27)

Effective Area (1)

WS 19/20 Wireless Communications - Engineering Basics 107

stallings05wireless: 5.1

Consider the amount PFD [watt/m2] (power flux density) of power passing through a unit area of one square meter.

Consider an antenna oriented with the axis of maximum sensitivity toward the source. Let the antenna deliver Po watts to the receiver.

The effective area Ae is defines as:

Basically it expresses the size of the area oriented perpendicular to the direction of an incoming electromagnetic wave which would intercept Powatt (i.e. the power intercepted by the considered antenna).

Transmit antenna

Receive antenna

Image: lecture slides

„Mobilkommunikation, Prof. Dr. Holger Karl

(28)

Effective Area (2)

WS 19/20 Wireless Communications - Engineering Basics 108

stallings05wireless: 5.1

Without further details: the effective area is of course related to the physical size and type of the antenna. (how depends on the antenna type)

Antenna gain G and effective area Ae are related. Let  be the wave length. We have:

Note: we considered an antenna oriented with the axis of maximum sensitivity toward the source. The concept can of course be generalized to any antenna orientation.

Example of antenna gains and effective areas for different antenna types

Type of Antenna Effective Area Ae[m2] Antenna Gain G

into the strongest direction

Isotropic 2 / (4 π)  1

Half‐wave dipole 1.64 2 / (4 π)  1.64

Parabolic with face area A (see next) 0.56 A 7 A / 2

(29)

What is the beam width?

What is the antenna gain in an arbitrary direction?

Quiz: radiation pattern of an isotropic antenna?

WS 19/20 Wireless Communications - Engineering Basics 109

stallings05wireless: 5.1

x y

z y

x

z

(30)

Antenna examples:

quarter wave antenna (Marconi antenna)

WS 19/20 Wireless Communications - Engineering Basics 110

Image source: http://en.wikibooks.org/wiki/

Communication_Systems/Antennas

/4

Surface acts as a „mirror“ for the lambda/4 radiator (example: radio antenna in the roof of a car)

Image source: Jochen Schiller,

„Mobilkommunikation“, 2te überarbeitete Auflage, 2003

(31)

Antenna examples:

inverted‐F antenna (IFA) of a TmoteSky node

WS 19/20 Wireless Communications - Engineering Basics 111

Where is the antenna?

Such an antenna is also called a PCB antenna (printed circuit board antenna)

(32)

Antenna examples:

radiation pattern from the TmoteSky data sheet

WS 19/20 Wireless Communications - Engineering Basics 112

Horizontal mounting Vertical mounting

Image source of the radiation patterns: Tmote Sky Datasheet (2/6/2006)

(33)

Antenna examples: parabolic reflective antenna

WS 19/20 Wireless Communications - Engineering Basics 113

stallings05wireless: 5.1

x y

Focus

same length

Directrix

Parabola construction Reflective property

x

y

(34)

Antenna examples:

radiation pattern of a parabolic reflective antenna

WS 19/20 Wireless Communications - Engineering Basics 114

stallings05wireless: 5.1

x y

z y

x

z

(35)

Antenna beamwidths for various parabolic reflective  antenna diameters at frequency f=12GHz

WS 19/20 Wireless Communications - Engineering Basics 115

stallings05wireless: 5.1

Antenna diameter (m) Beam width (in degree)

0,5 3,5

0,75 2,33

1,0 1,75

1,5 1,166

2,0 0,875

2,5 0,7

5,0 0,35

Parabolic reflective antennas always have a beam with >0. In practice the focus is not one single idealized point. Note: the larger the antenna diameter the more tightly directional is the beam.

(36)

Physical size of an antenna

For the parabolic reflecting antenna the antenna size is the diameter parabolic   reflector

For the considered lambda/x antenna the antenna size is proportional to the  utilized wave length

The size of the example antenna of the TmoteSky node (more precisely the height  of th “ ground plane” )  is approximately 3,125cm and is ¼ of the wave length 

(lambda/4 antenna).

Which frequency band is probably used?

Put oversimplified for antennas in communication systems: the higher the utilized  frequency the smaller the required antenna size

WS 19/20 Wireless Communications - Engineering Basics 116

(37)

More about antenna types

WS 19/20 Wireless Communications - Engineering Basics 117

• This was a small example selection of antenna types: a list of  many more elementary antenna types can be found here: 

http://www.antenna‐theory.com/antennas/main.php

• Moreover elementary antenna types can be used to build 

more complex ones: see next...

(38)

Wireless Communications - Engineering Basics

Antennas: directional and with sectors

Seitenansicht (xy-Ebene) x y

Seitenansicht (yz-Ebene) z y

von oben (xz-Ebene) x z

von oben, 3 Sektoren x z

von oben, 6 Sektoren x z

Frequently used antenna types for direct microwave connections and base stations for mobile networks (for example, covering of valleys and street canyons)

directed antenna

sector antenna

WS 19/20 118

side view (xy plane) side view (yz plane) top view (xz plane)

top view, 3 sectors top view, 6 sectors

(39)

Wireless Communications - Engineering Basics

Antenna diversity

Grouping of 2 or more antennas

Antenna array with several elements antenna diversity

Switching / selection

Receiver selects the antenna with the best reception

Combining

Combining of antennas for better reception

Phase adaptation to avoid cancellation

+

/4

/2

/4

ground plane

/2

/2

+

/2

WS 19/20 119

(40)

MIMO

Multiple-Input Multiple-Output

Use of several antennas at receiver and transmitter

Increased data rates and transmission range without additional transmit power or bandwidth via higher spectral efficiency, higher link robustness, reduced fading

Examples

IEEE 802.11n, LTE, HSPA+, …

Functions

“Beamforming”: emit the same signal from all antennas to maximize signal power at receiver antenna (and beamforming at the receiver side also possible; reduces interference)

Spatial multiplexing: split high-rate signal into multiple lower rate streams and transmit over different antennas

Wireless Communications - Engineering Basics

sender

receiver t1

t2 t3

Time of flight t2=t1+d2 t3=t1+d3

1 2

3

Sending time 1: t0

2: t0-d2 3: t0-d3

WS 19/20 120

(41)

LOGARITHMIC

REPRESENTATION OF QUANTITIES

Wireless Communications - Engineering Basics

WS 19/20 123

(42)

Remark: dB?

Wireless Communications - Engineering Basics

Logarithmic representation of the relation of two power or two energy quantities of the same unit.

By example: for P

1

and P

2

the relation P

2

/ P

1

is expressed in dB by:

WS 19/20 124

(43)

Note: What is dBm?

Wireless Communications - Engineering Basics

Logarithmic expression of power in mW Conversion

P mW  x dBm

x dBm  P mW

WS 19/20 125

(44)

Examples (from wikipedia)

dBm level Power Notes

80 dBm 100 kW Typical transmission power of a FM radio station

60 dBm 1 kW = 1000 W Typical RF power inside a microwave oven

36 dBm 4 W Typical maximum output power for a Citizens' band radio station (27 MHz) in many countries 30 dBm 1 W = 1000 mW Typical RF leakage from a microwave oven - Maximum output power for DCS 1800 MHz mobile

phone

27 dBm 500 mW Typical cellular phone transmission power

21 dBm 125 mW Maximum output from a UMTS/3G mobile phone (Power class 4 mobiles) 20 dBm 100 mW Bluetooth Class 1 radio, 100 m range (maximum output power from unlicensed FM transmitter)

4 dBm 2.5 mW Bluetooth Class 2 radio, 10 m range

0 dBm 1.0 mW =

1000 µW Bluetooth standard (Class 3) radio, 1 m range

−70 dBm 100 pW Typical range (−60 to −80 dBm) of Wireless signal over a network

−111 dBm 0.008 pW Thermal noise floor for commercial GPS signal bandwidth (2 MHz)

−127.5 dB

m 0.000178 pW Typical received signal power from a GPS satellite

−174 dBm 0.000004 fW Thermal noise floor for 1 Hz bandwidth

Wireless Communications - Engineering Basics

WS 19/20 126

Referenzen

ÄHNLICHE DOKUMENTE

Stable gas condensate (oil), motor gasoline, diesel fuel, TS-1 engine jet fuel, liquefi ed gas, WFLH, PHF, GCLD Methanol production plantООО SibmetakhimTomsk1983750 thousand tons

(These are not costs without merit: because the embedded applications run in their own processes, even if they crash, the embedder can continue running.) While these

The progressive tax system and progressive taxation in general relates to a situation in which the proportion of income earned through taxation (tax rate) increases with

A somewhat different display system has been breadboarded by the Naval Re- search Laboratory, involving the use of a monoscope for generating the signal used to modulate the

In the preceding section, we have seen that a voting mechanism leads to higher transfers if and only if it is coupled with electoral promises con- cerning the future choices

The randomly seleted president deides on how to distribute 100 points. among the itizens in his group

However, as long as the US and China, the two great powers in the region prefer to engage in a more complex game rather than a simple balance of power Japan and South Korea

The answer, according to Hawkins, has its roots in persuasion, communication and argumentation... Mainstream realist and liberal explanations of international institutions