• Keine Ergebnisse gefunden

On categories of tilting modules

N/A
N/A
Protected

Academic year: 2022

Aktie "On categories of tilting modules"

Copied!
47
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

On categories of tilting modules

Or: Mind your poles Daniel Tubbenhauer

Joint with Paul Wedrich

October 2020

Daniel Tubbenhauer On categories of tilting modules October 2020 1 / 8

(2)

We want to describeTilt(G) as a category, i.e. find an algebraZsuch that there is an equivalence of additive,K-linear categories

F: Tilt(G)−→= pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.

Goal. DescribeTilt(G)by generators and relations.

I “do not care about objects”, but the point are morphisms and their relations.

Daniel Tubbenhauer On categories of tilting modules October 2020 2 / 8

(3)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= bar

r

... ab0

0

. Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a51 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11, a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three. I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it; the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(4)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Philosophy. Only the vanishing order ofv

w

qmatters for this lecture ;-).

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= bar

r

... ab0

0

. Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a51 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11, a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three. I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it; the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(5)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Philosophy. Only the vanishing order ofv

w

qmatters for this lecture ;-).

Corollary. We understand finite-dimensional modules forSL2=SL2(K=K)

• generically;

• for the quantum group overCatq2`= 1;

• the quantum group overK,char(K) =p andq2`= 1 (mixed case);

• in prime characteristicchar(K) =p.

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= bar

r

... ab0

0

. Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a51 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11, a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three. I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it; the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(6)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Philosophy. Only the vanishing order ofv

w

qmatters for this lecture ;-).

Corollary. We understand finite-dimensional modules forSL2=SL2(K=K)

• generically;

• for the quantum group overCatq2`= 1;

• the quantum group overK,char(K) =p andq2`= 1 (mixed case);

• in prime characteristicchar(K) =p.

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= abrr ... ab00

.

Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a51 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11, a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three. I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it; the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(7)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Philosophy. Only the vanishing order ofv

w

qmatters for this lecture ;-).

Corollary. We understand finite-dimensional modules forSL2=SL2(K=K)

• generically;

• for the quantum group overCatq2`= 1;

• the quantum group overK,char(K) =p andq2`= 1 (mixed case);

• in prime characteristicchar(K) =p.

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= abrr ... ab00

. Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a−15 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11,a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three.

I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it; the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(8)

Folklore, Lucas∼1878. Letq∈K,qchar(K) =p,a=mp+a0and b=np+b0(a0,b0zeroth digit of the p-adic expansion). Then

a b

q

= m

n a0

b0

q

.

Philosophy. Only the vanishing order ofv

w

qmatters for this lecture ;-).

Corollary. We understand finite-dimensional modules forSL2=SL2(K=K)

• generically;

• for the quantum group overCatq2`= 1;

• the quantum group overK,char(K) =p andq2`= 1 (mixed case);

• in prime characteristicchar(K) =p.

Example/Remark.

K=Fp,q= 1(known as characteristicp),

anda= [ar,...,a0]p,b= [br,...,b0]p (thep-adic expansions), then

a b

=a

b

q=ar

br

q...a0

b0

q= bar

r

... ab0

0

. Examples fora= 1331 = 113andb=a−1.

IfK=C,q= 1, thenqchar(K) = 0,a= [1331]0andb= [1330]0

1331

1330

q= 13311330

= 1331 does not vanish.

IfK=C,q= exp(2πi/11), thenqchar(K) = 11,a= [121,0]11andb= [120,10]11

1331 1330

q= 121·0 10

qvanishes of order one.

IfK=F11,q= 3, thenqchar(K) = 5,a= [266,1]5,b= [266,0]5and a51 =b5 = [2,2,2]11

⇒[1331]q= 1·1·1·[1]q does not vanish.

IfK=F11,q= 1, thenqchar(K) = 11, a= [1,0,0,0]11andb= [0,10,10,10]11

⇒[1331]q= 1·0·0·[0]qvanishes of order three.

I will stick with characteristicp, but

the quantum group is a “zeroth digit only” version of it;

the mixed cases is a mixture of the two.

Daniel Tubbenhauer On categories of tilting modules October 2020 3 / 8

(9)

Weyl ∼1923. TheSL2Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y0

X1Y0 X0Y1

X2Y0 X1Y1 X0Y2

X3Y0 X2Y1 X1Y2 X0Y3

X4Y0 X3Y1 X2Y2 X1Y3 X0Y4

X5Y0 X4Y1 X3Y2 X2Y3 X1Y4 X0Y5

X6Y0 X5Y1 X4Y2 X3Y3 X2Y4 X1Y5 X0Y6

a bc d

7→matrix who’s columns are expansions of (aX+cY)v−i(bX+dY)i−1.

The simples

Example∆(7−1) =KX6Y0⊕ · · · ⊕KX0Y6.

(a bc d) acts as

The columns are expansions of (aX+cY)7−i(bX+dY)i−1. Binomials!

Example∆(7−1), characteristic0. No common eigensystem⇒∆(7−1) simple.

Example∆(7−1), characteristic2.

(a bc d) acts as

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule. When is∆(v−1)simple?

∆(v−1) is simple

v1 w1

6= 0 for allw ≤v

⇔(Lucas’s theorem) v = [ar,0,...,0]p.

General. Weyl ∆(λ) and dual Weyl∇(λ)

are easy a.k.a. standard; are parameterized by dominant integral weights;

are highest weight modules; are defined overZ; have the classical Weyl characters;

form a basis of the Grothendieck group unitriangular w.r.t. simples; satisfy (a version of) Schur’s lemma dimKExti(∆(λ),∇(µ)) =δi,0δλ,µ;

are simple generically;

have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis∼1973).

Daniel Tubbenhauer On categories of tilting modules October 2020 4 / 8

(10)

Weyl ∼1923. TheSL2Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y0

X1Y0 X0Y1

X2Y0 X1Y1 X0Y2

X3Y0 X2Y1 X1Y2 X0Y3

X4Y0 X3Y1 X2Y2 X1Y3 X0Y4

X5Y0 X4Y1 X3Y2 X2Y3 X1Y4 X0Y5

X6Y0 X5Y1 X4Y2 X3Y3 X2Y4 X1Y5 X0Y6

a bc d

7→matrix who’s columns are expansions of (aX+cY)v−i(bX+dY)i−1.

The simples

Example∆(7−1) =KX6Y0⊕ · · · ⊕KX0Y6.

(a bc d) acts as

The columns are expansions of (aX+cY)7−i(bX+dY)i−1. Binomials!

Example∆(7−1), characteristic0. No common eigensystem⇒∆(7−1) simple.

Example∆(7−1), characteristic2.

(a bc d) acts as

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule. When is∆(v−1)simple?

∆(v−1) is simple

v1 w1

6= 0 for allw ≤v

⇔(Lucas’s theorem) v = [ar,0,...,0]p.

General. Weyl ∆(λ) and dual Weyl∇(λ)

are easy a.k.a. standard; are parameterized by dominant integral weights;

are highest weight modules; are defined overZ; have the classical Weyl characters;

form a basis of the Grothendieck group unitriangular w.r.t. simples; satisfy (a version of) Schur’s lemma dimKExti(∆(λ),∇(µ)) =δi,0δλ,µ;

are simple generically;

have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis∼1973).

Daniel Tubbenhauer On categories of tilting modules October 2020 4 / 8

(11)

Weyl ∼1923. TheSL2Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y0

X1Y0 X0Y1

X2Y0 X1Y1 X0Y2

X3Y0 X2Y1 X1Y2 X0Y3

X4Y0 X3Y1 X2Y2 X1Y3 X0Y4

X5Y0 X4Y1 X3Y2 X2Y3 X1Y4 X0Y5

X6Y0 X5Y1 X4Y2 X3Y3 X2Y4 X1Y5 X0Y6

a bc d

7→matrix who’s columns are expansions of (aX+cY)v−i(bX+dY)i−1.

The simples

Example∆(7−1) =KX6Y0⊕ · · · ⊕KX0Y6.

(a bc d) acts as

The columns are expansions of (aX+cY)7−i(bX+dY)i−1. Binomials!

Example∆(7−1), characteristic0.

No common eigensystem⇒∆(7−1) simple.

Example∆(7−1), characteristic2.

(a bc d) acts as

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule.

When is∆(v−1)simple?

∆(v−1) is simple

v1 w1

6= 0 for allw ≤v

⇔(Lucas’s theorem) v = [ar,0,...,0]p.

General. Weyl ∆(λ) and dual Weyl∇(λ)

are easy a.k.a. standard; are parameterized by dominant integral weights;

are highest weight modules; are defined overZ; have the classical Weyl characters;

form a basis of the Grothendieck group unitriangular w.r.t. simples; satisfy (a version of) Schur’s lemma dimKExti(∆(λ),∇(µ)) =δi,0δλ,µ;

are simple generically;

have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis∼1973).

Daniel Tubbenhauer On categories of tilting modules October 2020 4 / 8

(12)

Weyl ∼1923. TheSL2Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y0

X1Y0 X0Y1

X2Y0 X1Y1 X0Y2

X3Y0 X2Y1 X1Y2 X0Y3

X4Y0 X3Y1 X2Y2 X1Y3 X0Y4

X5Y0 X4Y1 X3Y2 X2Y3 X1Y4 X0Y5

X6Y0 X5Y1 X4Y2 X3Y3 X2Y4 X1Y5 X0Y6

a bc d

7→matrix who’s columns are expansions of (aX+cY)v−i(bX+dY)i−1.

The simples

Example∆(7−1) =KX6Y0⊕ · · · ⊕KX0Y6.

(a bc d) acts as

The columns are expansions of (aX+cY)7−i(bX+dY)i−1. Binomials!

Example∆(7−1), characteristic0. No common eigensystem⇒∆(7−1) simple.

Example∆(7−1), characteristic2.

(a bc d) acts as

(0,0,0,1,0,0,0) is a common eigenvector, so we found a submodule.

When is∆(v−1)simple?

∆(v−1) is simple

v1 w1

6= 0 for allw ≤v

⇔(Lucas’s theorem) v = [ar,0,...,0]p.

General.

Weyl ∆(λ) and dual Weyl∇(λ) are easy a.k.a. standard;

are parameterized by dominant integral weights;

are highest weight modules;

are defined overZ;

have the classical Weyl characters;

form a basis of the Grothendieck group unitriangular w.r.t. simples;

satisfy (a version of) Schur’s lemma dimKExti(∆(λ),∇(µ)) =δi,0δλ,µ; are simple generically;

have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis∼1973).

Daniel Tubbenhauer On categories of tilting modules October 2020 4 / 8

(13)

Ringel, Donkin∼1991. The indecomposable SL2 tilting modulesT(v−1) are the indecomposable summands of ∆(1)⊗i ∼= (K2)⊗i

. Tilting modulesT(v−1)

• are those modules with a ∆(w−1)- and a∇(w−1)-filtration;

• are parameterized by dominant integral weights;

• are highest weight modules;

• satisfy reciprocity T(v−1) : ∆(w−1)

= T(v−1) :∇(w−1)

= [∆(w0−1) : L(v0−1)] = [∇(w0−1) :L(v0−1)];

• form a basis of the Grothendieck group unitriangular w.r.t. simples;

• satisfy (a version of) Schur’s lemma dimKHom T(v−1),T(w−1) P =

x<min(v,w) T(v−1) : ∆(x−1)

T(w−1) :∇(x−1)

Why the name?;

• are simple generically;

• have a root-binomial-criterion to determine whether they are simple.

LetTiltbe the category of tilting modules.

Goal. DescribeTilt by generators and relations.

General.

These facts hold in general, and the first bullet point is the general definition.

How many Weyl factors doesT(v−1)have?

# Weyl factors ofT(v−1) is 2k where k= max{νp v−1

w1

,w ≤v}. (Order of vanishing of wv−11 .) determined by (Lucas’s theorem)

non-zeronon-leadingdigits ofv = [ar,ar1,...,a0]p. ExampleT(220540−1)forp= 11?

v = 220540 = [1,4,0,7,7,1]11;

Maximal vanishing forw= 75594 = [0,5,1,8,8,2]11;

v−1 w1

= (HUGE) = [...,6= 0,0,0,0,0]11.

⇒T(220540−1) has 24Weyl factors.

Which Weyl factors doesT(v−1)have a.k.a. the negative digits game? Weyl factors ofT(v−1) are

∆([ar,±ar−1,...,±a0]p−1) wherev= [ar,...,a0]p.

ExampleT(220540−1)forp= 11? v = 220540 = [1,4,0,7,7,1]11; has Weyl factors [1,±4,0,±7,±7,±1]11; e.g. ∆(218690 = [1,4,0,−7,−7,−1]11−1) appears.

Daniel Tubbenhauer On categories of tilting modules October 2020 5 / 8

(14)

Ringel, Donkin∼1991. The indecomposable SL2 tilting modulesT(v−1) are the indecomposable summands of ∆(1)⊗i ∼= (K2)⊗i

. Tilting modulesT(v−1)

• are those modules with a ∆(w−1)- and a∇(w−1)-filtration;

• are parameterized by dominant integral weights;

• are highest weight modules;

• satisfy reciprocity T(v−1) : ∆(w−1)

= T(v−1) :∇(w−1)

= [∆(w0−1) : L(v0−1)] = [∇(w0−1) :L(v0−1)];

• form a basis of the Grothendieck group unitriangular w.r.t. simples;

• satisfy (a version of) Schur’s lemma dimKHom T(v−1),T(w−1) P =

x<min(v,w) T(v−1) : ∆(x−1)

T(w−1) :∇(x−1)

Why the name?;

• are simple generically;

• have a root-binomial-criterion to determine whether they are simple.

LetTiltbe the category of tilting modules.

Goal. DescribeTilt by generators and relations.

General. These facts hold in general, and

the first bullet point is the general definition.

How many Weyl factors doesT(v−1)have?

# Weyl factors ofT(v−1) is 2k where k= max{νp v−1

w1

,w≤v}. (Order of vanishing of wv−11 .) determined by (Lucas’s theorem)

non-zeronon-leadingdigits ofv = [ar,ar1,...,a0]p. ExampleT(220540−1)forp= 11?

v= 220540 = [1,4,0,7,7,1]11;

Maximal vanishing forw= 75594 = [0,5,1,8,8,2]11;

v−1 w1

= (HUGE) = [...,6= 0,0,0,0,0]11.

⇒T(220540−1) has 24Weyl factors.

Which Weyl factors doesT(v−1)have a.k.a. the negative digits game? Weyl factors ofT(v−1) are

∆([ar,±ar−1,...,±a0]p−1) wherev= [ar,...,a0]p.

ExampleT(220540−1)forp= 11? v = 220540 = [1,4,0,7,7,1]11; has Weyl factors [1,±4,0,±7,±7,±1]11; e.g. ∆(218690 = [1,4,0,−7,−7,−1]11−1) appears.

Daniel Tubbenhauer On categories of tilting modules October 2020 5 / 8

(15)

Ringel, Donkin∼1991. The indecomposable SL2 tilting modulesT(v−1) are the indecomposable summands of ∆(1)⊗i ∼= (K2)⊗i

. Tilting modulesT(v−1)

• are those modules with a ∆(w−1)- and a∇(w−1)-filtration;

• are parameterized by dominant integral weights;

• are highest weight modules;

• satisfy reciprocity T(v−1) : ∆(w−1)

= T(v−1) :∇(w−1)

= [∆(w0−1) : L(v0−1)] = [∇(w0−1) :L(v0−1)];

• form a basis of the Grothendieck group unitriangular w.r.t. simples;

• satisfy (a version of) Schur’s lemma dimKHom T(v−1),T(w−1) P =

x<min(v,w) T(v−1) : ∆(x−1)

T(w−1) :∇(x−1)

Why the name?;

• are simple generically;

• have a root-binomial-criterion to determine whether they are simple.

LetTiltbe the category of tilting modules.

Goal. DescribeTilt by generators and relations.

General. These facts hold in general, and

the first bullet point is the general definition.

How many Weyl factors doesT(v−1)have?

# Weyl factors ofT(v−1) is 2k where k= max{νp v−1

w1

,w ≤v}. (Order of vanishing of wv−11 .) determined by (Lucas’s theorem)

non-zeronon-leadingdigits ofv = [ar,ar1,...,a0]p. ExampleT(220540−1)forp= 11?

v = 220540 = [1,4,0,7,7,1]11;

Maximal vanishing forw= 75594 = [0,5,1,8,8,2]11;

v−1 w1

= (HUGE) = [...,6= 0,0,0,0,0]11.

⇒T(220540−1) has 24Weyl factors.

Which Weyl factors doesT(v−1)have a.k.a. the negative digits game?

Weyl factors ofT(v−1) are

∆([ar,±ar−1,...,±a0]p−1) wherev= [ar,...,a0]p.

ExampleT(220540−1)forp= 11?

v= 220540 = [1,4,0,7,7,1]11; has Weyl factors [1,±4,0,±7,±7,±1]11; e.g. ∆(218690 = [1,4,0,−7,−7,−1]11−1) appears.

Daniel Tubbenhauer On categories of tilting modules October 2020 5 / 8

(16)

Strategical interlude.

Start.

Define a categoryWeb by generators-relations.

How?

Find a standard basisS ofWeb(splitting off ∆).

How?

Find a tilting basisTof Web(splitting offT).

How?

Find an integral basisI ofWeb.

How?

ProveWeb=ZFund (⊗-gen. by ∆(1)).

How?

Write down the base change matrixStoT.

Why?

Make sure that there are no poles.

Original sin

Goal achieved: Tiltvia generators and realtions.

Quiver

reduce modp

General.

This strategy should work in types ABCD.

(I will zoom in on this in a second.)

What remains to be done?

No more sins!

What is the diagrammatic incarnation of the Frobenius (a bc d)7→ acppdbpp

? The mixed case will be easier but might be a pain to write down.

Up next: the first steps towards higher ranks,

i.e. let us tryUq(sl3) forqa primitive complex 2`th root of unity.

Daniel Tubbenhauer On categories of tilting modules October 2020 6 / 8

(17)

Strategical interlude.

Start.

Define a categoryWeb by generators-relations.

How?

Find a standard basisS ofWeb(splitting off ∆).

How?

Find a tilting basisTof Web(splitting offT).

How?

Find an integral basisI ofWeb.

How?

ProveWeb=ZFund (⊗-gen. by ∆(1)).

How?

Write down the base change matrixStoT.

Why?

Make sure that there are no poles.

Original sin

Goal achieved: Tiltvia generators and realtions.

Quiver

reduce modp

General.

This strategy should work in types ABCD. (I will zoom in on this in a second.)

What remains to be done?

No more sins!

What is the diagrammatic incarnation of the Frobenius (a bc d)7→ cappdbpp

? The mixed case will be easier but might be a pain to write down.

Up next: the first steps towards higher ranks,

i.e. let us tryUq(sl3) forqa primitive complex 2`th root of unity.

Daniel Tubbenhauer On categories of tilting modules October 2020 6 / 8

(18)

Strategical interlude.

Start.

Define a categoryWeb by generators-relations.

Basically the same.

Find a standard basisS ofWeb(splitting off ∆).

Basically the same.

Find a tilting basisTof Web(splitting offT).

Basically the same.

Find an integral basisI ofWeb.

Basically the same.

ProveWeb=Z[q±1]Fund (e.g.∆ (1,0)

∈ Fund).

Remains the same.

Write down the base change matrixStoT.

Remains the same.

Make sure that there are no poles.

Same problem as before!

Goal achieved: Tiltvia generators and realtions.

To be done...

specialize q

Daniel Tubbenhauer On categories of tilting modules October 2020 7 / 8

Referenzen

ÄHNLICHE DOKUMENTE

Monitoring für ein nachhaltiges Flächenmanagement am Beispiel der wieder wachsenden Stadt Leipzig.. Potential performance of commercial urban Brownfield sites in integrated

investigated the cellulose and hemicellulose content (in particular alpha-cellulose and pentosan), as well as properties such as pulp viscosity, of dissolving jute pulp, using

It is only natural to apply this strategy to the definition of categories itself, viewing them as objects in a category, where the morphisms are given by functors.... This rule

Alustasime küll kõige üldisemalt rahvusvahelistumise mudelite tasandilt, kuid seejärel näitasime, et sinna üldisele tasemele jõudmiseks on võimalik ja tegelikult ka

since more than one essay in this volume already address this “sodomitical scene” (i alert the reader, in particular, to essays by alexander García Düttmann and, especially,

The prima facie duty to reply, in such cases, will be reduced to the less demanding need to cite and positively note these papers in one’s routine work, if pertinent.. Relating

Ziel Ihrer Literaturrecherche sollte (am Beginn) eine vorläufige Literaturliste für Ihre Forschungsfrage sein, die sich im Zuge der Bearbeitung des

der Leser eines Exposés soll dabei erfahren, was die Fragestellung ist, wie die Arbeit aufgebaut ist, welche Quellen es zum gewählten Thema gibt, welche Thesen man verfolgt, wie