• Keine Ergebnisse gefunden

Phytosociology of Beach and Salt Marsh Vegetation in Northern West Greenland

N/A
N/A
Protected

Academic year: 2022

Aktie "Phytosociology of Beach and Salt Marsh Vegetation in Northern West Greenland"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

sche Differenzierung der Honckenyo-Elymetea Vegetationstypen verantwort- lich ist. Auch bei der Vegetation der Salzwiesen ist die Höhenposition üNN, die negativ korreliert ist mit pH-Wert, Leitfähigkeit und Salinität (Cl-Gehalt) sowie dem Einfluss von Süßwasser, ein wichtiger Differenzierungsfaktor für die Vegetation. Eine synoptische Tabelle stellt die bisher bekannten Vegetati- onstypen der grönländischen Küsten zusammen und die Verbreitung der Vege- tationstypen, auch im zirkumpolaren Raum, wird angeführt. Des Weiteren wird eine Cochlearia groenlandica-Melandrium triflorum Gesellschaft beschrieben. Sie kommt in Steilküstenbereichen auf Klippen und Felsvor- sprüngen vor und wird durch Spritzwasser des Meeres beeinflusst.

INTRODUCTION

Although Greenland’s coastline is about 40000 km long phyto- sociological and ecological studies on coastal vegetation are scarce (cf. BAY 1992, BÖCHER 1954, 1963, DANIELS & DE

MOLENAAR 1993, FEILBERG 1984, FREDSKILD 1998, DE MOLENAAR 1974, VESTERGAARD 1978). This might be due to conditions in past and present largely reducing the possibilities for development of extensive coastal ecosystems, such as recent glacial history, sheer coastline, narrow rocky shores, ice-foot in winter, drift-ice in summer and low temperatures (Fig. 1). Saline influences are also limited by winter ice condi- tions (no salt spray) and lower salinity in the fiords, leaching by meltwater and fresh groundwater (DE MOLENAAR 1974).

Therefore good conditions for halophytic plants are limited in particular in the most northern part of the island (BAY1992).

However in the southernmost part seashore vegetation is considered generally poor as well (FEILBERG 1984). Thus beach and salt marsh vegetation is generally poorly developed Polarforschung 76 (3), 95 – 108, 2006 (erschienen 2007)

Phytosociology of Beach and Salt Marsh Vegetation in Northern West Greenland

by Ortrun Lepping1and Fred J. A. Daniëls1

Abstract:Beach and salt marsh vegetation of the Uummannaq District, north- ern West Greenland (c. 70°15’ N – 72° N, 49° W – 54° W) was studied 1998 according to the Braun-Blanquet phytosociological approach. Habitat analyses included soil chemistry. Such vegetation locally occurs and is not developed over extensive areas. On gravely stony beaches a Mertensia maritima ssp.

maritima community occurs, while a Honckenya peploides var. diffusa community is confined to sandy beaches. The association Honckenyo diffusae-Elymetum mollis Thannh. 1975 is confined to sandy shore walls and low dunes. All vegetation types are assigned to the alliance Honckenyo- Elymion arenariae Tx. 1966, which again is a unit of the order Honckenyo- Elymetalia arenariae Tx. 1966, which is sub ordered to the class Honckenyo-Elymetea arenariae Tx. 1966. On fine sediments along sheltered coasts salt marsh vegetation is locally developed mainly on fiord deltas and outwash plains of small rivers and streams. A distinct zonation pattern in vegetation can be observed from the lower to upper salt marsh: Puccinellietum phryganodis Hadaˇc 1946 association, Caricetum subspathaceae Hadaˇc 1946 association, Caricetum ursinae Hadaˇc 1946 association (all assigned to the alliance Puccinellion phryganodis Hadaˇc 1946) and Festuco-Caricetum glareosae Nordh. 1954 association (assigned to the alliance Armerion mari- timae Br.-Bl. et de Leeuw 1936). Both alliances are units of the order Glauco- Puccinellietalia Beeftink et Westhoff in Beeftink 1965, which is assigned to the class Asteretea tripolii Westhoff et Beeftink in Beeftink 1962. TWINSPAN and CCA support the vegetation classification and the CCA with soil chemi- stry parameters shows that salinity (related to position above MHW) and N- content are strongly correlated with the floristical differentiation of the vegetation of the Honckenyo-Elymetea class. In the Asteretea tripolii class, position above MHW (negatively correlated with pH, conductivity and Cl- content) and fresh water supply are likely the main factors, which affect vege- tation differentiation. A synoptic survey of vegetation types from Greenland based on published phytosociological tables is presented and distribution of the vegetation types is addressed, just as their position in a circumpolar context. Moreover a Cochlearia groenlandica-Melandrium triflorum commu- nity is described as a new vegetation type, occurring on shallow soil on cliffs influenced by salt spray.

Zusammenfassung: Die Strand- und Küstenvegetation des Uummannaq- Gebiets, nördliches Westgrönland (ca. 70°15’N – 72°N, 49°W – 54°W) wurde 1998 nach der pflanzensoziologischen Braun-Blanquet-Methode unter- sucht. Standortanalysen inklusive Bodenuntersuchungen wurden vorge- nommen. Die untersuchte Vegetation tritt nur lokal auf und ist nicht großflächig verbreitet. An schotterig-steinigen Stränden findet man eine Mertensia maritima ssp. maritima Gesellschaft, während eine Honckenya peploides var. diffusa Gesellschaft an sandigen Strandbereichen auftritt. Die Assoziation Honckenyo diffusae-Elymetum mollis Thannh. 1975 ist beschränkt auf niedrige Dünen und sandige Strandwälle. Diese Vegetati- onstypen sind einzuordnen im Verband Honckenyo-Elymion arenariae Tx.

1966 der Ordnung Honckenyo-Elymetalia arenariae Tx. 1966, die zu der Klasse Honckenyo-Elymetea arenariae Tx. 1966 gehört. In geschützten Buchten und in Delta-Bereichen findet man auf feinem Ablagerungssubstrat Salzwiesenvegetation. Von der unteren zur oberen Salzwiese ist eine Vegetati- onszonierung zu beobachten: Puccinellietum phryganodis Hadaˇc 1946, Cari- cetum subspathaceae Hadaˇc 1946, Caricetum ursinae Hadaˇc 1946 (alle drei Assoziationen des Verbandes Puccinellion phryganodis Hadaˇc 1946) und die Assoziation Festuco-Caricetum glareosae Nordh. 1954, die zum Verband Armerion maritimae Br.-Bl. et de Leeuw 1936 gehört. Beide Verbände gehören zu der Ordnung Glauco-Puccinellietalia Beeftink et Westhoff in Beef- tink 1965, die der Klasse Asteretea tripolii Westhoff et Beeftink in Beeftink 1962 zugeordnet werden. TWINSPAN und CCA unterstützten die vorgenom- mene Klassifikation. Die CCA mit Bodenparametern zeigt, dass die Salinität (korreliert mit der Höhe ü. NN) und der N-Gehalt wesentlich für die floristi-

____________

1Institute of Plant Ecology, University of Münster, Hindenburgplatz 55, 48143 Münster, Germany; <leppingo@uni-muenster.de>, <daniels@uni-muenster.de>

Manuscript received 15 August 2006, accepted 11 December 2006

Fig. 1:Exposed steep rocky coast along the northern side of the Uummannaq Fiord without coastal vegetation. Photo F.J.A.D. July 1993.

Abb. 1:Exponierte, steile Felsküste ohne Küstenvegetation entlang der nördli- chen Seite des Uummannaq-Fjords. Foto F.J.A.D. im Juli 1993.

(2)

LÜNTERBUSCH& DANIËLS(2004). The vegetation was studied in the following localities (Fig. 3):

1 Illorsuit on Ubekendt Ejland,

2 Kangiussap qinguâ on Svartenhuk Peninsula, 3 Itsako on Svartenhuk Peninsula,

4 Naujât, 5 Nuugaatsiaq, 6 Ikerasak,

Fig. 2:Estuary of small river in the bottom of a sheltered fiord, Kangiussap qinguâ, on the Svartenhuk Peninsula with a salt marsh vegetation complex.

Locality 2. Photo F.J.A.D. July 1998.

Abb. 2:Der Ästuar-Bereich eines kleinen Flusses am geschützten Ende des Fjords Kangiuassap qinguâ, Svartenhuk Peninsula, mit Salzwiesen-Vegetati- on. Lokalität 2. Foto F.J.A.D. im Juli 1998.

Fig. 3:Map of Greenland with the location of the Uummannaq District (right) and the research localities (left). 1 = Illorsuit, Ubekendt Eijland, 2 = Kangiussap qinguâ on Svartenhuk Peninsula, 3 = Itsako on Svartenhuk Peninsula, 4 = Naujât, 5 = Nu- ugaatsiaq, 6 = Ikerasak, 7 = Drygalski Peninsula, 8 = Kûk on Nuussuaq Peninsula, 9 = Qaarsut on Nuussuaq Peninsula.

Abb. 3:Karte von Grönland mit der Lage des Uummannaq-Distriktes (rechts) und die Lage der Untersuchungsgebiete (links). 1 = Illorsuit, Ubekendt Eijland, 2 = Kangiussap qinguâ auf der Svartenhuk Halbinsel, 3 = Itsako auf der Svartenhuk Halbinsel, 4 = Naujât, 5 = Nuugaatsiaq, 6 = Ikerasak, 7 = Drygalski Halbinsel, 8 = Kûk auf der Nuussuaq Halbinsel, 9 = Qaarsut auf der Nuussuaq Halbinsel.

MOLENAAR (1993) globally surveyed the dry coastal ecosy- stems in Greenland. A survey of salt marsh vegetation does not exist so far.

STUDY AREA

The landscape in the Uummannaq District is mountainous and deeply cut by fiords with mainly sheer coasts. In the eastern inland parts Precambrian gneiss covers extensive areas, while bedrock in the western, more oceanic part, is mainly basalt.

However locally granite, marble and cretaceous and tertiary sediments occur (PULVERTAFT1990). The climate of the town of Uummannaq (70°41’N, 52°W) might be characterized as arctic-continental with mean annual temperature of minus 3,5

°C, precipitation 132 mm a-1(1961-1967) and the sum of mean temperatures (°C) of months with mean temperature above 0 °C, being 22.2 degrees centigrade (DANIËLSet al. 2000). The coastal areas likely have an arctic, sub continental climate.

Meteorological data are lacking. For a more detailed descrip- tion of the Uummannaq District the reader is referred to

(3)

7 Drygalski Peninsula, 8 Kûk on Nuussuaq Peninsula, 9 Qaarsut on Nuussuaq Peninsula, and

10 (in 1993) the bottom of Laksefiord in the Upernavik District (locality outside the map, 72° 30’N, 55° 30’W).

The localities are situated within the Southern Arctic Shrub Zone or Arctic Subzone D (DANIËLSet al. 2000, CAVM TEAM

2003, WALKER et al. 2005); the zonal vegetation in the lowlands is an erect dwarf shrub heath with a.o. Empetrum hermaphroditum, Vaccinium uliginosum ssp. microphyllum, Cassiope tetragona, Ledum decumbens, Phyllodoce coerulaea and Salix glauca ssp. callicarpaea.

MATERIAL AND METHODS

In the field 57 vegetation stands were analysed according to the Braun-Blanquet relevé method (WESTHOFF & VAN DER MAAREL 1973, DIERSCHKE 1994). Sample plot size varied between 1 and 4 m2(once 8 m2). Cover/abundance of species was recorded according to WILMANNS(1998). Comparisons of these 57 relevés in tables resulted in a vegetation typology based on similarities in presence/absence and cover/abun- dance values of the species. The syntaxonomical position of the vegetation types was identified by literature comparison.

The hierarchical syntaxonomical vegetation classification system according to the Braun-Blanquet method (WESTHOFF

& VAN DER MAAREL 1973, DIERSCHKE 1994) consists of the units association, alliance, order and class. These syntaxa are mainly characterised by their diagnostic species, which include so-called character and differential species. Character species are either confined to or show an optimum of occur- rence in one syntaxon, while differential species only differen- tiate by presence/absence between syntaxa of the same rank or differentiate within syntaxa. According to their degree of fidel- ity to a syntaxon, character species are classified as exclusive, selective or preferrent. Hierarchically the association is the lowest unit of the classification system, followed by the higher ranked alliance, which is assigned to the higher ranked order and this to the hierarchically highest ranked class. Based on differential species associations can be subdivided into subas- sociations and/or variants, alliances into suballiances, orders into suborders and classes into subclasses. Vegetation types lacking diagnostic species are called here “communities”;

vegetation types only characterised by dominance of species are often named sociations (WESTHOFF & VAN DER MAAREL 1973, DIERSCHKE 1994). Nomenclature and typification of syntaxa is in agreement with WEBERet al. (2000). Nomencla- ture of vascular plants follows BÖCHER et al. (1978), lichens SANTESSONet al. (2004) and bryophytes CORLEYet al. (1981).

In the vegetation tables lichens are indicated by (L), mosses and liverworts by (M). Biological distribution types are indi- cated in the tables 1-4 and 6 according to FREDSKILD(1996): A

= arctic widespread, AC = arctic continental, B = boreal, L = low arctic, LO = low arctic, oceanic, LC = low arctic, conti- nental, MA = middle arctic and HA = high arctic. Geogra- phical distribution types are based on HULTÉN (1968) in FREDSKILD(1996): A = amphi-atlantic, C = circumpolar, E = eastern, W = western.

Nomenclature of tidal levels follows DE MOLENAAR (1974).

Scale for fresh water influence ranges from 1 (without) to 5

(strong). Soil samples from the mineral soil (depths 0-10 cm) were analysed by methods described in VDLUFA (1991): pH value and conductivity were determined in distilled water.

Total nitrogen (N) and carbon (C)-contents were measured with an Elementar Analysator (CHN-O-Rapid, HEREUS);

plant available phosphorus (P) was measured spectro-photo- metrically in calciumacetat-hydrate, calcium lactate and acetic acid (CAL-method) and K, Na, Ca, Mg flame-photometrically (AAS 939 Unicam) in ammoniumchlorid (0.05 mol l-1) accor- ding to TRÜBY& ALDINGER (1989); and Cl-content potentio- metrically by a chloride-meter (Eppendorf). The relevés were analysed by TWINSPAN (HILL1979) for Windows 2.3. Cano- nical Correspondence Analysis (CCA) (TER BRAAK &

SMILAUER2002) was applicated with CANOCO for Windows 4.5 (using default options) to show relationships between relevés and soil parameters.

RESULTS AND DISCUSSION Vegetation on beaches and dunes

The vegetation of beaches and lower sand dunes are assigned here to alliance Honckenyo-Elymion arenariae Tx. 1966 (order Honckenyo-Elymetalia arenariae Tx. 1966; class Honckenyo- Elymetea arenariae Tx. 1966). This northern class substitutes the class Ammophiletea arenariae Br.-Bl. et Tx. 1943 north of 60 °N (THANNHEISER 1987a). Drift mark vegetation of the therophytic class Cakiletea maritimae Tx. et Prsg. in Tx. 1950 is considered absent in Greenland and the Arctic, due to the short vegetation season in combination with the temporary habitat which is frequently disturbed by waves and drift ice.

Such conditions do not allow therophytes to complete their life cycle.

M e r t e n s i a m a r i t i m a s s p . m a r i t i m a c o m m u n i t y This open and species-poor community (Tab. 1, ref. numbers 1-2) is rather rare in the study area, since only two well-devel- oped stands could be sampled (localities 2, 6). The vegetation occurs on gravely and stony beaches at the EHWS level and is subjected to irregularly flooding. Mean soil pH is 7.4, conduc- tivity varies from 56 to 228 µS cm-1and humus content of the substrate is comparatively high, in mean 5.3 % (Tabs.1, 4).

Mertensia maritima (L.) S.F. Gray ssp. maritima (Sea- Lungwort) is a mainly western, low arctic species and a neophyte in Greenland (DANIËLS & DE MOLENAAR 1970). In Greenland it has a spotty, rather disjunct, southern and western distribution ranging from SE via S to NW Greenland (BAY 1992, FREDSKILD 1996). In South Greenland the species is very rare (FEILBERG1984, STUMBÖCK 1993). The community is described from northern Europe to Alaska (e.g., NORD-

HAGEN 1940, MÖLLER 2000, BÖCHER 1954, 1963, DE MOLENAAR 1974, THANNHEISER 1974, 1975, 1981, THANN-

HEISER & HOFFMANN 1977, BLISS 1993 and DANIËLS et al.

1998). The more robust Mertensia maritima ssp. asiatica Takeda is confined to northeastern Asia (HULTÉN 1968). It locally occurs in great abundance on sandy seashores with pebbles and driftwood along the Sea of Okhotsk (pers. observ.

by F.J.A.D. 2006, see also HAASE1999).

(4)

H o n c ke ny a p e p l o i d e s va r. d i ff u s a c o m m u n i t y This open and species-poor vegetation (Tab. 1, ref. numbers 3- 7) is dominated by Honckenya peploides (L.) Ehrh. var. diffusa (Hornem.) Mattf. (Seabeach-Sandwort). It occurs on sheltered beaches and rarely on more extensive sandy river deltas, from MHWS to EHWS. It is irregularly flooded. Mean soil pH is 7.1. Mean soil conductivity (34 µS cm-1) and humus content (1.9 %) are lower than in the Mertensia maritima ssp. mari- tima community (Tabs. 1, 4). The community was only observed in localities 2 and 3. This preponderantly boreal species and vegetation type are mainly restricted to low arctic Greenland being absent in North Greenland (BAY 1992, DANIËLS& DEMOLENAAR1993). From SW and W Greenland Honckenya peploides var. diffusa vegetation is described by BÖCHER (1954), while DE MOLENAAR (1974) reported a Honckenya peploides var. diffusa sociation from SE Green- land.

A s s o c i a t i o n H o n c k e nyo d i ff u s a e – E ly m e t u m m o l l i s T h a n n h . 1 9 7 5

This mostly dense vegetation (Tab.1, ref. numbers 8-13, Fig. 4;

lectotypus hoc loco relevé 10, Tab. 2 in Thannheiser 1988) has an upper field layer of Elymus mollis (American Lyme-Grass) and often Festuca rubra (Red Fescue). In the lower herbaceous field layer Honckenya peploides var. diffusa and Stellaria humifusa (Arctic Chickweed) occur. Elymus mollis is character species of the association. Mosses such as Pottia heimii, Bryum salinum and Hymenostylium recurvirostre are often present. The association occurs on sandy beaches and low dunes in several (five) localities. Honckenya peploides var. diffusa is confined to more mobile substrates (typical variant, Tab. 1, ref. numbers 8-11), while Festuca rubra is found in older, more stabilized low dunes (variant of Festuca rubra coll., Tab. 1, ref. numbers 12-13). Mean soil pH and humus percentage are 7.8 and 1.3, and 7.3 and 3.5 respec- tively, likely related to the differences in vegetation cover (54

% and 85 % respectively). In Greenland Elymus mollis has a distinct southern and western distribution and reaches its north- ernmost occurrence in the Uummannaq District (AHOKAS &

Tab. 1:Phytosociological table of beach vegetation: 1, 2 = Mertensia maritima ssp. maritima community, 3-7 = Honckenya peploides var. dif- fusa community and 8-13 = Honckenyo-Elymetum mollis association. (L) = lichens, (M) = mosses and liverworts. Biological distribution ty- pes: A = arctic widespread, B = boreal, L = low arctic; geographical distribution types: C= circumpolar, W= western.

Tab. 1:Pflanzensoziologische Tabelle der Strandvegetation: 1, 2 = Mertensia maritima ssp. maritima-Gesellschaft, 3-7 = Honckenya peploi- des var. diffusa-Gesellschaft, 8-13 = Honckenyo-Elymetum mollis-Assoziation. (L) = Flechten, (M) = Moose und Lebermoose. Biologische Verbreitungstypen: A = arktisch, B = boreal, L = südarktisch; geographische Verbreitungstypen: C = zirkumpolar, W = westlich.

(5)

FREDSKILD1991, FREDSKILD1996). It is a western, low arctic, species. The same applies to the association. BÖCHER (1954) reported this association under the name Elymus mollis- Festuca rubra sociation from the coastal Godthaab region and from the inland near Söndre Strömfjord as Elymus mollis sociations (BÖCHER 1954: Tab. 23). TÜXEN (1970) reviewed the geographical variation of the northern Honckenya-Elymus vegetation types. He considered the Honckenyo diffusae- Elymetum mollis a Greenlandic association. However the first valid description of the association was from the Canadian Arctic by THANNHEISER(1975, 1988).

S y n o p s i s

The CCA diagram of the beach vegetation (Fig. 5) shows that the x-axis seems strongly correlated with Cl- and K-contents of the soil, while the y-axis correlates with conductivity, humus-content, total N and total C (Tab. 4). Thus soil properties have a strong influence on the differentiation of the beach vegetation, apart from soil texture characters.

Honckenya peploides var. diffusa community is the most saline, while the Mertensia maritima ssp. maritima commu- nity seems to prefer N-enriched sites. The synoptic table (Tab.

2) shows relevé-based beach communities from several parts of Greenland: from the Uummannaq District by the present authors (LD); from SE-Greenland (M74) by DE MOLENAAR

(1974) and from SW-Greenland (B54) by BÖCHER(1954). The Honckenya peploides var. diffusa vegetation seems floristi- cally rather similar, while the Mertensia maritima ssp. mari- tima vegetation from Southeast Greenland (M74) contains Rhodiola rosea (Arctic Roseroot) as a low arctic, oceanic species with eastern distribution, which is absent in the study area. The Honckenyo-Elymetum association from the study area (LD) contains e.g., Stellaria humifusa (Low Stitchwort), Cochlearia groenlandica (Polar Scurvy grass) and the moss Bryum salinum, which occur in the nearby well-developed salt marsh vegetation. The association in the inland near Kanger- lugssuak (Söndre Strömfjord) (B54) occurs on higher dunes outside the reach of salt marshes and contains the low arctic- continental circumpolar species Artemisia borealis (Northern Wormwood).

Tab. 2:Synoptic table of beach vegetation with relevés from entire Greenland. LD = this publication, M74 = DE

MOLENAAR(1974), B54 = BÖCHER(1954). Species occur- ring once with “+” or “r” are omitted. (L) = lichens, (M)

= mosses and liverworts. Biological distribution types: A

= arctic widespread, B = boreal, L = low arctic, LO = low arctic oceanic, LC = low arctic continental; geographical distribution types: A = amphi-atlantic, C = circumpolar, E

= eastern, W = western. NW = Northwest Greenland, SE

= Southeast Greenland, SW = Southwest Greenland.

Tab. 2:Synoptische Tabelle der Strandvegetation, zusam- mengestellt für Gesamt-Grönland. LD = diese Publikati- on, M74 = DEMOLENAAR(1974), B54 = BÖCHER(1954).

Nur ein Mal mit „+“ oder „r“ vorkommende Arten sind weggelassen. (L) = Flechten, (M) = Moose und Leber- moose. Biologische Verbreitungstypen: A = arktisch, B = boreal, L = südarktisch, LO = südarktisch ozeanisch, LC

= südarktisch kontinental; geographische Verbreitungsty- pen: A = amphi-atlantisch, C = zirkumpolar, E = östlich, W = westlich. NW = Nordwestgrönland, SE = Südost- grönland, SW = Südwestgrönland.

Fig. 4:Honckenyo-Elymetum mollis association on the higher parts of the sandy beach near the village Illorsuit. Locality 1. Photo O.L. July 1998.

Abb. 4:Honckenyo-Elymetum mollis-Assoziation auf dem höheren Sand- strand in der Nähe der Ortschaft Illorsuit. Lokalität 1. Foto O.L. im Juli 1998.

(6)

Vegetation on salt marshes

Coastal salt marshes mainly develop well on flat coasts, thus in Greenland with its generally rocky, steep coastline they are not developed over extensive areas. Because of the sheer rocky coast, low tidal range, strong waves and ice-drift in winter, conditions for sedimentation of fine-textured material, e.g., mud, are generally unfavourable. However fine marine depo- sits are locally found in protected bays, coves, and fjord bottoms, often associated with outlets or outwash plains of small rivers and streams (Fig. 2). Thus salt marshes are mostly found as small patches. If more extensive zonation of salt marsh communities can be observed according to their posi- tion towards MHW level and soil gradients like salinity. The associations Puccinellietum phryganodis, Caricetum subspat- haceae and Caricetum ursinae are assigned to the alliance Puccinellion phryganodis Hadaˇc 1946 and the association Festuco-Caricetum glareosae to the alliance Armerion mari- timae Br.-Bl. & de Leeuw 1936. Both alliances are assigned to the order Glauco-Puccinellietalia Beeftink et Westhoff in Beeftink 1965, which belongs to the class Asteretea tripolii Westhoff et Beeftink in Beeftink 1962.

A s s o c i a t i o n P u c c i n e l l i e t u m p h r y g a n o d i s H a d a ˘c 1 9 4 6

The Puccinellietum phryganodis association (Tab. 3, ref.

numbers 1-10) occupies the lowest part of the salt marsh.

Character species is Puccinellia phryganodis (Creeping Salt marsh Grass), which is a widely distributed, mainly arctic, circumpolar species (e.g., HULTÉN 1968, PORSILD & CODY

1980 and FREDSKILD1996). In the Arctic, also in Greenland, the Puccinellietum phryganodis probably is the northernmost distributed salt marsh association. Southwards its distribution area reaches into the northern boreal zone (DIERßEN 1996).

The low and rather dense association was mainly observed from about 30 cm below MHW up to 50 cm above MHW along sheltered bays and deltas on silty and clayey soil. The mean soil pH is 7.4, conductivity 358 µS cm-1and, as expected, the contents of Na (359 mg 10-2g) and Cl (0.98 g 10-2 g) are very high (Tab. 4). The association is widely distributed in northern West Greenland, however mostly as small stands.

Below MHW level the association only contains the character species Puccinellia phryganodes; such stands are considered as initial stage of the association (Tab. 3, ref. numbers 1-2).

Above MHW Stellaria humifusa occurs (ref. numbers 3-7), while moss species (presumably Bryum salinum, ref. numbers 8-10) are found in higher elevated stands. FREDSKILD(1998) described – in conformity with DEMOLENAAR(1974) – Pucci- nellia phryganodes as the only representative species of the association, sometimes accompanied by Stellaria humifusa.

Vestergaard (1978) mentioned Stellaria humifusa and Poten- tilla egedii (Pacific Silverweed) as companions. Based on the dominance of the species, BÖCHER (1954) described pure Puccinellia phryganodes patches as a sociation (Tab. 3, ref.

numbers 1-10). Furthermore he divided his Puccinellia phryganodes-Stellaria humifusa-sociation in two sociation groups: a) a “northern, arctic-continental”, differentiated by Carex ursina (Polar Bear Sedge) and b) a “southern” especial- ly characterised by Potentilla egedii. The first group seems to be similar to the association Caricetum ursinae (Tab. 3, ref.

numbers 14-18). DE MOLENAAR (1974) described from the Angmassalik District, SE-Greenland, Puccinellietum phrygan-

Fig. 5:CCA-biplot of eleven relevés of the class Honckenyo-Elymetea (without ref. numbers 1 and 3) and soil parameters.

Abb. 5:CCA-Analyse von elf Aufnahmen aus der Klasse Honckenyo-Elymetea (ohne Ref.-Nummern 1 und 3) und den Bodenparametern.

(7)

Tab.3:Phytosociological table of the salt marsh vegetation: 1-10 = Puccinellietum phryganodis association, 11-13 = Caricetum subspathaceae association, 14-18 = Caricetum ursinae association, 19-34 = Festuco-Caricetum glareo- sae association. (L) = lichens, (M) = mosses and liverworts. Biological distribution types: A = arctic widespread, B = boreal, L = low arctic, MA = middle arctic; geographical distribution types: C = circumpolar, W = western. Tab.3:Pflanzensoziologische Tabelle der Salzwiesen-Vegetation: 1-10 = Puccinellietum phryganodis-Assoziation, 11-13 = Caricetum subspathaceae-Assoziation, 14-18 Caricetum ursinae-Assoziation, 19-34 = Festuco-Caricetum glareosae-Assoziation. (L) = Flechten, (M) = Moose und Lebermoose. Biologische Verbreitungstypen: A = arktisch, B = boreal, L = südarktisch, MA = mittelarktisch; geographische Verbreitungstypen: C = zirkumpolar, W = west- lich.

(8)

odis without Carex ursina and Potentilla egedii as subassocia- tion inops. Table 3 – as well as the vegetation surveys of NIELSEN(1969) and VESTERGAARD(1978) – show that Pucci- nellia phryganodes is confined to the area up to 40 cm above MHW level. This level seems a critical limit for the distribu- tion of the Puccinellia phryganodes vegetation. The same seems to apply to Puccinellia maritima and Salicornia vegeta- tion in temperate areas.

A s s o c i a t i o n C a r i c e t u m s u b s p a t h a c e a e H a d a ˘c 1 9 4 6 This association was sampled three times in a small zone behind the Puccinellietum phryganodis association in shallow depressions in the lower salt marsh area on mudflats near

Tab. 4:Mean values of soil parameters of the vegetation types. Me = Mertensia maritima ssp. maritima communi- ty, Ho = Honckenya peploides var. diffusa community, H-El = Honckenyo-Elymetum mollis association, Pu = Puc- cinellietum phryganodis association, Csub = Caricetum subspathaceae association, Curs = Caricetum ursinae as- sociation, F-Cgl = Festuco-Caricetum glareosae association, VPe = Festuco-Caricetum glareosae association vari- ant of Potentilla egedii, VSu = Festuco-Caricetum glareosae association variant of Sanionia uncinata, CM = Cochlearia groenlandica-Melandrium triflorum community. Soil texture: gr = gravel, st = stones, sa = sand, si = silt and cl = clay.

Tab. 4:Mittelwerte der Bodenparameter für die Vegetationstypen. Me = Mertensia maritima ssp. maritimaGesell- schaft, Ho = Honckenya peploides var. diffusa Gesellschaft, H-El = Honckenyo-Elymetum mollis Assoziation, Pu

= Puccinellietum phryganodis Assoziation, Csub = Caricetum subspathaceae Assoziation, Curs = Caricetum ur- sinae Assoziation, F-Cgl = Festuco-Caricetum glareosae Assoziation, VPe = Festuco-Caricetum glareosae-Asso- ziation, Variante von Potentilla egedii, VSu = Festuco-Caricetum glareosae-Assoziation, Variante von Sanionia uncinata, CM = Cochlearia groenlandica-Melandrium triflorum Gesellschaft. Bodentextur: gr = Kies, st = Steine, sa = Sand, si = Lehm and cl = Ton.

Fig. 6:Salt marsh vegetation complex of the associations Caricetum subspat- haceae (in the middle) and Festuco-Caricetum glareosae (foreground) in Kan- giussap qinguâ on Svartenhuk Peninsula. Locality 2. Photo O.L. July 1998.

Abb. 6:Salzwiesen-Vegetationskomplex mit den Assoziationen Caricetum subspathaceae (in der Mitte) und Festuco-Caricetum glareosae (im Vorder- grund) in Kangiussap qinguâ auf der Svartenhuk-Halbinsel. Lokalität 2. Foto O.L. im Juli 1998.

outlets of small rivers and brooks up to 50 cm above MHW (Tab. 3, ref.-numbers 11-13; Fig. 6). The sites are influenced by irregular inundation with saline or brackish water and infil- tration of fresh water. The substrate is silt or clay. The mean soil pH-value is 6.0; the contents of the ions K+, Na+, Mg2+, Ca2+are rather low, especially Cl-(0.6 g 10-2g) (Tab. 4). Carex subspathacea (Arctic Salt marsh Sedge) is the character species of the association. Constant species are Stellaria humi- fusa and Bryum salinum. Vegetation with dominance of Carex subspathacea, which is considered low arctic, circumpolar (FREDSKILD 1996), is commonly reported from Greenland south of about 78 °N (BÖCHER1963, VESTERGAARD 1972, DE MOLENAAR 1974, FREDSKILD1996, 1998) and other northern regions (THANNHEISER1974, 1975, 1987a, MÖLLER2000). The association has a circumpolar distribution (FREDSKILD1996), but is not strictly arctic (THANNHEISER1987b).

A s s o c i a t i o n C a r i c e t u m u r s i n a e H a d a ˘c 1 9 4 6

At higher elevations on the salt marsh the Caricetum ursinae association (Tab. 3, ref.-numbers 14-18) follows the associa- tion Caricetum subspathaceae. The association is physiogno- micaly easily recognized by the round tufts of the character species Carex ursina (Polar Bear Sedge, Fig. 7), which is considered a middle arctic, circumpolar species (FREDSKILD 1996). Cover/abundance and vitality of Puccinellia phrygan- odes and Carex subspathacea are reduced. Soil parameters are as follow: pH 7.5, humus content 4.3 %, conductivity 385 µS cm-1 and Cl-content (1 g 10-2 g) just as in the Puccinellietum phryganodis (Tab. 4). The flooding by seawater is less as in the Puccinellietum phryganodis and Caricetum subspathaceae associations, however there is some influence of fresh water from rivulets. Soil aeration is better and the redoxpotential of the soil with less available Fe- and Mn-ions is higher compared with the soils of the previous salt marsh associa- tions. The Caricetum ursinae association is the only salt marsh

(9)

association bound to the coast of the Arctic. It is not common in the study area; we found it in three localities only.

A s s o c i a t i o n Fe s t u c o – C a r i c e t u m g l a r e o s a e N o r d h . 1 9 5 4

In a survey of northern vegetation the circumboreal-arctic Carex glareosa salt marsh vegetation is classified by DIERßEN

(1996) as Festuco-Caricetum glareosae Nordh. 1954. We follow his association concept and consequently vegetation types with Carex glareosa (Gravel Salt marsh Sedge) described before from Greenland under different names (a.o.

BÖCHER1954, DEMOLENAAR 1974, VESTERGAARD 1978) are all assigned here to this association (Tab. 3, ref.-numbers 19- 34; Fig. 6). The sedge Carex glareosa is the dominant species

in the upper salt marsh from 30 cm up to 1 m above MHW level and character species of the association. In sharp contrast with the lower salt marsh associations this association forms a densely tufted yellow sward. It occurs on sandy to fine gravely deposits on low beach terraces along fiords and on banks of streams in deltas. Fresh water influence from small streams and rivulets from the higher land is considerable.

Mean soil pH is 6.4, conductivity is 277 µS cm-1, while Na-, K- and Cl-contents are 188 mg 10-2g, 35 mg 10-2g, and 0.6 g 10-2 g respectively (Tab. 4). Stellaria humifusa, Puccinellia phryganodes and mosses Bryum salinum and Sanionia unci- nata (Drepanocladus uncinatus) are the most common compan- ions. In stands bordering the lower salt marsh Potentilla egedii and Cochlearia groenlandica occur (Tab. 3, ref.-numbers 19- 22; variant of Potentilla egedii). Festuco-Caricetum stands with mosses such as Sanionia uncinata and Polytrichum alpinum (Tab. 3, ref.-numbers 23-34; variant of Sanionia unci- nata) occur on slightly higher sites. The grass Festuca rubra appears only in the northern region of the Uummannaq District (locality 2-5) and is confined to the upper part (>50 cm above MHW level) of the salt marsh (Tab. 3, ref.-numbers 31-34). Species number is distinctly higher (4-17, mean 8.6) as in the lower salt marsh communities (1-7, mean 3.5). In well-developed stands the association forms nearly closed, graminoid meadows with about 30 % cover of cryptogams. In the lower salt marsh they cover in mean 7.5 %.

This circumpolar association is the most common type of salt marsh vegetation in the research area and in Greenland, where it is confined to the southern, low arctic regions (THANNHEISER 1987a). In comparison with stands in boreal regions the low arctic stands are poor in species.

Fig. 7:Caricetum ursinae association on the outlet of the river Kûk, Nuussuaq Peninsula. Locality 8. Photo O.L. August 1998.

Abb. 7:Caricetun ursinae-Assoziation an der Mündung des Flusses Kûk, Nu- ussuaq-Halbinsel. Lokalität 8. Foto O.L. im August 1998.

Fig. 8:CCA-biplot of 29 relevés of the class Asteretea tripolii (without ref. numbers 3, 10, 12, 16, 24) and soil parameters.

Abb. 8:CCA-Analyse von 29 Aufnahmen aus der Klasse Asteretea tripolii (ohne Ref.-Nummern 3, 10, 12, 16, 24) und den Bodenparametern.

(10)

part of the diagram. Its variant of Potentilla egedii in the shows that Puccinellia phryganodes and Carex glareosa are

Tab. 5:Synoptic table of salt marsh relevés of the entire Greenland. F 98 = FREDSKILD(1998), M 74 DEMOLENAAR(1974), LD = this pu- blication. Species occurring once or twice with “+” or “r” are omitted. (L) = lichens, (M) = mosses and liverworts. Biological distribution types: A = arctic widespread, AC = arctic continental, B = boreal, L = low arctic, LO = low arctic oceanic, MA = middle arctic. Geogra- phical distribution types: A = amphi-atlantic, C = circumpolar, E = eastern, W = western. NE = Northeast Greenland, NW = Northwest Greenland, SE = Southeast Greenland.

Tab. 5:Synoptische Tabelle der Salzwiesen-Vegetation, zusammengestellt für Gesamt-Grönland. F98 = FREDSKILD(1998), M74 = DEMO-

LENAAR(1974), LD = diese Publikation. Ein oder zwei Mal mit „+“ oder „r“ vorkommende Arten sind weggelassen. (L) = Flechten, (M) = Moose und Lebermoose. Biologische Verbreitungstypen: A = arktisch, AC = arktisch, kontinental, B = boreal, L = südarktisch, LO = südarktisch ozeanisch, MA = mittelarktisch; geographische Verbreitungstypen: A = amphi-atlantisch, C = zirkumpolar, E = östlich, W = westlich. NE = Nordostgrönland, NW = Nordwestgrönland, SE = Südostgrönland.

(11)

Tab. 6:Phytosociological table of the Cochlearia groenlandica-Melandrium triflorum community. (L) = lichens, (M)

= mosses and liverworts. Biological distribution types: A = arctic widespread, AC = arctic continental, L = low arc- tic and MA = middle arctic; geographical distribution types: A = amphi-atlantic, C = circumpolar, W = western.

Tab. 6:Pflanzensoziologische Tabelle der Cochlearia groenlandica-Melandrium triflorum-Gesellschaft. (L) = Flech- ten, (M) = Moose und Lebermoose. Biologische Verbreitungstypen: A = arktisch, AC = arktisch, kontinental, L = südarktisch, MA = mittelarktisch; geographische Verbreitungstypen: A = amphi-atlantisch, C = zirkumpolar, W = westlich.

(12)

Stellaria humifusa and the moss Bryum salinum are constant species in all vegetation types. The presented classification system of the salt marsh vegetation types is supported by a TWINSPAN analysis (not shown), which first separates the association Puccinellietum phryganodis from the associations Caricetum ursinae, Caricetum subspathaceae and Festuco- Caricetum, then the association Festuco-Caricetum from the associations Caricetum ursinae and Caricetum subspathaceae and finally the associations Caricetum ursinae and Caricetum subspathaceae and the two variants of the Festuco-Caricetum glareosae association. The association Puccinellietum coarc- tatae (within the alliance Puccinellion phryganodis) and the association Potentillo-Caricetum rariflorae (within the alliance Armerion maritimae), described by DE MOLENAAR (1974) from Southeast Greenland, have not been observed during our studies in northern West Greenland (Tab. 5).

Cochlearia groenlandica-Melandrium triflorum community This community described here for the first time (Tab. 6, ref.- numbers 1-10; Fig. 9) occurs on shallow soil on rocky plateaus near the sea at 1-10 m above MHW level. The cliffs are exposed to the sea and influenced by salt spray in particular during EHW conditions. The species combination of Melan- drium triflorum (Three-flowered Lychnis) and Cochlearia groenlandica (Polar Scurvy grass) is characteristic for this community. Puccinellia cf. vaginata (Sheeted Alkali-grass) and the moss Bryum pallescens are constant species. The community occurs in several localities. A typical variant (Tab.

6, ref.-numbers 1-2) occurs on poor soil, while another variant with Elymus mollis and Carex glareosa was found on rocks with sand cover, very close to the sea and 2-4 m above sea level. The sites are surrounded by beach and salt marsh vegeta- tion. Soil depth, humus layer, salinity and conductivity are fairly high (Tab. 4). A lichen-rich variant of Candellariella terrigena occurs on the top surface of steep cliffs situated 4-10 m above sea level. Due to dry soil conditions many terricolous lichens like Candellariella terrigena, Caloplaca tiroliensis, C.

cerina and C. jungermannia occur (Tab. 6, ref.-numbers 6-8).

Puccinellia cf. vaginata is dominant in the variant of the moss Aulacomnium palustre (Tab. 6, ref.-numbers 9-10). Melan- drium triflorum and Cochlearia groenlandica are less abun- dant. The moss Aulacomnium palustre indicates wet habitat conditions, whereas the moss Ceratodon purpureus and the lichen Peltigera didactyla indicate some eutrophication and disturbance. The moss Tetraplodon mnioides reflects the high nutrient content (Ca and P) of the soil due to the activities of birds. The variant is considered ornithocoprophytic preferring bird perches. The floristical composition of this community is quiet different from those influenced by birds described from

elsewhere, e.g., Svalbard (ELVEBAKK 1994, MÖLLER 2000).

The syntaxonomical assignment of this vegetation type needs further study.

GREENLANDIC BEACH AND SALT MARSH VEGETA- TION IN CIRCUMPOLAR CONTEXT

A number of publications (e.g., BATTEN & MURRAY 1993, DANIËLS& DEMOLENAAR1993, BLISS1993, 1997, CHAPMAN

1977, DIERßEN 1996, ELVEBAKK 1994, MÖLLER 2000 and TALBOT & TALBOT 1994, THANNHEISER1991) survey or deal with vegetation of coastal ecosystems of the North. They allow an assessment of the Greenlandic coastal beach and salt marsh vegetation, however, without considering arctic Russia, from where phytosociological information could not be traced.

Within the relatively young Arctic landscapes the similarity of these azonal vegetation types exposed to stress and disturb- ance, is fairly high. Contrary to zonal vegetation types, geographical variation seems poorly expressed. A global comparison reveals that beach vegetation in Greenland is rather poor and fragmentary developed. There are only a few vegetation types (Mertensia maritima ssp. maritima commu- nity, Honckenya peploides var. diffusa community and the Honckenyo-Elymetum mollis association), poor in species and the extension of their stands is very limited and local, due to the preponderantly strongly exposed sheer rocky coast with narrow rocky shores (see Fig. 1, also introduction). Many beaches in the northern Greenland are devoid of any vegeta- tion. Beach vegetation of Greenland and arctic (Eastern) Canada are rather similar. These areas belong to the same floristic, Canada-Greenland province (YURTSEV 1994). The arctic beach vegetation of Alaska in the Beaufort–Chukchi and Bering Sea regions as well as of the more southern (boreal) Aleutian Islands–Alaska Peninsula, are richer in species. Here we additionally find the mainly boreal, North American, amphi-pacific Senecio pseudo-arnica (Seaside Ragwort), and the circumboreal Lathyrus maritimus (Beach Pea), which is only found in the beach vegetation of southernmost Greenland (BÖCHERet al. 1978, FEILBERG1984). Moreover richer backs- hore vegetation is developed (BATTEN& MURRAY1993, BLISS 1993). The northern salt marsh vegetation types from Sval- bard, Greenland, East and West Canada are rather similar as

Fig. 9:Cochlearia groenlandica-Melandrium triflorum community on a cliff near the sea at Naujât. Locality 4. Photo O.L. July 1998.

Abb. 9:Cochlearia groenlandica-Melandrium triflorum Gesellschaft auf ei- nem Felsvorsprung am Meer bei Naujât. Lokalität 4. Foto O.L. im Juli 1998.

(13)

well. They share the associations Caricetum ursinae, Puccinel- lietum phryganodis, Caricetum subspathaceae and Festuco- Caricetum glareosae. However, the Canadian arctic salt marshes are enriched by the associations Caricetum macken- ziei (amphi-pacific) and Puccinellietum pauperculae (syn.

Puccinellietum langeanae) (THANNHEISER 1991). In more southern arctic-boreal regions beach and salt marsh communi- ties are richer in species as can be shown even for Greenland, where Carex lynbyei (Lyngbye’s sedge), C. mackenziei (Mackenzie’s sedge), C. salina (Salt marsh sedge) and Pucci- nellia maritima (Common Salt marsh Grass) are reported from salt marsh habitats in its southernmost part (BÖCHER et al.

1978, FEILBERG1984). The extensive and high productive salt marsh vegetation of the western Canadian and Alaskan coasts is often associated with estuaries of large rivers causing more brackish soil conditions. Such areas, also along the Russian arctic coast, have an important ecosystem function being of considerable importance for wildlife; especially goose (CHAPMAN1977, BLISS1993). Comparable situations are not found in Greenland. Consequently the small and spotty Green- landic salt marshes are not reported as important grazing grounds for birds and other wildlife (BORN& BÖCHER2000).

Finally haline vegetation types also occur around some lakes in continental inland areas with a dry and warm summer climate (BÖCHER1954), even at relatively high elevation, most often in the vicinity of fiords. They show some similarities with salt marsh and steppe vegetation. However, their phytoso- ciology is still poorly known and needs urgently studied.

ACKNOWLEDGMENTS

Thanks are due to the German Research Foundation (DFG) for funding the fieldwork. Two reviewers, L. Kappen and K.

Dierßen, Kiel, substantially contributed to the improving of the manuscript.

Appendix

Species occurring once or twice in Tables 1, 3 or 6 (ref.

number, cover/abundance value in brackets). (L) = lichens, (M) mosses and liverworts. Biological distribution types: A = arctic widespread, AC = arctic continental, L = low arctic, LC

= low arctic continental and HA = high arctic; geographical distribution: A = amphi-atlantic, C = circumpolar, W = western.

Tab. 1: Carex glareosa L, C (7, +), Agrostis mertensii L, C (8, +).

Tab. 3: Mertensia maritima ssp. maritima L, W (6, 2b), Triglochin palustre L, C (9, 2m), Pottia heimii (M) (17, +), Triglochin palustre L, C (20, +), Polygonum viviparum A, C (22, r ), 27: Cephaloziella cf. rubella (M) (27, 1), Ditrichium flexicaule (M) (27, 1), Mertensia maritima ssp. maritima L, W (28, +), Arctomia delicatula (L) (29, 1), Biatora vernalis (L) (29, 1), Caloplaca cerina (L) (29, +), C. tiroliensis (L) (29, 1), Catapyrenium cinereum (L) (29, 1), Cetrariella delisei (L) (29, r ), Minuartia biflora L, C (29, r ), Ochrolechia frigida (L) (29, +), Stereocaulon spec. (L) (29, +), Cerastium alpinum A, A (31, 1), Melandrium triflorum AC, W (31, 2a), Saxifraga tricuspidata AC, W (31, +), Stereocaulon cf. condensatum (L)

(31, +), Cetrariella delisei (L) (32, +), Melandrium triflorum AC, W (32, +), Salix glauca ssp. callicarpaea L, C (32, +), Carex stans HA, C (33, 2a), Polygonum viviparum A, C (33, +), Pseudocalliergon turgescens (M) (33, +), Scorpidium revolvens (M) (33, r), Campylium stellatum (M) (34, 2b), Ditrichium flexicaule (M) (34, 1), Koenigia islandica A, C (34, +), Pseudocalliergon trifarium (M) (34, 1), P. turgescens (M) (34, 2b), Straminergon stramineum (M) (34, +).

Tab. 6: Artemisia borealis LC, C (1, +), Bryum salinum (M) (3, +), B. capillare (M) (6, 2a), Pottia heimii (M) (6, 1), Caloplaca ammiospila (L) (6, +), Cladonia cf. macrophyl- lodes (L) (6, +), Buellia geophila (L) (7, 2a), Leptogium cf.

lichenoides (L) (7, 2a), Catapyrenium cinereum (L) (7, 1), Cladonia pocillum (L) (7, +), Salix glauca ssp. callicarpaea L, C (8, +), Leproloma vouxii (L) (8, r), Hypnum revolutum (M) (9, +).

References

Ahokas, H. & Fredskild, B. (1991): Coexistence and hybridization of Leymus mollis and L. arenarius in Greenland, and demarcation of the species by endospermal prolamins, leymins.- Nord. J. Bot. 11, 4: 385-392.

Batten, A.R. & Murray, D.F. (1993): Dry coastal ecosystems of Alaska.- In: E.

VAN DER MAAREL (ed), Ecosystems of the world 2A. Dry coastal ecosystems. Polar regions and Europe.- Elsevier, Amsterdam, 23-37.

Bay, Ch. (1992): A phytogeographical study of the vascular plants of northern Greenland – north of 74° northern latitude.- Meddel. Grønland Biosci.

36: 1-102.

Bliss, L. (1993): Arctic coastal ecosystems.- In: E. van der Maarel (ed), Ecosy- stems of the world 2A. Dry coastal ecosystems. Polar regions and Europe.- Elsevier, Amsterdam, 15-22.

Bliss, L. (1997): Arctic ecosystems of North America.- In: F.E. Wielgolaski (ed), Ecosystems of the world 3-Polar and Alpine Tundra, Elsevier, Amsterdam, 551-683.

Born, E.W. & Böcher, J. (2000): The Ecology of Greenland.- Ministry of Envi- ronment and Natural Resources, Nuuk, 1-429.

Böcher, T.W. (1954): Oceanic and continental vegetation complexes in Sout- hwest Greenland.- Meddel. Grønland 147, 2: 1-337.

Böcher, T.W. (1963): Phytogeography of middle West Greenland.- Meddel.

Grønland 148, 3: 1-287.

Böcher, T.W. & Laegaard, S. (1962): Botanical studies along the Arfersiorfik Fjord, West Greenland.- Bot. Tidsskr. 58: 168-190.

Böcher, T.W., Fredskild, B., Holmen, K. & Jakobsen, K. (1978): Grønlands flora.- Haase, P. & Soens Forlag, Kopenhagen, 1-327.

CAVM Team (2003): Circumpolar Arctic vegetation map (Scale 1:7500000).- Conservation of Arctic Flora and Fauna (CAFF) Map No.1, U.S. Fish and Wildlife Service, Anchorage, AK.

Chapman, V.J. (1977): Wet coastal ecosystems, Elsevier, Amsterdam, 1-428.

Corley, M.F.V., Crundwell, A.C., Düll, R., Hill, M.O. & Smith, A.J.E. (1981):

Mosses of Europe and the Azores; an annotated list of species, with syno- nyms from the recent literature.- J. Bryol. 11: 609-689.

Daniëls, F.J.A. & de Molenaar J.G. (1970): Rare plants from the Angmags- salik District, Southeast Greenland.- Bot. Tidsskr. 65: 252-263.

Daniëls, F.J.A. & de Molenaar J.G. (1993): Dry coastal ecosystems of Green- land.- In: E. VAN DER MAAREL (ed), Ecosystems of the World 2A. Dry coastal ecosystems. Polar regions and Europe, Elsevier, Amsterdam, 39- 50.

Daniëls, F.J.A., Bültmann, H., Lünterbusch, Ch. & Wilhelm, M. (2000): Vege- tation zones and biodiversity of the North-American Arctic.- Ber. Reinh- Tüxen-Ges. 12: 131-151.

Dierßen, K. (1996): Vegetation Nordeuropas.- Ulmer, Stuttgart, 1-838.

Dierschke, H. (1994): Pflanzensoziologie.- Ulmer, Stuttgart, 1-683.

Elvebakk, A. (1994): A survey of plant associations and alliances from Sval- bard.- J. Veg. Sci. 5: 791-1994.

Feilberg, J. (1984): A phytogeographical study of South Greenland. Vascular plants.- Meddel. Grønland Biosci. 15: 1-70.

Fredskild, B. (1996): A phytogeographical study ot the vascular plants of West Greenland.- Meddel. Grønland Biosci. 45: 1-157.

Fredskild, B. (1998): The vegetation types of Northeast Greenland.- Meddel.

Grønland Biosci. 49: 1-84.

Hill, M.O. (1979): TWINSPAN-A FORTRAN program for arranging multiva- riate data in an ordered two-way table by classification of the individuals and attributes.- Ecology and Systematics, Cornell University, Ithaca, 1- 75.

(14)

Nordhagen, R. (1940): Studien über die maritime Vegetation Norwegens. I.

Die Pflanzengesellschaften der Tangwälle.- Bergens Mus. Årb., Naturv.

Rekke 1939-40, 2: 1-123.

Porsild, A.E. & Cody, W.J. (1980): Vascular Plants of Continental Northwest Territories.- Canada. Nation. Museum of Natur. Sci., National Museums of Canada, Ottawa, 1-667.

Pulvertaft, T.C.R. (1990): Uummannaq-området, Hvor blev det til?- Uummannaq Tourist News, Grønlands Annoncebureau ApS, Nuuk, 28- 31.

Santesson, R., Moberg, R., Nordin, A. Tønsberg, T. & Vitikainen, O. (2004):

Lichens-forming and lichenicolous fungi of Fennoscandia.- Mus. Evolu- tion, Uppsala, Lund, 1-359.

Stumböck, M. (1993): Vegetation und Ökologie von Narsarsuaq, Südwest Grönland.- Diss. Bot. 203: 1-176.

Talbot, S.S. & Talbot, S.L. (1994): Numerical classification of the coastal vegetation of Attu Island, Aleutian Islands, Alaska.- J. Veg. Sci. 5: 867- 876.

Ter Braak, C.J.F. & Smilauer, P. (2002): CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Commu- nity Ordination (version 4,5).- Microcomputer Power (Ithaca, NY, USA, 1-500.

Thannheiser, D. (1974): Beobachtungen zur Küstenvegetation der Varanger-

Trüby, P. & Aldinger, E. (1989): Eine Methode zur Bestimmung austausch- barer Kationen in Waldböden.- Z. Pflanzenernähr. Bodenk. 152: 301-306.

Tüxen, R. (1970): Pflanzensoziologische Beobachtungen an isländischen Dünengesellschaften.- Vegetatio 20: 251-278.

VDLUFA (1991): Methodenbuch BD. 1: Die Untersuchung von Böden.- 4.

Auflage, VDLUFA-Verlag, Darmstadt.

Vestergaard, P. (1978): Studies in the vegetation and soil of coastal salt marshes in the Disko Area, West Greenland.- Meddel. Grønland 204, 2: 1- 51.

Walker, D.A., Raynolds, M.K., Daniëls, F.J.A., Einarsson, E., Elvebakk, A.

Gould, W.A., Katenin, A.E., Kholod, S.S., Markon, C.J., Melnikov, E.S., Moschalenko, N.G., Talbot, S.S., Yurtsev, B.A.(†) & the CAVM Team (2005): The Circumpolar Arctic Vegetation Map.- J. Veg. Sci. 16, 2: 267- 282.

Westhoff, V. & van der Maarel, E. (1973): The Braun-Blanquet approach.- In R.H. Whittaker (ed), Ordination and classification of plant communities, Junk, The Hague, 619-726.

Wilmanns, O. (1998): Ökologische Pflanzensoziologie, 6.Auflage.- Quelle &

Meyer, Wiesbaden, 1-405.

Weber, H.E., Moravec, J. & Theurillat J.-P. (2000): International Code of phytosociological nomenclature. 3rd edition.- J. Veg. Sci. 11: 739-768.

Yurtsev, B.A. (1994): Floristic division of the Arctic.- J. Veg. Sci. 5: 765-776.

Referenzen

ÄHNLICHE DOKUMENTE

Synthetic modification of common bile acids by attachment of small organic fluorescent dyes to the bile acid side chain resulted in bright, fluorescent probes that interact with

We investigated brown trout embryo survival to hatch (STH) together with ten physicochemical, hydraulic and morphological parameters in artificial brown trout redds in a

2017 [166] Experimental Grain Heat storage Open CaCl 2 -LICl Vermiculite Macropore Impregnation. Casey

SALT implements a BWT-based index (SALT-index) and an alignment algorithm to achieve fast and sensitive alignment of reads with respect to a reference genome and a large collection

Exposure levels and health risk of PAHs associated with fine and ultrafine aerosols in an urban site in northern Algeria.. Amira Teffahi 1 &amp; Yacine Kerchich 1 &amp; Yacine

To illustrate the application of these habitat-specific species production enhancement estimates, we identified two loca- tions within the northern Gulf of Mexico for which the

As with curd salting, the salt was equally distributed in the cheese at a very early stage, the salt could prevent a propionic acid fermentation at a lower total salt level as in

Table of mean water-level differences between Cuxhaven and “Tümlauer Hafen” for different wind strengths and directions and the number of cases.. Regional water-level