• Keine Ergebnisse gefunden

Chapter 1 Introduction to Weather and Climate Models

N/A
N/A
Protected

Academic year: 2021

Aktie "Chapter 1 Introduction to Weather and Climate Models"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

1

Schär, ETH Zürich

Chapter 1 Introduction to Weather and Climate Models

Christoph Schär Atmospheric and Climate Science ETH Zürich, Switzerland schaer@env.ethz.ch March 21, 2007

Handouts

Numerical Modelling of Weather and Climate

Christoph Schär and Ulrike Lohmann, Summer Term 2007

http://www.iac.ethz.ch/education/master/numerical_modelling_of_weather_and_climate

2

Schär, ETH Zürich

Outline

Historical perspective

Governing equations Parameterizations

Initial conditions

Climate models

Regional models

Computational aspects

(2)

3

Schär, ETH Zürich

Contents

Laboratory-Experiment of Kelvin-Helmholtz Instability

Ri = −g ρ

∂ρ

∂z

  

 

1 2 ∂v

∂z

−1

≤ 1 4 Richardson-Number Criteria:

Billow Couds (Gemsfairenstock, March 11, 2003)

Picture: Thomas Schumann

Sometimes the atmosphere exhibits physical principles in a textbook fashion,

….

4

Schär, ETH Zürich

IR Satellite Picture MeteoSwiss, Zürich

…. more generally, however, the atmosphere looks very complicated, and a direct link to simple physical principles is not evident.

(3)

5

Schär, ETH Zürich

Vilhelm Bjerknes (1862-1951)

In 1904, Bjerknes proposed that „weather forecasting should be considered as an initial value problem of mathematical physics.“

His proposal was motivated by his new circulation theorem, that overcame obvious limitations of Kelvin’s earlier theorem.

Circulation Theorem:

Circulation:

Kelvin‘s Theorem:

C=

vds

dC dt = 0

C

1

C

2

Bjerknes‘ Theorem:

dC

dt = −2ΩdAe

dt

∫ ρ

−1dp

A

Ae Ω

Ω

Earth’s rotation

baroclinic effects

7

Schär, ETH Zürich

Lewis F. Richardson (1881-1953)

In 1922, Richardson provided the first formulation of the atmospheric equations on a computational grid.

“If the coordinate chequer were 200 km square in plan, ... 64,000 computers would be needed to race the weather. In any case, the organisation indicated is a central forecast-factory.”

(4)

9

Schär, ETH Zürich

Synchronization Communication Distributed Memory Parallelization

Extracts from Richardson’s Book

«Individual computers are specialising on the separate equations. Let us hope for their sake that they are moved on from time to time to new operations.»

«It took me the best part of six weeks to draw up the computing forms»

«The work of each region is coordinated by an official of higher rank. Numerous little "night signs" display the instantaneous values so their neighbouring computers can read them.»

«From the floor ... a tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits the man in charge of the whole theatre. ... One of his duties is to maintain an uniform speed of progress. ... He turns a beam of rosy light upon any region that is running ahead of the rest, and a beam of blue light upon those who are behindhand.»

«In a neighbouring building there is a research department. ...

Outside are playing fields, houses, mountains and lakes, for it was thought that those who compute the weather should breathe it freely.»

12

Schär, ETH Zürich

Summary of gains of entropy and of water, both per mass of atmosphere during δt

“by stirring”

(sub-gridscale mixing)

“by precipitation” advection

Gains of water per mass

visible infrared

Gains of entropy Gains of energy

by radiation

“Omitted pending further theoretical investigation”

(5)

13

Schär, ETH Zürich

Divergence of horizontal momentum-per-area.

Increase of pressure

∂p

s

∂t = 145.1 hPa/6h

14

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations Initial conditions

Climate models

Regional models

Computational aspects

(6)

15

Schär, ETH Zürich

Ingredients to Deterministic Weather Forecasting

1. Governing set of equations

Equations describing the motion and thermodynamics of the atmosphere (dynamics).

Equations describing the interaction of the atmospheric flow with a wide range of physical processes (parameterizations, “physics”). This includes: radiation, boundary layer processes, cloud microphysics, soil hydrology, etc.

2. Discretized form of equations on a computer (model)

3. Initial conditions to start integration

Sufficient measurements to initialize model (observing system)

Preparation of the observations on a computational grid (data

assimilation)

16

Schär, ETH Zürich

“Euler Equations” in Cartesian Coordinates

Momentum equations

Equation of state

Thermodynamic equation Continuity equation

Du

Dtfv=–1 ρ

∂p

∂x+Fx Dv

Dt+ fu=–1 ρ

∂p

∂y+Fy Dw

Dt =–1 ρ

∂p

∂z−g+Fz

D Dt= ∂

∂t+u

∂x+v

∂y+w

∂z

pR T DT

Dt– 1 cpρ

Dp Dt =H

∂ρ

∂t +∂(uρ)

∂x +∂(vρ)

∂y +∂(wρ)

∂z =0 with

Why not the “Navier-Stokes Equations”?

Reynolds-number in atmospheric flows is far too large!

(7)

21

Schär, ETH Zürich

requires Δz << Δx, Δy

Critical velocities

~300 m/s sound propagation

~100 m/s horizontal wind velocity

~20 m/s vertical gravity-wave (buoyancy-wave) propagation

Numerics: Courant-Friedrichs-Levy (CFL) stability criterion where U denotes largest velocity in system would require Δt ≤ 0.1 s

Anisotropy of Atmosphere

Diameter: 12'700 km Depth of

troposphere: 10 km

Diameter: ~5 cm Depth: 0.04 mm

U Δt Δz ≤1

22

Schär, ETH Zürich

Vertical momentum equation:

dw dt =–1

ρ

∂p

∂z−g+Fz

Approach for large-scale models:

Hydrostatic Approximation

Balance between pressure-force and gravity, neglect vertical acceleration

Implications:

• Suppresses vertical sound propagation

• w must be diagnosed from continuity equation (diagnostic variable)

• much easier to maintain time-step criterion

• BUT: only valid for Δx > ~10 km

(8)

25

Schär, ETH Zürich

Discretization on the Sphere

The simplest model grid on the sphere is a regular latitude / longitude grid.

It has some difficult side effects (e.g. pole problem).

26

Schär, ETH Zürich

φ λ,( ϕ,t) = ψn m( )t

n=m N(m) m=−M

M

Ynm(λ)

Global Spectral Models

Represent a two-dimensional field φ on the sphere as an expansion using spherical harmonics :Ynm(λ,ϕ)

(9)

30

Schär, ETH Zürich

Example: ECMWF Model

(European Centre for Medium-Range Weather Forecasts, ECMWF)

TL511 ~ 40 km

Resolution Upgrade February 2006 TL799 ~ 25 km

33

Schär, ETH Zürich

Vertical Discretization: Terrain-Following Coordinates

(European Centre for Medium-Range Weather Forecasts, ECMWF)

Resolution Upgrade February 2006 60 Levels 91 Levels

16 km 31 km 48 km 65 km 79 km

0 km

Typical vertical resolution in climate and numerical weather prediction models:

20-90 levels Hydrostatic models use a pressure-based coordinate system

(10)

36

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations

Initial conditions Climate models Regional models Computational aspects

37

Schär, ETH Zürich

The Parameterization Problem

Computational grid with Δx = 50 km Many small-scale processes

(e.g. convective clouds)

are too small to be

represented on the

computational grid

(11)

40

Schär, ETH Zürich

Radar composite MeteoSchweiz

44

Schär, ETH Zürich

Parameterized Processes

Typical atmospheric models have 10 km ≤ Δx ≤ 200 km Processes that are not explicitly represented at these resolutions are ”parameterized” instead, using physical understanding of the underlying processes, or semi- empirical relations.

Parameterized processes contribute substantially to

uncertainties in weather forecasting and climate models.

(ECMWF)

(12)

45

Schär, ETH Zürich

Parameterized Processes

Du

Dtfv=–1 ρ

∂p

∂x+Fx Dv

Dt+ fu=–1 ρ

∂p

∂y+Fy Dw

Dt =–1 ρ

∂p

∂z−g+Fz

D Dt= ∂

∂t+u

∂x+v

∂y+w

∂z

pR T DT

Dt– 1 cpρ

Dp Dt =H

∂ρ

∂t +∂(uρ)

∂x +∂(vρ)

∂y +∂(wρ)

∂z =0 with

Momentum equations

Equation of state

Thermodynamic equation Continuity equation

diabatic heating rate (Fx,Fy)/ρ

H/cp

Parameterized terms non-conservative forces

Equations for specific water vapour and cloud water content Dqvap

Dt =Svap Dqcld

Dt =Scld Additional equations

46

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations Initial conditions

Climate models

Regional models

Computational aspects

(13)

47

Schär, ETH Zürich

Initial conditions are obtained from observations

(ECMWF 2001)

48

Schär, ETH Zürich

Example: Radiosonde Data

(ECMWF 2001)

(14)

56

Schär, ETH Zürich

Global Data Assimilation

Global data assimilation systems ingest a wide range of data from various instruments and observation times. They run a general circulation model (GCM) in hindcast mode. The resulting analysis is a spatially and temporally coherent description of the actual state of the atmosphere. In data sparse regions, where few observations are available, these systems in essence provide a mixture between a short-range (e.g. 6 h) forecast and the available observations.

Observations: soundings, surface observations, satellite data, etc.

Analysis: spatially and temporally coherent dataset on a grid

Initial conditions: starting point of numerical model integration Global data assimilation system

06 UTC 12 UTC 18 UTC 00 UTC 06 UTC 12 UTC 18 UTC

57

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations Initial conditions

Climate models

Regional models

Computational aspects

(15)

58

Schär, ETH Zürich

The Coupled Climate System

Ocean

Feb 9, 2000 Sea Ice

Atmosphere

Land Surfaces

May 1989

59

Schär, ETH Zürich

The Development

of Climate Models

(16)

60

Schär, ETH Zürich

Phase space is spanned by all degrees of freedom of the system This example: Lorenz attractor 3 degrees of freedom

Global atmospheric model:

108 degrees of freedom

Weather versus Climate Prediction

(Palmer, ECMWF)

Weather Prediction Climate Prediction

phase space

2nd forecast

from perturbed initial condition

A weather forecast is a trajectory in phase space, starting from the initial conditions.

A climate forecast is a forecast of the attractor. Information on initial conditions is largely lost.

forecast initial condition

61

Schär, ETH Zürich

The Global Energy Balance Energy Input = Energy Output

Sun visible

infrared visible

CO

2

Aerosols Aerosols

Aerosols

(17)

63

Schär, ETH Zürich

Natural Climate Forcings

(Fröhlich and Lean 2004)

Solar Irradiance (W/m2)

2000 1995 1990 1985 1980

Solar Forcing

(Ammann et al. 2003)

Global Optical Depth

Volcanic Forcing

Agung El Chichon Pinatubo

65

Schär, ETH Zürich

Internal variability

(Peixoto and Oort)

Observed climate records include

response to forcings (natural and anthropogenic)

internal variations (e.g. due to atmospheric variability)

Spectrum of

surface temperature variability

2500 y 100-400 y 10-30 y ~2 y 1 y 0.5 y 3-7 d 1 d 12 h

Some of the observed variations are due to:

external forcings

harmonics of external forcings

internal variations

(18)

66

Schär, ETH Zürich

Anthropogenic Climate Forcing

Greenhouse gases

CO2 [ppm]

CH4 [ppb]

(IPCC, TAR)

Aerosols (optical depth, year 2000)

(IPCC, TAR)

Land use (leaf area index)

Observed Potential

Vegetation

5.6 4.8 4.0 3.2 2.4 1.6 0.8 0 (Heck et al. 2001)

(IPCC, TAR)

67

Schär, ETH Zürich

Carbon Dioxide (CO

2

)

Current CO2 concentrations are higher than ever in the last 600,000 years Atmospheric CO2-Concentration [ppm]

Years before present

400,000 300,000 200,000 100,000 present

200 240 280 320 360 400

2100: Scenarios up to 900 ppm 2007: Today, 380 ppm

1800: Preindustrial, 280 ppm

(Petit et al. 1999)

(19)

68

Schär, ETH Zürich

Models with and without anthropogenic effects

(IPCC AR4)

Surface temperature

Observed

70

Schär, ETH Zürich

Arctic Polar Ice

(Holland et al. 2006, GRL)

2000 2040

Minimal extension of arctic sea ice (September)

Beobachtung 1980-2006 Simulation 1900-2100

(20)

71

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations Initial conditions

Climate models Regional models Computational aspects

72

Schär, ETH Zürich

Atmospheric GCM

(ECHAM5, T106, ~120 km)

Coupled GCM

(HadCM3, ~300 km)

Model Chain for Climate Change Impact Study

Regional Model

(CHRM, 56 km)

Regional Model

(CHRM, 14 km)

Hydrological Model

(WaSiM, 1 km)

(21)

73

Schär, ETH Zürich

Operational Model of MeteoSwiss (aLMo/COSMO)

(MeteoSwiss)

LM model of German Weather Service (COSMO Consortium) Horizontal Resolution:

7 km, 385x325 grid points Several daily runs extending to +72h

Data-assimilation using the nudging methodology

74

Schär, ETH Zürich

Outline

Historical perspective Governing equations

Parameterizations Initial conditions

Climate models

Regional models

Computational aspects

(22)

76

Schär, ETH Zürich

Development of CPU power

Cray XT3, CSCS 1,700 processors 1 TFLOP = 1012

1011 1010

108 107 1 MFLOP = 106 105 1 GFLOP = 109

1 MFLOP =

One Million Floating Point Operations per Second

Blue Gene, DOE, USA 130,000 processors Earth Simulator, Japan 5,120 processors 1013

1014 1 PFLOP = 1015

2010

77

Schär, ETH Zürich

Horizontal Resolution

(MPI Hamburg)

(23)

78

Schär, ETH Zürich

Development of Operational NWP Model Resolution

As a result of the increasing computer power, it was possible to refine the resolution of operational Numerical Weather Prediction (NWP) models:

Year Global Models Regional Models

1985 200 km 50 km

2006 40 km 7 km

200? ~20 km ~1 km

Potential of kilometer-scale modelling

• Improved representation of topography:

improved prediction of mountain-induced weather

• Explicit simulation of moist convection:

improved prediction of heavy precipitation

• Bridges resolution-gap between meteorological and hydrological models improved prediction of runoff and floods

79

Schär, ETH Zürich

4500 4000 3500 3000 2500 2000 1500 1000 500 0

Swiss Topography at two Resolutions

Δx = 14 km

4500 4000 3500 3000 2500 2000 1500 1000 500 0

Δx = 1 km

(24)

80

Schär, ETH Zürich

The simulation of weather and climate has come a long way towards realizing the visions of V. Bjerknes (1904) and L.F. Richardson (1922).

Some key issues:

• Small-scale processes are important for large scale features:

=> High spatial resolution desirable (computational challenge)

• Representation of sub-gridscale processes:

=> Improved parameterizations and understanding needed

• Nonlinearities imply intrinsic predictability limitations:

=> Probabilistic methods

• Validation of climate models on timescales of seasons to decades

=> Improved long-term homogeneous data sets needed

Summary

Referenzen

ÄHNLICHE DOKUMENTE

Abbildung 11 gibt Auskunft über den auf die Bundesländer gemittelten Tagesniederschlag, in Abbildung 12 werden als Gebietsgrößen die Einzugsgebiete mittelgroßer Flüsse gewählt,

Manuel Bachmann sowie Herrn Jens Stahlkopf, die beim Haupt Verlag „Wissenschaftlich schreiben leicht gemacht“ in den ersten Jahren betreut hatten und damit ebenfalls zum

Alexander Henning, Renate Ohr, Thieß Petersen, Gerald Pilz, Christian Vranckx, Achim Zimmermann.. Prüfungstrainer

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

Titel, Impressum, Inhaltsverzeichnis, Vorwort, 9783825253448, 2021 wurde mit IP-Adresse 134.122.089.123 aus dem Netz der ${institutionUser.displayName} am April 12, 2022 um

Maria Rhode studierte Neuere und Neueste sowie Osteuropäische Geschichte und Slavistik an der Albert- Ludwigs-Universität Freiburg.. Im Rahmen des

Das Weitergeben und Kopieren dieses Dokuments ist nicht zulässig...

Hagel Westen Lilie Krokus Schlag Mercedes Kultur Tradition