• Keine Ergebnisse gefunden

Plane Wave

N/A
N/A
Protected

Academic year: 2022

Aktie "Plane Wave"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Plane Wave

Sana Zabat and Lyazid Chetouani

D´epartement de Physique, Facult´e des Sciences Exactes, Universit´e Mentouri, 25000 Constantine, Algeria

Reprint requests to L. C; E-mail: lyazidchetouani@gmail.com

Z. Naturforsch.65a,431 – 444 (2010); received March 25, 2009 / revised August 20, 2009

The Green functions for Klein-Gordon and Dirac particles in a weak gravitational field are deter- mined exactly by the path integral formalism. By using simple changes, it is shown that the classical trajectories play an important role in determining these Green functions.

Key words:Path Integral; Dirac Equation; Exact Solution.

PACS numbers:04.30.-w, 03.65.Ca, 03.65.Db, 03.65.Pm

1. Introduction

We know that the Dirac equation is one of the funda- mental equations of physics which allows not only to determine the value12 of the electron spin, but predict the existence of an antiparticle. However, this equation is not free of difficulties related to states of negative energy, and in order to explain certain phenomena, the use of field theory becomes more than necessary. A good approximation for the treatment of certain prob- lems, when the interaction is not strong enough, is the direct use of the Dirac equation, which is sufficient in this case. For example, for a particle of spin12, the cor- rection due to the polarization of the vacuum can be obtained, following Pauli’s results, in a simple mod- ification of the Dirac equation, where the movement of the particle is corrected by an additional term de- scribing the anomaly of the magnetic moment of the particle.

In addition, we know that the operators of quantum mechanics play a central role in the quantization; later, another means of quantization has been proposed using the path integral. If, in non-relativistic case, the deep link with classical mechanics has been established with the path integral formulation, in the relativistic case there are various formulations. For the Dirac equation, for example, which is a matrix equation in which the spin is described by the matrices γµ (which do not commutate), the formalism of path integrals accord- ing to Fradkin and Gitman [1, 2] – object of this pa- per – uses two types of variables: bosonic for the ex- ternal motion and fermionic (Grassmann) for the in-

0932–0784 / 10 / 0500–0431 $ 06.00 c2010 Verlag der Zeitschrift f¨ur Naturforschung, T ¨ubingen·http://znaturforsch.com

terior motion of the particle. Two types of representa- tions of path integrals relative to the equation of Dirac exist at present: one, the so-called global one, is based on the “square” of the Dirac equation, i. e. the Klein- Gordon equation with an additional spin-field term; the other one, the so-called local one, which uses a matrix γ5[3] for reasons of homogenization, gives the physi- cal states directly and not artificially, in contrary to the global case.

The purpose of this paper is to examine the possi- bilities of solving simple problems of particles inter- acting with an external classical field, using these two representations, equivalent by construction to the Dirac equation. We consider in this paper the Klein-Gordon and the Dirac particles moving in a gravitational field which is relatively weak. Our object is to show by a simple modification, that we can easily obtain from the classical trajectories the Green functions solution of the Klein-Gordon and the Dirac equations.

In the absence of gravitation we have an Euclidian metricηµν. When the gravitation is weak, the metric is not flat but can be chosen such that the Green functions have analytical expressions. In first approximation the metric is [4]

gµν(x) =ηµν+hµν(kx) or

gµν(x) =ηµν−hµν(kx), (1) where the matrixhis considered as a perturbation and is chosen in a simple form. It only depends on the prod- uctkx, wherekandxare the 4-vectors related to the wave number and the position of the particle.

(2)

It is further supposed that the form ofh[4] is hµν(kx) =aµνF(kx), (2) where the wave number 4-vectorskand the elements of the(4×4)matrixastatisfy the condition

k2=0, kµaµν=aµνkν=0, Tra=0. (3) We begin with the simple case of the Klein-Gordon particles (without spin) to determine the Green func- tion, and then we pass to the Green function for the Dirac equation following successively the two repre- sentations, without using theγ5matrix for the global approach and the local approach, where the matrix γ5[1] is necessary. Let us note that this problem has been the object of some other works [4, 5], calculating the Green functions for particles of spin 0 and spin 12 by solving the Klein-Gordon and Dirac equations via the solutions of the respective Heisenberg equations.

The same problem has recently been considered with a stochastic approach [6] and with the formalism of path integrals [7], using only the global representation.

Let us begin with the simple case of the Klein- Gordon particles.

2. Green Function for the Klein-Gordon Particle In this section, we propose to determine the Green function for a particle in a weak gravitational field, which solves the Klein-Gordon equation

pˆ2b−pˆbhbpˆb−m2

Gc(xb,xa) =δ4(xb−xa). (4) Symbolically we have

Gˆc= I ˆ

p2−phˆ pˆ−m2,

and with the help of a parameterλ, we obtain for ˆGc the exponential form

Gc(xb,xa) =i

0

xb|exp

Hˆ(pˆ,xˆ)

|xa, where

Hˆ(pˆ,xˆ) =m2−pˆ2+paˆ pFˆ (kx), following [4].

Let us pass now to the path integral formulation. To construct the Green function, first let us eliminate the operators. We use the usual procedure: subdivide the

interval[xa,xb]intoNequal intervals of lengthτ=

λ

N, then insert the closed relations

d4x|xx|=1, d4p|pp|=1, with the scalar product

x|p= 1 (2π)4eipx,

which allows to pass from one base to another one.

Next we eliminate the operators by using ˆ

xµ|x=xµ|x, pˆµ|p=pµ|p.

Now we choose the Weyl order or the mid-point pre- scription, and the expression of the Green function then is

Gc(xb,xa) =i

0

Dx Dp

·exp

i λ

0

px˙+p2−m2−papF(kx) dτ

.

(5)

Let us now proceed to its evaluation: As the action de- pends onkx, let us defineϕ=kxas a new variable. We introduce the identity [8 – 10]

b

aδ(ϕa−kxa) Dpϕ

·exp

i λ

0

pϕ(ϕ˙−kx)dτ

=1.

(6)

Then (5) becomes Gc(xb,xa) =i

0

Dx

Dp

b

·aδ(ϕa−kxa) Dpϕ

·exp

i

λ

0

(p−pϕk)x˙+pϕϕ˙+p2

−paF(ϕ)p−m2

.

(7)

Introducing p=P+pϕk, the measure remains un- changed. We then have

Gc(xb,xa) =i

0

Dx Dp dϕb

·aδ(ϕa−kxa) Dpϕ

·exp

i

λ

0

px˙+p2+ (ϕ˙+2pk)pϕ

−F(ϕ)pap−m2

.

(8)

(3)

Let us integrate the first term of the action by part, λ

0

pxd˙ τ= (pbxb−paxa) λ

0

˙ pxdτ,

and then integrate over the pathsx(τ), Gc(xb,xa) =i

0

Dpδ(p˙)b

·

aδ(ϕa−kxa)

Dpϕ

·exp

i

(xbpb−xapa) + λ

0

p2+ (2pk+ϕ˙)pϕ

−F(ϕ)pap−m2. The Dirac functionδ(p˙)expresses that the momentum of the particle remains constant during the motion,

p1=p2=...=pn=p=const. (9) Integrating successively over all the pn, the integral Dpis finally reduced to a simple integral dp2π.

Gc(xb,xa) =i

0

dp

b

aδ(ϕa−kxa)

· Dpϕexp{i(xbpb−xapa)}δ(p˙)

·exp

i

λ

0 (p2+ (2pk+ϕ˙)pϕ−F(ϕ)pap−m2)dτ

. (10)

Integrating over pϕ also leads to a Dirac function δ(2pk+ϕ˙). The integration over the variables ϕ shows that the essential contribution to the Green func- tion comes from the trajectory

=2pk, (11)

i. e. from the path described by

ϕ(τ) =2pkτ+cte, (12) which is obviously that of a line.

ThusGcbecomes Gc(xb,xa) =i

0

dp

b

aδ(ϕa−kxa)

·δ(ϕb−kxa(2pk)λ)exp

i

p(xb−xa) + λ

0 (p2−m2)dτ Dϕexp

ipap 2pk

ϕb kxa

F(ϕ)dϕ

. (13)

This Green functionGc(xb,xa)has a form which is not symmetrical with respect to the positionsxa and xb. In order to symmetrize this expression, let us introduce

the integral representation of theδ function δ(ϕb−kxa(2pk)λ)

= 1 2π

dpϕbexp

ipϕbb−kxa(2pk)λ] .

Let us change thenpintop−kpϕb, so we have Gc(xb,xa) =i

0

dpexp

i

p(xb−xa) + λ

0 (p2−m2)dτ exp ipap

2pk kxb

kxa

F(ϕ)dϕ

. (14)

After transformingpinto−p, we integrate overλ. The result is

Gc(xb,xa) = 1 (2π)4

d4p

p2−m2

·exp

i

p(xb−xa) +(pap) 2pk

kx

b

kxa

F(ϕ)dϕ . (15)

A simple integration over p0 leads to the following form:

Gc(xb,xa) =i

2 ε=±

θ[ε(tbta)] (d23πp)3

·exp

iεω(tb−ta) +ip(xb−xa)

·exp

i

εωk02pk(pap) kxb

kxa

F(ϕ)dϕ

, (16)

which allows us to extract the wave functions related to the Klein-Gordon particle in a weak gravitational field:

Ψp±(x) = 1

(2π)23 1 (2p0)12 exp

i

px

+(pap) 2pk

kx

F(ϕ)dϕ

p0=

p2+m21/2. (17)

3. Green Function for a Dirac Particle:

Global and Local Approaches

Let us pass now to the Dirac particle: We consider the motion of a Dirac particle in a weak gravitational field using the path integral approach. The Green func- tionSwhich we propose is the solution of the follow- ing equation:

γpˆb+1

2F(kxapˆb−m S(xb,xa)=δ4(xb,xa), (18)

(4)

whereγµ are the usual Dirac matrices obeying the re- lations

γµγννγµ=2gµν, µ,ν=0,1,2,3. We know that in the global approach of the path in- tegral formulation of the Green function it is not nec- essary to introduce the matrixγ5[3] to the global ap- proach contrary to the local approach.

Thus, in the global approach we can obtain the Green function according to [2, 3] by

S(xb,xa) =

γpˆb+1

2F(kxbapˆb+m G(xb,xa), (19) where

G(xb,xa) =i exp

µ δL

δθµ

0

Dx Dp

E

exp

i

λ

0

px˙µΨ˙µ+p2−m2

−papF−1

2(paΨ)ξFµ(λ)Ψµ(0)

|θ=0

. (20)

In the local approach we find S˜(xb,xa) =exp

n δL

δθn

0

dχ Dx

·

Dp

E

exp

i

λ

0

px˙nΨ˙n+p2

−m2−papF−1

2(paΨ)(kΨ)F+

(pΨ) +1

2F(apΨ)−mΨ5χn(λ)Ψn(0) θ=0.

(21)

We propose to evaluate the Green function with the method already used in [9] which mainly consists of introducing two identities: The first one depends on the variable which characterizes the gravitation, the sec- ond one describing the spin in a form similar to the first. In order to obtain the expressions for the Green functions let us return to the definition of S(xb,xa) which is the matrix element

S(xb,xa) =xb|Sˆ|xa

of an operatorS. Symbolically, we have

γpˆ+1

2F(kxapˆ−m

Sˆ=I, (22) or

Sˆ= I

γpˆ+12F(kxapˆ−m

= I

γ˜pˆ+12Fγ˜apˆ−mγ5γ5=S˜γ5. (23) Let us remind that the matrixγ5is defined by

γ50γ1γ2γ3,

γ52=1.

Then, we have for the global case the following equal- ities:

I

γpˆ+12F(kxapˆ−m

=

γpˆ+1

2F(kx)(γapˆ] +m

G,

(24)

with the relation between ˆSand ˆGas S(xb,xa) =

γpˆb+1

2F(kxbapˆb+m G(xb,xa), (25) where

G=i

0

exp

γpˆ +1

2F(kxapˆ−m

γpˆ+1

2F(kxapˆ+m . (26)

For the local case the Green function to be evaluated is the following:

S˜=

0

dχexp

i

ˆ

p2−m2−paˆ pFˆ +i

2(paˆ σk)F

(γ˜pˆ)+1

2F(γ˜apˆ)−mγ5 , (27)

where the parameters λ and χ are the bosonic and fermionic variables, respectively.

The kernels are in the global cases G=i

0

expHˆg(pˆ,xˆ)

, (28)

with

Hg=p2−m2−paˆ pFˆ +i

2paˆ σkF, (29) and in the local case

S˜=

0

expHˆl,pˆ,xˆ)

, (30)

(5)

with

Hˆl=p2−m2−paˆ pFˆ +i 2paˆ σkF

−(γpˆ) +1

2Fapˆ)−mγ5

. (31)

Let us then pass to the path integral formulation. We first have, for the global case,

G(xb,xa) =i

0

xb|exp

Hg(pˆ,xˆ)

|xa, (32) and for the local case

S˜(xb,xa) =

0

xb|exp

Hˆl,pˆ,xˆ)

|xa. (33) Following the usual procedure (Trotter formula, inser- tion of projectors, etc.. . . ) we obtain the Green func- tions in the two cases,

i) global G(xb,xa) =iT

0

Dx Dpexp

i λ

0

·

px˙+p2−m2−papF+i

2paσkF , (34)

ii) local S˜(xb,xa) =T

0

dχ Dx Dp

·exp

i λ

0

px˙+p2−m2−papF+i

2(paσk)F +

p) +1

2Fap)−mγ5

χ . (35)

Here the time-ordered productT is introduced because of the presence of the matricesγ.

In order to eliminate theT-product, in a first step we shift theT-symbol by using the following identity:

Texp{Fn(τ))}= exp

F

δL

δρn

Texp

λ

0 ρnγndτ

ρ=0. Then, in a second step, theT-product is replaced by a path integral

Texp λ

0 ρnγndτ

=exp

n δL

δθn

|Ψ

0+Ψ1=θ

·exp λ

0nΨ˙n2iρnΨn)dτ+Ψn(λ)Ψn(0)

. (36)

Let us note in passing that the termsσµν will be re- placed by

σµνµΨν, (37) and that the term

i

2(paσk)F→ −1

2(paΨ)(kΨ)F

is a product of factors. Thus, we have in the global case G(xb,xa) =i exp

n δL

δθn

0

Dx Dp

·

E

exp

i λ

0

px˙+p2−m2(pap)F

1

2(paΨ)(kΨ)FnΨ˙nn(λ)Ψn(0)|θ=0

, (38)

and in the local case S˜(xb,xa) =exp

n δL

δθn

0

dχ Dx Dp

·

E

exp

i

λ

0

px˙+p2−m2−(pap)F

1

2(paΨ)(kΨ)F+

(pΨ) +1

2(Ψap)F−mΨ5

χ

nΨ˙nn(λ)Ψn(0)|θ=0

. (39)

Having formulated the Green function in the path inte- gral approach, let us proceed now to their calculation.

For that, let us use the properties of their dependence on the gravitation [8]. Therefore, we insert the identity

a

bδ(ϕa−kxa) Dpϕ

·exp

i λ

0

pϕ(ϕ˙−kx˙)dτ

=1.

(40)

This leads for the global case to G(xb,xa) =i exp

n δL

δθn

0

Dx Dp

·a

bδ(ϕa−kxa) Dpϕ

E

·exp

i

λ

0

p2−m2−papF−1

2(paΨ)ξF + (p−kpϕ)x˙+pϕϕ˙nΨ˙nn(λ)Ψn(0)|θ=0

, (41)

(6)

and for the local case to S˜(xb,xa) =exp

n δL

δθn

0

dχ Dx

· Dp

a

bδ(ϕa−kxa) Dpϕ

·

E

exp

i λ

0

p2−m2−papF−1

2(paΨ)ξF +

(pΨ) +1

2F(apΨ)−mΨ5

χ+ (p−kpϕ)x˙ +pϕϕ˙nΨ˙nn(λ)Ψn(0)|θ=0

. (42)

Let us make the following transformation:

p=P+kpϕ. (43)

Then, we obtain G(xb,xa) =i exp

n δL

δθn

0

Dx Dp

·a

bδ(ϕa−kxa) Dpϕ

E

·exp

i λ

0

px˙+

p2−m2−papF

1

2(paΨ)(kΨ)F

+pϕ(ϕ˙+2pk)nΨ˙nn(λ)Ψn(0)|θ=0

(44)

and

S˜(xb,xa) =exp

n δL

δθn

0

dχ Dx Dp

·a

bδ(ϕa−kxa) Dpϕ

E

·exp

i λ

0

px˙+

p2−m2−papF−1

2(paΨ)ξF +

−pΨ−kpϕΨ+1

2Fap)−mΨ5

χ +pϕ(ϕ˙+2kp)nΨ˙nn(λ)Ψn(0)|θ=0

. (45) Let us integrate the first term of the action by parts then integrate over the paths x(τ). This leads in the two cases to

i) global G(xb,xa) =i exp

n δL

δθn

0

Dp dϕa

b

·δ(ϕa−kxa) Dpϕ

E

exp{i(xbpb−xapa)}

·δ(p˙)exp

i λ

0

p2−m2(pap)F

1

2(paΨ)(kΨ)F

+pϕ(ϕ˙+2pk)nΨ˙nn(λ)Ψn(0)|θ=0

, (46)

ii) local S˜(xb,xa) =exp

n δL

δθn

0

dχ Dp

·

a

bδ(ϕa−kxa)

Dpϕ

E

·exp{i(xbpb−xapa)}δ(p˙)exp

i λ

0

p2−m2

−papF−1

2(paΨ)(kΨ)F

pΨ1

2Fap) +ξpϕ+mΨ5

χ+pϕ(ϕ˙+2kp)nΨ˙nn(λ)Ψn(0)|θ=0

. (47)

The Dirac functionδ(p˙)expresses that the momentum is constant during the motion, i. e.,

p1=p2=...=pn=p.

Let us now integrate onp, implying in the i) global case

G(xb,xa) =i exp

n δL

δθn

0

dλ d4p

(2π)4

·exp

ip(xb−xa) +iλ(p2−m2)a

·bδ(ϕa−kxa) Dpϕ

E

·exp

i

λ

0

−papF−1

2(paΨ)(kΨ)F +pϕ(ϕ˙+2pk)nΨ˙nn(λ)Ψn(0)|θ=0

,

(48)

ii) local case S˜(xb,xa) =exp

n δL

δθn

0

dχ (d4p 2π)4

·exp

ip(xb−xa) +iλ(p2−m2)a

·bδ(ϕa−kxa) Dpϕ

E

·exp

i

λ

0

−papF−1

2(paΨ)(kΨ)F

(7)

pΨ1

2Fap) +ξpϕ+mΨ5

χ +pϕ(ϕ˙+2kp)nΨ˙nn(λ)Ψn(0)|θ=0

. (49) Now we use the factorization property of the spin-field interaction [8] by introducing the identity

abδ(ξa−kΨa) Dpξ

·exp

i

λ

0

pξ(ξ˙−kΨ˙)dτ

=1,

(50)

whereξ andpξ are odd Grassmann variables.

ThenGandSbecome in the i) global case

G(xb,xa) =i exp

n δL

δθn

0

(d24πp)4

a

·bδ(ϕa−kxa)abδ(ξa−kΨa) Dpϕ

·

Dpξ Dξ

E

expip(xb−xa) +iλp2−m2

) exp

i

λ

0

(pap)F(ϕ)

1

2(paΨ)ξF+pϕ(ϕ˙+2kp)

+pξ(ξ˙−kΨ˙)µΨ˙µµ(λ)Ψµ(0)

,

(51)

ii) local case S˜(xb,xa) =exp

n δL

δθn

0

dχ (d4p 2π)4

·exp

ip(xb−xa) +iλp2−m2a

·bδ(ϕa−kxa)abδ(ξa−kΨa) Dpϕ

· Dpξ Dξ

E

exp

i

λ

0

−papF

1

2(paΨ)ξF

pΨ1

2Fap) +ξpϕ+mΨ5

χ

+pξ(ξ˙−kΨ˙) +pϕ(ϕ˙+2kp)nΨ˙nn(λ)Ψn(0)|θ=0

. (52)

At this state, it is preferable to use the velocitiesω by making change of variablesΨn ωn, defined

by

Ψn(τ) =1 2

λ

0 ε(ττn)dτn 2 . (53) We also adopt the condensed notation of [2] and obtain G(xb,xa) =i exp

n δL

δθn

0

(2d4πp)4

·exp

ip(xb−xa) +iλ(p2−m2)a

·

bδ(ϕa−kxa)

a

b

Dpϕ

· Dpξ

E

Dωδ(ξa+k

2(ωθ)

·exp

i λ

0

λ

(pap)F(ϕ) +i

4(paθ)ξF +i

4paω)ξF

+pξ(ξ˙−kω) +pϕ(ϕ˙+2kp) 12ωεω

θ=0

(54)

and

S˜(xb,xa) =exp

n δL

δθn

0

dχ (2d4πp)4

·exp

ip(xb−xa) +iλ(p2−m2)a

·

bδ(ϕa−kxa)

ab

Dpϕ

Dpξ

·

E

Dωδ(ξa+k

2(ωθ)

·exp

i λ

0

λ

−papF(ϕ) +i 4(pa

εω +θF

1 2

ω+θ)p−1

2Fω+θ)ap +2ξpϕ+mω55)

χ+pξ(ξ˙−kω) +pϕ(ϕ˙+2kp) 1

εω

.

(55)

Let us now introduce the transformation ω¯µ(τ)ωµ(τ) +ikµ1∗pξ), leading to

kω¯(τ) =kω(τ).

(8)

Since

ω¯εω¯ =ωεω+2ikωpξ, εω¯ =εω+ikpξ,

we obtain for the two cases i) global

G(xb,xa) =i exp

n δL

δθn

d4p (2π)4

0

dϕa

·bδ(ϕa−kxa) Dpϕ

a

b

·

Dpξ

E

Dωδ

ξa+k

2(ωθ)

exp

ip(xb−xa) +iλ(p2−m2)

exp

i

λ

0

(pap)F(ϕ) +i

4(paω+θ))ξF

+pξ(ξ˙−kω) +pϕ(ϕ˙+2kp) 1

2(ωεω2ikωpξ)

, (56)

ii) local S˜(xb,xa) =exp

n δL

δθn

d4p

(2π)4exp{ip(xb−xa) +iλ(p2−m2)}

0

dχ dϕa

bδ(ϕa−kxa)

· Dpϕ

a

b

Dpξ

E

Dωδ(ξa

+k

2(ωθ))exp

i

λ

0

dτ(pξ(ξ˙−kω) +pϕ(ϕ˙+2kp))

exp

i

λ 0

−papF(ϕ) +i

4(paωikpξ+θ))ξF

1 2

ω

ikpξ+θ)pµ1

2Fωikpξ+θ)ap+2ξpϕ

+mω55)

χ 1

2(ωεω2ikωpξ)

. (57)

One can replace the Dirac function by its integral rep- resentation

δ

ξa+k 2(ωθ)

=

dpζaexp

ipζa

ξa+k

2(ωθ)

,

(58)

wherepζais a Grassmann variable.

We have for the two cases i) global

G(xb,xa) =i exp

n δL

δθn

d4p (2π)4

0

dϕa

·bδ(ϕa−kxa) Dpϕ

a

b

· Dpξ

E

Dωexpip(xb−xa) +iλp2−m2

·exp

i λ

0

−papF(ϕ) +i 4

paω

ikpξ+θ) ξF

+pϕ(ϕ˙+2kp) +pξ(ξ˙−kω)

1

2(ωεω2ikωpξ) +pζa

ξa+k

2(ωθ) θ=0,

(59)

ii) local S˜(xb,xa) =exp

n δL

δθn

d4p

(2π)4exp{ip(xb−xa) +iλ(p2−m2)}

0

dχ dϕa

bδ(ϕa−kxa)

· Dpϕ

a

b

Dpξ

E

Dω

·exp

i λ

0

pξ(ξ˙−kω) +pϕ(ϕ˙+2kp)

·exp

i λ

0

−papF(ϕ) +i

4(paω

ikpξ+θ))ξF

1 2

ωikpξ+θ)p

1

2Fωikpξ+θ)ap+2ξpϕ

+mω55)

χ 1

2(ωεω2ikωpξ) +pζa

ξa+k

2(ωθ) θ=0.

(60)

The integration on the velocityω5is simple:

Dω5exp

1 2

ω5εω5+imεω5χ=1.(61)

The integrals overωµ(µ=0,1,2,3)are

Dωµexp λ

0

1

µεωµ+Jµωµ

, where the sourcesJµ(τ)are in the cases

(9)

i) global

Jµ(τ) =1 4

λ

0

ds(pa)µξ(s)F(s)ε(τ−s)+i 2kµpξa.

ii) local Jµ(τ) =1

4 λ

0

ds(pa)µξ(s)F(s)ε(τ−s)

1 2χ λ

0 (p+ (ap))µF(s)ε(τ−s)ds+i 2pξakµ, By using the propertieska=0 andk2=0, which allow to simplify the Green functions,G and ˜S have the following forms:

i) global case G(xb,xa) =i exp

n δL

δθn

d4p (2π)4

0

dϕa

bδ(ϕa−kxa)

· Dpϕ

a

b

Dpξexpip(xb−xa) +iλ(p2−m2)

·exp







 i

λ

0

−(pap)F(ϕ) +pϕ(ϕ˙+2kp) +pξξ˙+pζa

ξa−k

+i

4(paθ)ξF +1

32

pa2p λ

0 λ

0

dsdsε(s−s)ξ(s)ξ(s)F(s)F(s)









θ=0, (62)

ii) local case S˜(xb,xa) =i exp

n δL

δθn

d4p (2π)4

0

dϕa

bδ(ϕa−kxa)

· Dpϕ

a

b

Dpξexpip(xb−xa) +iλ(p2−m2)

·exp







































 i

λ

0



−papF(ϕ) +pϕ(ϕ˙+2kp) +pξ

ξ˙+1 2pkχ

+pζa

ξa−k

+i

4(paθ)ξF1 2

θp+2ξpϕ+mθ1 2Fap)

χ



 +1

32(pa2p) λ

0

λ

0

dsdsε(s−s)ξ(s)ξ(s)F(s)F(s) +1

8((pap) +pa2p) λ

0 λ

0

dsdsε(s−s) F(s)F(s)ξ(s)χ+i

4(pk)pξaχ λ

0

dsF(s)







































θ=0. (63)

Let us now integrate on thepξ. The two expressions (62) and (63) are then reduced to

i) global case G(xb,xa) =i exp

n δL

δθn

d4p (2π)4

0

dϕa

·bδ(ϕa−kxa) Dpϕ

aexp{ip(xb−xa)

+iλ(p2−m2)}exp

i

λ

0

−(pap)F(ϕ)

+pϕ(ϕ˙+2kp) +pζa

ξa−k

+i

4(paθ)ξaF

θ=0

, (64)

Referenzen

ÄHNLICHE DOKUMENTE

Then all the algebraic eigenspaces corresponding to non-real eigenvalues are finite dimensional, the positive spectrum of A consists of spectral points of positive type with the

b) Zeigen Sie, dass der Hamilton-Operator H mit dem Operator σ ·P vertauscht, wobei P der Impulsoperator ist und σ die Pauli Spinoperatoren im Raum von vier Komponentenspinoren

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under

These are the reflection coefficients for a plane P wave incident on a free surface, and reflected P and SV waves.. SH example

In order to derive the Dirac equation from a Lagrangian density we need to construct a Lorentz scalar (i.e. the Lagrangian) starting from ψ... 3.4.1

Si les exemples de bonne gestion environnementale sont rares et les investissements insuffisants pour amorcer la transition verte, les décideurs publics doivent

Karlsruher Institut f¨ ur Technologie Institut f”ur Theoretische Festk¨ orperphysik Ubungen zur Modernen Theoretischen Physik I ¨ SS14.. -

Es gibt in der UB Hildesheim seit über einem Jahr (Stand: Mai 2020) Beratungen und Schulungen (Coffee Lectures, Workshops und andere Veranstaltungen) zum