• Keine Ergebnisse gefunden

Asymptotic expansion of the multivariate Bernstein polynomials on a simplex - Friedberger Hochschulschriften, Band 8

N/A
N/A
Protected

Academic year: 2021

Aktie "Asymptotic expansion of the multivariate Bernstein polynomials on a simplex - Friedberger Hochschulschriften, Band 8"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Friedberger Hochschulschriften

Ulrich Abel und Mircea Ivan

Asymptotic Expansion of the

Multivariate Bernstein Polynomials

on a Simplex

(2)

2

Das vorliegende Manuskript ist ein Preprint. Eine Arbeit mit den ausführlichen Beweisen wird in

der mathematischen Fachzeitschrift Approximation Theory and its Applications erscheinen.

©

Ulrich Abel

Friedberger Hochschulschriften

Herausgeber:

Die Dekane der Fachbereiche des Bereichs Friedberg der FH Gießen-Friedberg

Wilhelm-Leuschner-Straße 13, D-61169 Friedberg

http://www.fh-friedberg.de

Alle Rechte vorbehalten, Nachdruck, auch auszugsweise, nur mit schriftlicher

Genehmigung und Quellenangabe.

Friedberg 2000

ISSN 1439-1112

(3)

Friedberger Hochschulschriften

Band 1: W. Hausmann

Das Nimspiel, der Assemblerbefehl XR und eine merkwürdige Art, zwei

und zwei zusammenzuzählen

Band 2: U. Abel und M. Ivan

The Asymptotic Expansion for Approximation Operators of Favard-Szász

Type

Band 3: C. Malerczyk

Visualisierungstechniken für den Sintflutalgorithmus

Band 4: M. Börgens, Th. Hemmerich und L. B. Rüssel

Use of Discriminant Analysis in Forecasting the Success of a Software

Development Project

Band 5: W. Hausmann

On the two envelope paradox

Band 6: U. Abel

Asymptotic Approximation by Bernstein-Durrmeyer Operators and their

Derivatives

Band 7: K. Behler

Hybrid Welding Technology (HWT) a flexible method for industrial

applications

Band 8: U. Abel und M. Ivan

Asymptotic Expansion of the Multivariate Bernstein Polynomials on a

Simplex

(4)

Asymptotic expansion of the multivariate

Bernstein polynomials on a simplex

Ulrich Abel

Fachhochschule Giessen-Friedberg,

University of Applied Sciences, Fachbereich MND,

Wilhelm-Leuschner-Strasse 13, 61169 Friedberg, Germany

and

Mircea Ivan

Department of Mathematics,

Technical University of Cluj-Napoca,

Str. C. Daicoviciu 15, 3400 Cluj-Napoca, Romania

August 1, 2001

Abstract

In this note we study the local behaviour of the multi–variate Bernstein polynomials Bn on the d–dimensional simplex S ⊂ Rd. For functions

f admitting derivatives of sufficient high order in x ∈S we derive the complete asymptotic expansion of Bnf as n tends to infinity. All the

coefficients of n−kthat only depend on f and x are calculated explicitly. It turns out that combinatorial numbers play an important role. Our results generalize recent formulae due to R. Zhang.

(5)

1

Introduction

For each function f defined on [0, 1] , the classical Bernstein polynomials Bn

(n = 0, 1, 2, . . .) are given by Bn(f ; x) = n X ν=0 n ν  xν(1 − x)n−νfν n  (x ∈ [0, 1]) . (1)

Bernstein [8] already proved that, for q ∈ N and f ∈ C2q[0, 1] , the univariate Bernstein polynomials satisfy the asymptotic relation

Bn(f ; x) = f (x) + 2q X k=1 Tn,s(x) s! ns f (s)(x) + o n−q (n → ∞) , (2) where Tn,s(x) = n X ν=0 (ν − nx)sn ν  xν(1 − x)n−ν (s = 0, 1, 2, . . .) .

In a very recent paper [19] R. Zhang presented a pointwise asymptotic ex-pansion for Bernstein polynomials on a triangle in terms of the two–dimensional generalization of Tn,s(x).

The drawback of Formula (2) and also of Zhang’s bivariate formula is that the terms Tn,s(x) contain the parameter n in a very implicit manner. The

Bernstein polynomials Bn possess a complete asymptotic expansion of the form

Bn(f ; x) ∼ f (x) + ∞

X

k=1

ck(f ; x) n−k (n → ∞), (3)

provided f admits derivatives of sufficiently high order at x ∈ [0, 1]. All coefficients ck(f ; x) are independent of n. Formula (3) means that, for all

m = 1, 2, . . ., there holds Bn(f ; x) = f (x) + m X k=1 ck(f ; x) n−k+ o(n−m) (n → ∞).

The aim of this paper is to derive a multi–dimensional version of Eq. (3) for multivariate Bernstein polynomials. All the coefficients of n−kthat only depend on f and x are calculated explicitly. It turns out that combinatorial numbers play an important role.

Let S ⊂ Rd

(d ∈ N) be the simplex defined by S =x ∈Rd | x

i≥ 0 (i = 1, . . . , d) , 1 − |x| ≥ 0 .

Throughout this paper, for x = (x1, . . . , xd) ∈Rd and k = (k1, . . . , kd) ∈Nd0, we

denote as usual |x| = d X i=1 xi, xk= d Y i=1 xki i , 4

(6)

|k| = d X i=1 ki, k! = d Y i=1 ki!

and, for k, m ∈Rd, we write k ≤ m iff there holds ki ≤ mi (i = 1, . . . , d) . For

n∈N0, k ∈Nd0, we put n k = n

|k|/k!, where xm= x (x − 1) · · · (x − m + 1), x0=

1 denotes the falling factorial.

For each n∈N0 and f : S → R, the multivariate Bernstein polynomial on

the simplex S is defined by Bn(f ; x) = X |k|≤n pn,k(x) f  k n  (x ∈S) , (4) where pn,k(x) = nkxk(1 − |x|) n−|k| and αx = (αx1, . . . , αxd), for α ∈ R.

It is obvious that in the special case d = 1 we obtain the well–known univari-ate Bernstein polynomials (1). The case d = 2 are the Bernstein polynomials on a triangle which were studied by Zhang [19].

We mention that analogous results for the Bernstein–Kantorovich operators, the Meyer–K¨onig and Zeller operators and the operators of Butzer, Bleimann and Hahn can be found in [4, 1, 3, 2, 5]. Similar results on a certain positive linear operator can be found in [10, 7].

2

Main Results

Let q∈N. For a fixed x = (x1, . . . , xd) ∈S, let K[q](x) be the class of all bounded

functions f : S → R such that f and all its partial derivatives of order ≤ q are continuous in x.

Theorem 1 (Complete asymptotic expansion for the operators Bn). Let q∈N,

x ∈S, and f ∈ K[2q](x) . The multivariate Bernstein polynomials on the simplex

S satisfy the asymptotic relation Bn(f ; x) = f (x) + q X k=1 n−k X s k<|s|≤2k 1 s!  ∂|s| ∂xs1 1 · · · ∂x sd d f (x)  X ν ν≤s a (k, s, ν) xs−ν+ o n−q (n → ∞) ,

where the coefficients a (k, s, ν) are given by

a (k, s, ν) = X r ν≤r≤s,|r|≥k (−1)|s|−|r|S (|r| − |ν| , |r| − k) d Y i=1 si ri  σ (ri, ri− νi)  . (5) 5

(7)

Remark 1 . If f ∈ K[∞](x) =T∞

q=1K

[q](x), the multivariate Bernstein

poly-nomials on the simplex S possess the complete asymptotic expansion

Bn(f ; x) ∼ f (x) + ∞ X k=1 ck(f ; x) n−k (n → ∞), where ck(f ; x) = X s k≤|s|≤2k 1 s!  |s| ∂xs1 1 · · · ∂x sd d f (x)  X ν ν≤s a (k, s, ν) xs−ν and a (k, s, ν) is as defined in (5) .

The quantities S (n, k) and σ (n, k) denote the Stirling numbers of the first and second kind, respectively. Recall that the Stirling numbers are defined by the equations xn= n X k=0 S (n, k) xk resp. xn= n X k=0 σ (n, k) xk (n = 0, 1, . . .) . (6) Furthermore we put S (n, k) = σ (n, k) = 0 if k > n.

Remark 2 . In the univariate case d = 1 we obtain the well–known formula

Bn(f ; x) = f (x) + q X k=1 n−k 2k X s=k 1 s!f (s)(x) s X ν=0 a (k, s, ν) xs−ν+ o n−q as n → ∞, where a (k, s, ν) = s X r=max{ν,k} (−1)s−rs r  S (r − ν, r − k) σ (r, r − ν) ,

provided f is bounded on [0, 1] and admits a derivative of order 2q at x ∈ [0, 1] (cf. [2, Lemma 1]).

In the special case q = 1 Theorem 1 reveals the following Voronovskaja–type result.

Corollary 2 (Voronovskaja–theorem for the operators Bn). Let x ∈S, and

f ∈ K[2](x) . The multivariate Bernstein polynomials on the simplex S satisfy

the asymptotic relation

lim n→∞n (Bn(f ; x) − f (x)) = 1 2   d X i=1 xi ∂2f (x) ∂x2 i − d X i,j=1 xixj ∂2f (x) ∂xi∂xj  . 6

(8)

The classical theorem of Voronovskaja [18] is obtained in the special case d = 1.

For the convenience of the reader we list the explicit expressions for the initial terms of the asymptotic expansion. In order to simplify the notation we restrict ourselves to the case d = 2.

Let (x, y) ∈S, and f ∈ K[6](x, y) . The bivariate Bernstein polynomials on

the simplex S ⊂ R2satisfy the asymptotic relation

Bnf = f + 1 2n(x(1 − x)fxx− 2xyfxy+ y (1 − y) fyy) + 1 6n2  x (1 − x) (1 − 2x) fxxx+ 3xy (2x − 1) fxxy

+3xy (2y − 1) fxyy+ y (1 − y) (1 − 2y) fyyy

 + 1 8n2   x2(1 − x)2fx4− 4x2y (1 − x) fxy3 +2xy (1 − x − y + 3xy) fx2y2 −4xy2(1 − y) f x3y+ y2(1 − y)2fy4   + 1 24n3   x (1 − x) 1 − 6x − 6x2 f x4− 4xy 1 − 6x − 6x2 fx3y −6xy (1 − 2x − 2y + 6xy) fx2y2 −4xy 1 − 6y − 6y2 f xy3+ y (1 − y) 1 − 6y − 6y2 fy4   + 1 12n3     x2(1 − x)2 (1 − 2x) fx5− 5x2y (1 − x) (1 − 2x) fx4y +xy 1 − 6x − y + 15xy + 5x2− 20x2y f x3y2

+xy 1 − x − 6y + 15xy + 5y2− 20xy2 f x2y3 −5xy2(1 − y) (1 − 2y) f xy4+ y2(1 − y) 2 (1 − 2y) fy5     + 1 48n3       x3(1 − x)3 fx6− 6x3y (1 − x)2fx5y +3x2y (1 − x) (1 − x − y + 5xy) f x4y2 −4x2y2(3 − 3x − 3y + 5xy) f x3y3 +3xy2(1 − y) (1 − x − y + 5xy) f x2y4 −6xy3(1 − y)2f xy5+ y3(1 − y) 3 fy6       +o n−3 (n → ∞) .

The corollary contains a result due to D. D. Stancu [17] (cf. [12, Eq. (5.87), p. 68]).

3

Auxiliary results

For each multi–index r = (r1, . . . , rd) ∈Nd0, we put er(x) = xr.

Lemma 3 . For all r = (r1, . . . , rd) ∈Nd0, the moments of the Bernstein

poly-nomials possess the representation

Bn(er; x) = |r| X k=0 n−k X ν ν≤r,|ν|≥|r|−k xνS (|ν| , |r| − k) d Y i=1 σ (ri, νi) (x ∈S) . 7

(9)

Proposition 4 . For all s = (s1, . . . , sd) ∈Nd0, the central moments of the

Bern-stein polynomials possess the representation

Bn (· − x) s ; x = |s| X k=0 n−kX ν ν≤s a (k, s, ν) xs−ν (x ∈S) , (7)

where the coefficients a (k, s, ν) are given by Eq. (5).

In order to show Theorem 1 we use a general approximation theorem for positive linear operators [6].

Lemma 5 . Let q∈N and x ∈S. Moreover, let Ln : K[2q](x) → C (S) be a

sequence of positive linear operators. If, for k = 2q and k = 2q + 2, Ln



k· − xkk2; x= On−b(k+1)/2c (n → ∞) , (8) then we have, for each f ∈ K[2q](x) ,

Ln(f ; x) = X s |s|≤2q 1 s!  |s|f (x) ∂xs1 1 · · · ∂x sd d  Ln (· − x) s ; x + o n−q (n → ∞) .

The special case d = 1 is due to Sikkema [15, Theorems 1 and 2]. Remark 3 . For r = 0, 1, 2, . . ., we have

kt − xk2r2 = d X i=1 (ti− xi) 2 !r = X |s|=r r s  (t − x)2s.

In order to apply Lemma 5, we have to check whether the Bernstein poly-nomials satisfy condition (8). By Remark 3, we have to show that

Ln



(· − x)2s; x= On−|s| (n → ∞) , for all s ∈Nd

0. In the following Lemma we shall prove a slightly more general

result.

Lemma 6 . For each x ∈S and all s ∈Nd0, the central moments of the Bernstein

polynomials satisfy the estimation Bn (· − x)

s

; x = On−b(|s|+1)/2c (n → ∞) .

For the proof we shall make use of the following well–known representations for the Stirling numbers of the first kind

S (n, n − k) = 2k X j=k n j  S2(j, j − k) (k = 0, 1, . . . n; n = 0, 1, 2, . . .) (9) 8

(10)

resp. second kind σ (n, n − k) = 2k X j=k n j  σ2(j, j − k) (k = 0, 1, . . . n; n = 0, 1, 2, . . .) (10)

(see [9, p. 227], cf. [11, pp. 149–153]). The quantities S2(n, k) , σ2(n, k) denote

the associated Stirling numbers of the first resp. second kind. Recall that the associated Stirling numbers are defined by their double generating function

X n,k≥0 S2(n, k) tnuk/n! = e−tu (1 + t) u resp. X n,k≥0 σ2(n, k) tnuk/n! = exp u et− 1 − t . (see [9, p. 295 and p. 222]).

References

[1] U. Abel, The moments for the Meyer–K¨onig and Zeller operators, J. Approx. Theory 82 (1995), 352–361.

[2] U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Math., (N.S.), 7(1) (1996), 1–9.

[3] U. Abel, The complete asymptotic expansion for Meyer–K¨onig and Zeller operators, J. Math. Anal. Appl. 208 (1997), 109–119.

[4] U. Abel, Asymptotic approximation with Kantorovich polynomials, Approx. Theory and Appl. 14:3 (1998), 106–116.

[5] U. Abel, On the asymptotic approximation with bivariate operators of Bleimann, Butzer and Hahn, J. Approx. Theory 97 (1999), 181–198. [6] U. Abel, On the asymptotic approximation with bivariate Meyer–K¨onig

and Zeller operators, submitted.

[7] U. Abel and M. Ivan, Asymptotic approximation with a sequence of positive linear operators, to appear in J. Comp. Math. Appl.

[8] S. N. Bernstein, Compl´ement `a l’article de E. Voronowskaja, Dokl. Akad. Nauk SSSR 4 (1932), 86–92.

[9] L. Comtet, “Advanced Combinatorics”, Reidel Publishing Comp., Dor-drecht, 1974.

[10] M. Ivan and I. Ra¸sa, A sequence of positive linear operators, Rev. Anal. Num´er. Th´eor. Approx. 24(1-2) (1995), 159–164.

(11)

[11] C. Jordan, “Calculus of finite differences”, Chelsea, New York, 1965. [12] G. Meinardus, “Approximation von Funktionen und ihre numerische

Be-handlung”, Springer, Berlin, 1964.

[13] J. Riordan, “Combinatorial identities”, Wiley, New York, 1968.

[14] P. C. Sikkema, On some linear positive operators, Indag. Math. 32 (1970), 327–337.

[15] P. C. Sikkema, On the asymptotic approximation with operators of Meyer– K¨onig and Zeller, Indag. Math. 32 (1970), 428–440.

[16] D. D. Stancu, Some Bernstein polynomials in two variables and their ap-plications, Dokl. Akad. Nauk. SSSR 134(1) (1960), 48–51.

[17] D. D. Stancu, Some Bernstein polynomials in two variables and their ap-plications, Soviet. Math. 1 (1960), 1025–1028.

[18] E. V. Voronovskaja, Determination de la forme asymptotique d’approximation des functions par les polynomes de M. Bernstein, Dokl. Akad. Nauk. SSSR (A) (1932), 79–85.

[19] R. Zhang, An asymptotic expansion formula for Bernstein polynomials on a triangle, Approx. Theory and Appl. 14:1 (1998), 49–56.

Referenzen

ÄHNLICHE DOKUMENTE

Abel, The complete asymptotic expansion for Meyer–K¨ onig and Zeller operators, J.. Abel, Asymptotic approximation with Kantorovich polynomials,

The first discriminant analysis started with the following eight predictors which - by management experience and by rough inspection of the sample data - promised to be a good base

of a strategy is a measure how frequently the strategy will tell the player to buy the second envelope. Let us call a player’s strategy S performance-essential if its order

1991 Mathematics Subject Classification: 41A36, 41A25, 41A28, 41A60 Key words: Approximation by positive operators, rate of convergence, degree of approximation,

Viele dieser Beweise sind jedoch nach der pers¨onlichen Meinung des Autors nicht leicht verst¨andlich, insbesondere f¨ur Studienanf¨anger.. In diesem Auf- satz gibt der Autor

His research interests include combinatorics, number theory, commutative algebra, ordinary differential equations and mathematics education.. Teimoori studied mechanical engineering

In addition we show that each of the points LOMO on the Euler line is itself a 4-fold point of concurrence of lines joining other centers of the triangle ABC.. 2 The Euler and

First, we give out the most natural setting of this chain on a d-dimensional simplex and consider its asymptotic behavior by using techniques from random iterated functions theory