• Keine Ergebnisse gefunden

What role do plant-soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?

N/A
N/A
Protected

Academic year: 2022

Aktie "What role do plant-soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

What role do plant–soil interactions play in the habitat

suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?

Janosch F. Sedlacek

a,∗

, Oliver Bossdorf

b

, Andrés J. Cortés

c

, Julia A. Wheeler

d,e

, Mark van Kleunen

a

aEcology,DepartmentofBiology,UniversityofKonstanz,Universitätsstrasse10,78457Konstanz,Germany

bPlantEvolutionaryEcology,UniversityofTübingen,AufderMorgenstelle1,72076Tübingen,Germany

cUnitofPlantEcologyandEvolution,DepartmentofEcologyandGenetics,EvolutionaryBiologyCenter,Uppsala University,Norbyvägen18D,75236Uppsala,Sweden

dWSLInstituteforSnowandAvalancheResearchSLF,Flüelastrasse11,7260Davos,Switzerland

eInstituteofBotany,UniversityofBasel,Schönbeinstrasse6,4056Basel,Switzerland

Abstract

Mountainplantsmayrespondtowarmingclimatesbymigratingalongaltitudinalgradientsor,becauseclimaticconditions onmountainslopescanbelocallyveryheterogeneous,bymigratingtodifferentmicrohabitatsatthesamealtitude.However, innewenvironments, plantsmayalsoencounter novelsoilmicrobial communities,whichmightaffecttheir establishment success.Thus,bioticinteractionscouldbeakeyfactorinplantresponsestoclimatechange.Here,weinvestigatedtheroleof plant–soilfeedbackfor theestablishmentsuccessof thealpinedwarfshrubSalixherbaceaL.acrossaltitudesandlate-and earlysnowmeltmicrohabitats.WecollectedS.herbaceaseedsandsoilfromnineplotsonthreemountain-slopetransectsnear Davos,Switzerland,andwetransplantedseedsandseedlingstosubstrateinoculatedwithsoilfromthesameplotorwithsoils fromdifferent microhabitats,altitudesandmountainsundergreenhouse conditions.Wefoundthat,on average,seeds from higheraltitudes(2400–2700m)andlate-exposedsnowbedsgerminatedbetterthanseedsfromloweraltitudes(2200–2300m) andearly-exposedridges.However,despitethesedifferencesingermination,growthwasgenerallyhigherforplantsfromlow altitudes,andtherewerenoindicationsforaanhome-soiladvantagewithinthecurrentrangeof S.herbacea.Interestingly, seedlingsgrowingon soilfrom abovethe currentaltitudinaldistributionofS. herbaceagrewonaverage lesswellthanon theirownsoil.Thus,althoughthelackofahome-soiladvantageinthecurrenthabitatmightbebeneficialforS.herbaceain achangingenvironment,migrationtohabitatsbeyondthecurrentaltitudinalrangemightbelimited,probablyduetomissing positivesoil-feedback.

Zusammenfassung

PflanzeninGebirgenkönnensichaneinwämeresKlimaanpassen,indemsieentwederinandereHöhenlagen,oder,dadie klimatischenBedingungenanGebirgshängenlokalsehrheterogenseinkönnen,inunterschiedlicheMikrohabitateaufgleicher Höhewandern.AnneuenStandortentreffenPflanzenauchneuartigeGesellschaftenvonBodenorganismenan,welchederen

Correspondingauthor.Tel.:+497531884305;fax:+497531883430.

E-mailaddress:janosch.sedlacek@uni-konstanz.de(J.F.Sedlacek).

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-286129

https://dx.doi.org/10.1016/j.baae.2014.05.006

(2)

Etablierungbeeinflussenkönnen.BiotischeInteraktionenstellendeshalbeinenmöglicherSchlüsselfaktorbeiderAnpassung vonPflanzenandenKlimawandelddar.InunsereremExperimentuntersuchenwir,welcheRolledasPflanze-Boden-Feedback fürdieEtablierungdesAlpinenZwergstrauchsSalixherbaceaL.entlangeinesHöhengradientenundzwischenMikrohabitaten mit früher und später Schneeschmelze spielt. Wir haben Samenvon S. herbacea und Bodenmaterial an neun Standorten gesammelt,dieaufTransekteandreiBergeninderNähevonDavos,Schweiz,verteiltwaren.UnterGewächshausbedingungen habenwirdieSamenundKeimlingeinSubstratverpflanzt,dasmitdemBodendesselbenStandortsodermitdemBodenvon unterschiedlichenMikrohabitaten,HöhenstufenundBergeninokuliertwurde.UnsereErgebnissezeigen,dassSamenvonhohen Standorten(2400-2700m)undvonspätausaperndenSchneetälchendurchschnittlichbesserkeimtenalsSamenvonniedrigen Standorten(2200-2300m)undfrühausaperndenKämmen.TrotzdieserUnterschiedeinderKeimung,wardasWachstumvon PflanzenvonniedrigenStandortenimAllgemeinenstärker.InnerhalbdesheutigenVerbreitungsgebietsvonS.herbaceakonnten wirkeineHinweise darauffinden,dassPflanzen einenVorteilhatten,wennsieaufSubstratvomeigenenStandortwuchsen.

InteressanterweisewuchsenKeimlingeaufSubstratvonüberhalbdesheutigenVerbreitungsgebietes,schlechteralsaufSubstrat vomeigenenStandort.ObwohldasFehleneinesHeim-Boden-VorteilsfürS.herbaceauntersichänderndenUmweltbedingungen möglicherweisevonVorteilist,könntedieMigrationzuStandortenüberhalbdesheutigenVerbreitungsgebietes,aufgrundvon fehlendempositivemPflanze-Boden-Feedback,eingeschränktsein.

Keywords:Bioticinteraction;Rangelimit;Elevation;Geneticdifferentiation;Microhabitat;Microtopography;Migration;Snowmeltgradient;

Soilfeedback

Introduction

Over the last100 years, the global surface temperature has increased by 0.7C (Stocker, Qin, Platner, Tignor, &

Allen,2013)withthemostpronouncedtemperatureincreases inthe arctic andalpineregionsby 2C (EEA,2009).For these regions, climate models predict further increases in temperatures and precipitation, in the form of rain rather thansnow,resultinginfewerdayswithsnowcover,partic- ularlyinspring(Beniston,Keller,Koffi,&Goyette,2003).

Asaresult,36–55%ofEuropeanalpineplantspecieshave beenpredictedtolosemorethan80%oftheirsuitablehabi- tat by 2070–2100 (Engler, Randin, Thuiller, Dullinger, &

Zimmermann, 2011). However there are many uncertain- tiessurrounding theseprojections, sincemost of them are basedonobservedcorrelationsbetweenabioticenvironmen- tal factorsandspecies occurrences, andignore potentially importantmechanismsofplantresponsetoclimatechange (Thuiller,Albert,Araújo,Berry,&Cabeza,2008).

Therearemanystudiesshowingclearevidencethatspecies arealreadymigratingalongaltitudinaland/orlatitudinalgra- dientsasaconsequenceofclimatechange(reviewedinChen, Hill, Ohlemüller, Roy,& Thomas, 2011). For example, a recentstudybyPauli,Gottfried,andDullinger(2012)showed that,becauseofupwardmigration,speciesrichnessofEuro- pean mountain summits has increased by 3.9 species on average between2001and2008.Climatic andother envi- ronmentalconditions, however,donot onlychangeacross latitudeandaltitude,butalsoacross microhabitats.Thisis especiallytrueinmountainecosystems,wheremicrotopog- raphyisextremelyheterogenous,evenoverdistancesofafew metres,resultinginsmall-scalevariationintemperaturesand snowmelttiming(Körner,2003;Scherrer&Körner,2011).

Thissmall-scalevariationcouldexplainwhyobservedele- vationalshiftsincontrasttolatitudinalshiftslagbehindthe expectedshiftsofplantspecies(Chenetal.,2011).Therefore, notonlyaltitudinalbutalsomicrohabitatshiftscouldprovide opportunitiesforalpineplantspeciestoescapewarmingcli- mates(Scherrer&Körner,2011).

Theability of aplant tosuccessfullyestablish inanew habitatdependson how it dealswithbothclimatic condi- tionsandbioticfactors.Ahome-siteadvantageofplantshas beenreportedforvariousabioticfactors,e.g.alongaltitudinal gradientswithdifferentclimaticconditions(Byars,Papst,&

Hoffmann,2007;Gonzalo-Turpin&Hazard,2009)orhabi- tatswithdifferentsoilconditions(Sambatti&Rice,2006).

However,home-siteadvantageswithrespecttobioticinter- actionshave rarelybeenstudied (butsee: Macel,Lawson, Mortimer, Smilauerova, Bischoff, et al., 2007; Grassein, Lavorel, & Till-Bottraud, 2014). Biotic factors that influ- encecolonizationsuccessinnewhabitatsincludeinteractions with pollinators, herbivores, inter- and intraspecific com- petitors,pathogensandsoilmicrobes(Tylianakis,Didham, Bascompte,&Wardle,2008;VanderPutten,Macel,&Visser, 2010).Specifically,manysoilmicrobeshavenegativeeffects onplantperformanceandactaspathogens,butothershave positiveeffectsonplants,e.g.byimprovingnutrientaccessi- bilityanduptakefortheplant.Ahome-siteadvantagecould emerge either because plants adapt to the local microbes or because plants select the most beneficial microbes. A home-siteadvantage maybe disruptedwhen plantspecies shifttheiraltitudinalrange,migratetoothermicrohabitatsor whensoilmicrobialcommunitiesarealteredduetoclimate change(VanGrunsven,vanDerPutten,Bezemer,Tamis,&

Berendse,2007;VanderPutten,Bardgett,Bever,Bezemer,

&Casper,2013).Therefore,inordertobeable topredict

(3)

howplantsmayrespondtoclimatechange,experimentstest- ingfortheeffectsofsoil–microbialinteractionsareneeded (Gellesch,Hein,Jaeschke,Beierkuhnlein,&Jentsch,2013;

Tylianakis,Didham,Bascompte,&Wardle,2008;Vander Putten,Bardgett,Bever,Bezemer,&Casper,2013).

The arctic-alpine dwarf shrub Salix herbacea typically occurs in late-snowmelt microhabitats but also on wind- exposedmountainridgesacrossanaltitudinalrange,which in the Alps ranges from 1800 to 2800m a.s.l. (Beerling, 1998).Acrosssuchaltitudesandmicrohabitats,soilmicro- bialcommunitiesinmountainscandifferconsiderably(Väre, Vestberg, & Ohtonen, 1997; Yao, Vik, Brysting, Carlsen,

&Halvorsen,2013).Salixherbaceais stronglyassociated with soil microorganisms such as ectomycorrhizal fungi (Graf & Brunner, 1996). For example, Mühlmann and Peintner(2008)found93%mycorrhization of S.herbacea plants with high spatial heterogeneity across their study plots on a glacier forefield in the Austrian Alps. Both positiveand negativeplant–soil microbe associations may be altered by climate change. In order to make predic- tions about the potential of S. herbacea to migrate under climate change, we must first examine to what degree different microhabitats or altitudes affect population dif- ferentiation. We must also understand the importance of feedbackwithsoilmicrobial communitiesatdifferent alti- tudesandmicrohabitatswithinthespeciescurrentrangeand beyonditscurrentrangelimit,anddeterminetheeffectsof changingmicrobialcommunitiesonplantestablishmentand growth.

Inthisstudy,weinvestigatedtheeffectofsoilbiotaonthe establishmentsuccessofthealpinedwarfshrubS.herbacea across altitudes andmicrohabitats. Weassessed the effect of local and non-local soilinoculates on germination and growthofS.herbaceaingreenhouseexperimentsandasked thefollowingquestions:

1) Aretheredifferencesinseedgerminationandgrowthof S.herbaceaamongdifferentmicrohabitatsandaltitudes oforigin?

2) DoesS.herbaceaexhibitahome-soiladvantagedueto feedbackwithsoilmicrobesatthescaleofmicrohabitats, altitudesormountainswithinitscurrentrange?

3) CanS.herbaceapotentiallyestablishinsoilsfromhigher altitudes,whereitdoesnotcurrentlyoccur?

Materials and methods

Studyspecies

Salix herbacea is a clonal, dioecious, long-lived dwarf shrubwithanalpine-arcticdistribution.Itoccursinthenorth- ernandalpineregions ofEurope andNorthAmerica, and inwestern Siberia andthe Arctic region(Beerling, 1998).

Despitebeingatypicalsnowbedspecies,S.herbaceaisalso commononwind-exposedmountainridgesandscreeswith

littleprotectionbysnowcover(Beerling,1998).Itisadapted toharshclimaticconditionswithwinterminimumtempera- turesdownto−20Candashortgrowingperiodoftwoto threemonths(Beerling,1998).Salixherbaceaproducesan extensiveramifyingsystemwithbranchedrhizomesforming flat mats (Beerling, 1998). Theaerial branches are woody andusuallyreach2–5cmabovethegroundsurface.Catkins appear with the leavesin June/July. Seed productionmay amountto>4000wind-dispersedseeds/m2(Nyléhn,Elven,

& Nordal, 2000). Average clone size is estimated to be 1m2 (Reisch,Schurm, &Poschlod,2007).Salixherbacea usually occurs on nutrient-poor,predominantly acidic, but alsocalcareoussoils(Beerling,1998).Itisassociated with at least 260 species of arctic-alpine Basidiomycete fungi, including pathogenicrustfungi(Graf,1994;Pei,Royle,&

Hunter, 1996). Graf and Brunner (1996) found up to 33 ectomycorrhizaspeciesassociated withS.herbaceawithin a 50m2 areainthe SwissAlps, closetooneof our study sites.

Seedandsoilsampling

WecollectedS.herbaceaseedsandsoilfromatotalof12 study plotsonthreemountain-slopetransects(Jakobshorn, WannengratandSchwarzhorn)nearDavos,Switzerland.The plotswerec.100m2,andresembledatypicallate-exposed snowbedmicrohabitattypeoratypicalearly-exposedridge microhabitattype.Snowmeltinridgemicrohabitatswason average(±SE)39(±8)daysearlierthaninsnowbedmicro- habitats in2011(t5=−4.18,p<0.008)and11±(11)days earlier in2012 (t5=−0.90 p: 0.409; see Appendix: Table A.1).Eachtransectconsistedofonepairofcontrastingmicro- habitattypesintheupperpartofthealtitudinaldistribution (2400–2700m)andonemicrohabitatpairinthelowerpart ofthealtitudinaldistribution(2200–2300m)ofS.herbacea.

The mean altitudinal difference betweenlower and upper plots was 299±(29)m (for study plot characteristics see Appendix:TableA.1).

Withineachplot,wecollectedabulksampleofseedsfrom 100catkins,whichwere,ifpossible,>50cmapartfromeach other.Closedcapsuleswerecollectedbetween17Julyand 28August2012,wheninfructescencesofnearbyS.herbacea individualsstartedtoopen.Wefirstkepttheinfructescences inpaperbagsforfivedaysatroomtemperatureuntilcapsules dehisced andseedswerereleased,andthenstoredthemat -20C.Within twolow snowbedplots(on theJakobshorn and Wannengrattransect) andonehigh ridgeplot (on the Schwarzhorntransect),veryfewseedswerereleasedfromthe capsules.Weexcludedthesethreeplotsfromtheexperiment, becauseweassumedtheseedstobeimmature.

Between September3rd and9th 2012,we excavated1L ofsoiltoadepthof20cmfromeachoffivedifferentloca- tionswithineachplot(5Lperplot).Thesoilfromwithinthe sameplotwasmixedandstoredat5Cuntilthestartofthe experiment.

(4)

Germination

Inagrowthroom,wesowedS.herbaceaseedsfromthe ninedifferentoriginswithmatureseedsinPetridishesfilled with agar and inoculated with different soil extracts. The inoculawerepreparedbystirring100mlofsoilin100mlof deionizedwater,andfilteringitusinga200␮msievetoobtain afiltrate of bacteria, fungiandothersmall soil organisms (Parepa,Schaffner,&Bossdorf,2013).Weusedthefollow- ingsoilinoculumtreatments:soilmicrobialinoculafrom(1) the same plot (home treatment), (2) the plot in the other microhabitattypeatthe samealtitudeinthesametransect (microhabitattreatment),(3)theplotinthesamemicrohabi- tattypebutattheotheraltitudeinthesametransect(altitude treatment),and(4)aplotinthesamemicrohabitattypeand altitude,but ina different transect (transect treatment). In addition,(5)seedsfromallfivehighaltitudeplotswerealso sown with inocula from soil collected at Schwarzhorn at analtitudeofc.3100m,whereS.herbaceadoesnotoccur (beyond-rangetreatment;Appendix:TableA.2).

Foreachofthesoiltreatments(fourforthelow-andfivefor thehigh-altitudeplots)andseedorigins,wesowed10seeds into each of five Petri dishes (diameter: 5cm), filledwith agar(1%agar,½Murashige&Skoogmedium,pH6).After wateringeachseedwith10␮lofinoculum,Petridisheswere sealed withparafilm,andtransferredtoaclimatechamber witha20Cday(14h)anda10Cnight(10h)cycle.Every twoorthreedaysduringthreeweeks,allseedswerechecked forgermination(appearanceofthecotyledons).

Growth

Afterthreeweeks,wetransplantedthreeseedlingsperPetri dishintoseparate88mlpotsfilledwitha1:1:1mixtureof collectedsoil, sterilevermiculiteandsterilesand.Thesoil treatmentsincludedthehome,thealtitude,themicrohabitat andthebeyond-rangetreatments.Weexcludedthetransect treatment,because wehadnoseedlingsavailablefromthe lowsnowbedplotsofallthreetransects.Analysisofinorganic soilNconcentrationsusing2Mpotassiumchlorideshowed thatsoilNconcentrationsofthecollectedsoilsrangedfrom 4 to78␮g/g, withno clear differences betweenaltitudes, microhabitatsortransects.Toavoidnutrientlimitationinany ofthetreatments(VanGrunsven,vanDerPutten,Bezemer, Tamis,&Berendse,2007),weadded1.7gOsmocoteExact Standard3-4Mslow-releasefertilizerto1lofsoilmixture.

Forasterilecontrol soil mixture,this resultedin asoilN concentration of 826␮g/g, sosoilNconcentrations inour potswereabout10timeshigherthanthemostnutrient-rich collected soil. Thepots were placedina greenhousewith 20Cday(15h)and18Cnight(9h)temperatures.

Relativeleaf-areagrowthratewascalculatedastherateof leafareaincreasebetweenday35andday95oftheexperi- ment.Weestimatedleafareabymultiplyingaveragedlength andwidthofthetwolargestleavesandmultiplieditwiththe

totalnumberofleavestogainanestimateoftotalleafarea.

After95days, weharvestedall theplants. Wewashedthe rootsfreeof soil,anddeterminedabove-andbelowground biomassafterdryingfor72hat70C.

Dataanalysis

AllstatisticalanalysesweredoneusingRversion2.15.2(R CoreTeam,2013).Toanalyzetheproportionofgerminated seeds,weused ageneralizedlinearmixedmodel(GLMM) withabinomialerrorstructureasimplementedintheglmer functionof thelme4 package(Bates, Maechler,Bolker,&

Walker, 2013). Total leaf area, total biomass and growth ratesofseedlingswereanalyzedwithlinearmixedmodelsas implementedinthelmerfunctionofthelme4package.

For each response variable, the models included alti- tudeofseedorigin(highversuslow),microhabitatof seed origin(ridgeandsnowbed),soiltreatments(home,microhab- itat,altitude,transectandbeyond-rangeorasubsetthereof) andtheir interactions as fixedeffects. Plot of seed origin nestedwithintransect,andplotofsoiloriginnestedwithin transectwereincludedasrandomeffectstoaccountfornon- independenceofreplicatesfromthesameplotandthesame transect.WecorrectedforoverdispersionintheGLMMby addingan observation-levelrandomeffect(Zuur, Hilbe,&

Elena, 2013). We used maximum-likelihood-ratio tests to determinetheoverallsignificanceofmaineffectsandinterac- tions(Zuur,Ieno,Walker,Saveliev,&Smith,2009).Wealso calculatedmarginalR2(proportionofvarianceexplainedby thefixedeffectonly)andconditionalR2(proportionofvari- anceexplainedbyboththe fixedandrandomfactors) as a measureforagoodness-of-fitforeachmodel(Nakagawa&

Schielzeth,2013).Sincethe“beyond-range”treatment(soil inoculumfrom3100m)wasonlyusedwithseedsfromhigh- altitude plots, we analyzed its effect in a separate model withoutseedsfromlow-altitudeplots.

Inadditiontotheanalysesdescribedabove,wedidanal- ysestotestmorespecificallyforahome-soiladvantageby usingthe “homevs.away”and“localvs.foreign”criteria (Kawecki& Ebert, 2004).A significant “home vs.away”

contrastindicatesthatseedsorseedlingshaveahigherperfor- manceontheirhomesoilsthanonothersoils,andasignificant

“localvs.foreign”contrastindicatesthatoneachsoilorigin thelocalseedsorseedlingsoutperformtheforeignseedsor seedlings.Ifinthemainanalysisdescribedabove,thesoil- treatmenteffectwassignificant,wecreatedcontrastsforthe

“homevs.away”testbycomparisonsofthe“home” treat- ment against each of the “away” treatments (i.e. altitude, microhabitat, transect). If the interaction of soil treatment withmicrohabitatoforigin,altitudeoforiginormicrohabi- tatoforiginbyaltitudeoforiginwassignificant,wetested thesecontrasts separatelyfor each ofthe seedorigins. For the“localvs.foreign”test,weusedadifferentfixedmodel, whichincluded altitudeof soilorigin, microhabitatof soil originandseed-origintreatment andtheirinteractions. We

(5)

High ridge High snowbed

~

F9 ~

0.75

····-~81·11:··· ~~ ·a .... -

-~-... ...

-- r~ .. ffi:

-- - -- -r:q -

0.50

~ c 0.25

8. ~0.00

c 0

~ c

-m

L....L....L.... -

Low ridge

-

Low snowbed

L....L....L.... Transect

. Jakobshom Schwarzhorn Wannengrat

-~ 0.75

(!)

FEi ~ ~

- ~- -n--l'foo ~ m

...

...

...

...

.

... 000 HOOOOOHltOOOOO

~J~ Jrr

-

-

- -

-- ----

-

---

- -

0.50 0.25 0.00

.0 co CD ts .0 co CD ts

CD .c. "0 CD CD .c. "0 CD

e

(/)

e

(/)

E 2 c E 2 c

0 0

~ ~ 0 0 ~ ~

I ~ I- I ~ I-

Soil treatment

Fig. 1. Germination rates (means and standard errors) of Salix herbacea seeds from different altitudes, microhabitats and mountain transects when sown on inoculates of their own soil (Home), on inoculate of the other microhabitat at the same altitude (Microhab ), on inoculate of the same microhabitat at the other altitude (Altitude) or the same altitude at a different mountain transect (Transect). For easier interpretation of significant differences due to seed origin, we indicated the group means with horizontal lines: dotted for high vs. low altitude of seed origin, dashed for high ridge, high snowbed vs. low ridge, low snowbed seed origin, respectively.

included the same random effects as described for the main analysis. If seed-origin treatment was significant, we created contrasts of the "local" treatment against the "foreign" treat- ments (i.e. altitude of seed origin, microhabitat of seed origin, transect of seed origin). If the interaction of seed-origin treat- ment with soil origin (i.e. microhabitat of soil origin, altitude of soil origin or microhabitat of soil origin by altitude of soil origin) was significant, we did these contrasts separately for each of the soil origins. All contrasts were made using post hoc tests with adjusted p-values as implemented in the glht function of the multcomp package (Hothorn, Bretz, &

Westfall, 2008).

Results

Differences in germination and growth between seed origins

Across all transects and soil treatments, S. herbacea seeds germinated better when they originated from high alti- tudes (60.0% ± SE 2.7%) than when they originated from low altitudes (39.2% ± 3.3%; Fig. 1). There was a sig- nificant interaction between altitude and microhabitat of origin: the germination rate of seeds from high-altitude ridges (53.1% ± 4.0%) was lower compared to seeds from high- altitude snow beds (65.0% ± 3.5%), whereas germination rate

of seeds from low-altitude ridges (43.4% ± 3.8%) was higher compared to low-altitude snowbeds (30.3% ± 6.2%; Fig. 1).

Note, however, that the comparisons with the low altitude snowbed are based on the Schwarzhorn transect only.

Growth rates of seedlings did not differ significantly among the seed origins (Table 1). However, at the end of the greenhouse experiment, total leaf area and biomass were greater for seedlings originating from low altitudes than for those originating from high altitudes (3457 ± 317 mm2 versus 2380 ± 245 mm2 for total leaf area; 0.109 ± O.Ql1 g versus 0.077 ±0.008 g for total biomass; Fig. 2 and Table 1).

Effects of soil inocula on germination and growth within the current range

The soil treatments significantly affected seed germination (Table 1). On average, germination was lowest in the altitude treatment(45.2% ± 4.5%), followed by the transect treatment (53.3% ± 4.5%) and the home treatment (56.3% ± 3.7%), and was highest in the microhabitat (60.5% ±4.3%) treat- ment. There was no evidence of a general home vs. away effect of soil inocula. Plants germinated equally well on their home soil inoculum as on inocula from other microhabi- tats (z

=

1.091, p

=

0.602), altitudes (z

=

- 1.939, p

=

0.144) or transects (z

=

-0.008, p

=

1.CXX>). This was consistent across seed origins, as there were also no significant seed

(6)

Table 1. The effects of altitude and habitat of seed origin, different soil treatments, and their interactions, on the germination and growth of Salix herbacea. The factor "soil treatment" included soil inoculates from the same origin as the seeds, from different microhabitats at the same altitude, from the same microhabitat at different altitudes, and (only for germination) from the same microhabitat at a different mountain transect (see Materials and methods for details).

Source of variation Gennination rate Growth rate Total leaf area Total biomass

df Chi2 p-value

Seed origin altitude 7.80 0.005

Seed origin microhabitat 1 O.oi 0.999

Soil treatment 3 8.26 0.040

Seed origin altitude: Seed origin 6.26 0.012 microhabitat

Seed origin altitude: Treatment 3 4.08 0.252 Seed origin microhabitat: Treatment 3 6.02 0.110 Seed orig. altitude: Seed orig. 3 5.13 0.162

microhabitat: Treat

Model fit: marginal 1(2; conditional R2 0.697; 0.779

ongtn by soil treatment interactions. The model used for testing the local vs. a significant interaction between seed origin treatment and soil altitude (df

=

3, LRT

=

10.327, p

=

0.015; Appendix: Table A.3). On inocula from high alti- tudes, local seeds germinated better than foreign seeds (local:

61.3% ±5.0%, foreign: 41.2± 6.6%;

z=

-5.343,p<0.001), and on inocula from low altitudes, local seeds germinated equally well as foreign seeds (local: 50.0% ± 5.6%, foreign:

0.25 High ridge

0,20 - ,

0.15 0,10

df

1 2

2 2 2

Chi2 p-value df Chi2 p-value df Chi2 p-value

0.24 0.625 6.30 0.012 5.68 0.017

0.77 0.379 1 1.18 0.278 1 1.89 0.168 2.02 0.364 2 0.15 0.927 2 0.83 0.660

2.93 0.087 2.45 0.118 1.17 0.277

4.06 0.131 2 3.13 0.209 2 2.24 0.325 0.80 0.671 2 6.78 0.034 2 6.60 0.036 2.92 0.233 2 3.00 0.223 2 4.58 0.101 0.052; 0.057 0.171; 0.342 0.188; 0.341

48.4 ± 6.3%). This effect was additionally dependent on the microhabitat, as indicated by a significant three-way interac- tion between the seed origin treatment, soil altitude and soil microhabitat (df = 3, LRT =I 0.504, p = 0.014).

There were no consistent overall effects of soil treat- ment on growth rate, total leaf area or total biomass of plants, but soil treatment effects depended on the micro- habitat of seed origin for total leaf area and biomass

High snowbed

0.05 c; -;;;o.oo

-~-- .... (6···

F1F9

···~·~·]fg· ~

Transect . Jakobshorn

Schwarzhom Wannengrat

"'

"' g

0.25

iii 0,20 0.15 0.10 0.05

o.oo

Low ridge Lowsnowbed

-,

--

... ... ...

Jl ... rn ...

~.f F

.0 .0

"'

Gl

"'

.,

.s:; "0 Gl .s:;

E

e

~

E

e

0 0 0 0

J: ~ J: ~

Soil treatment

- ,

...

Gl

"0

~

Fig. 2. Total biomass (means and standard errors) of Salix herbacea seedlings grown from seeds from different altitudes, microhabitats or mountain transects in substrate inoculated with soil from their origin (Home), with soil from the other microhabitat at the same altitude (Microhab ), or with soil from the same microhabitat at the other altitude (Altitude). For easier interpretation of significant differences due to the altitude of seed origin, we indicated the group means of high vs. low altitude with dotted horizontal lines.

(7)

Fig.3. Germination(a),growthrate(b),leafarea(c)andbiomass(d)ofSalixherbaceaseedsandseedlings,respectively,onsubstrate inoculatedwithsoilfrombeyondtheircurrentaltitudinalrange(3100m)comparedtosubstrateinoculatedwiththeirhomesoil.Dashedand dottedlinesindicategroupmeansofseedlinggrowthratesonhomeandbeyondrangesoil,respectively.

(significanttreatmentxseedoriginmicrohabitatinteractions in Table 1). However, there were no significant home vs.

awaycontrastsforthisinteraction.Themodelusedfortest- ingthelocalvs.foreigncontrastrevealedthattheeffectsof seedorigintreatment depended onthe altitudeof soilori- gin for totalleaf area andbiomass (total leaf area: df=2, LRT=7.931,p=0.018;totalbiomass: df=2,LRT=7.289, p=0.026).Onsoilfromlowaltitudes,localplantshadmore leafareaandbiomasscomparedtoforeign(i.e.high-altitude) plants (total leaf area: local: 2580±354mm2, foreign:

1263±239mm2,z=2.751, p=0.022;totalbiomass:local:

75.77±11.12mg, foreign: 43.24±8.15mg, z=−2.701, p=0.027),whereasonsoilfromhighaltitudesthebiomass of local plants was smaller than that of foreign (i.e. low- altitude) plants (total biomass: local: 99.87±13.66mg, foreign:132.59±23.40mg,z=2.374,p=0.066).

Effectsofsoilinoculafromabovethecurrent altitudinalrangelimit

There was no evidence that soil biota from above the current altitudinal limit of S. herbacea influenced seed germination(soiltreatment:df=1,LRT=2.397,p=0.121, marginalR2=0.073,conditionalR2=0.127;Fig.3a),orthe totalleaf area(df=1, LRT=2.178, p=0.139)andbiomass (df=1,LRT=0.623,p=0.429)ofS.herbaceaplants.How- ever,plantshadahighergrowthratewhengrowingontheir own soils compared to soils collected at 3100m (df=1,

LRT=4.432,p=0.035;Fig.3b).However,thishighergrowth ratedidnotresultinahigherfinalbiomassattheendofthe experiment(Fig.3candd).

Discussion

We found differences in germination rate and growth amongS.herbaceafromdifferentaltitudesandmicrohabi- tats.Althoughthesoilinoculafromdifferentsitessometimes had significant effects on germination and growth, there was overallno consistentevidencefor ahome-soiladvan- tagewithinthecurrentrangeofS.herbacea.However,plant growthratewassignificantlyreducedonsoilsfrombeyond thecurrentaltitudinalrange,whichindicatesthatplant-soil feedbacksmaylimittheestablishmentofS.herbaceabeyond itscurrentrange.

Altitudeandmicrohabitatofseedorigin influencegerminationandgrowth

Wefoundthatseedsfromhighaltitudeshadhigherger- mination ratesthanseedsfrom lowaltitudes,regardless of the soilinoculum.Apossibleexplanationforthisapparent differenceinseedqualityinourstudyisthatplantsfromlow andhighaltitudesmaydifferindormancybreakingrequire- ments.Severalotherstudiesonalpinespeciesfoundsimilar

(8)

results,andsuggestedthatplantsathighaltitudesdelayger- mination to late spring with high temperatures and lower probabilitiesoflateseasonfrosts(Cavieres&Arroyo,2000).

Therefore,itispossiblethattherelativelyhightemperatures inourclimatechamberconferredanadvantagetotheseeds fromhighaltitudes.Qualityofseedsfromlowaltitudescould alsobereducedduetoincreasedexposuretospringfrosts.

However, thisis probably not the caseinour experiment, becauseseedproductionhappenslaterintheyearwhenfrost eventsinourstudy area arevery unlikely(Wheeleretal., 2014).

Analtitudinaleffectofseedsourcewasalsoapparentin plantgrowthtraits,astotalleafareaandbiomassofplants originatingfrom highaltitudes were reduced comparedto thosefromlow altitudes.Theseresults areconsistentwith other studies that found genetic differentiation in size of alpineplantsalongaltitudinalgradients(Clausen,&Hiesey, 1958;Byarsetal.,2007).Plantsfromhighaltitudesareoften smaller, presumably because stressful climatic conditions (i.e.increasedtranspirativeforcesandfrequentfrostevents) select for smaller plant sizes, whereas at lower altitudes, milder conditions and biotic pressures such as competi- tion mightfavor largerandmorevigorous plants(Körner, 2003).

Interestingly,we foundthatthe microhabitattypeofthe seedorigininfluencedseedgermination,andthatthiseffect depended on the altitude of seed origin. Very few studies haveinvestigateddifferencesingerminationsuccessacross alpinemicrohabitats. Shimono(2003),for example, found that Potentillamatsumuraeseeds fromsnowbedsneededa warmertemperatureregimeforgerminationthanseedsfrom ridges. On the otherhand, Shimonoand Kudo(2005) did not find aclear pattern of differencesin germination suc- cessbetweenseedsfromsnowbedsandridgesoffourother alpineplants.Inanotherstudy,wefoundthatathighaltitudes plantsproducemore(26.3%)seedsperfruitinsnowbedsthan inridgehabitats(Sedlaceketal.unpublisheddata),which, together withthis study, indicates that resource allocation to seedquantity and qualitymight be generally higher in high-altitudesnowbeds.

Our finding of differences in germination and growth amongdifferentoriginsofS.herbaceaundercommonenvi- ronmentalconditions suggestspossible geneticcontrol for thosetraits.Ageneticstudyalongthesametransectsfound no genome-wide genetic differentiation among altitudes and microhabitats, despite strong phenological separation (Cortés et al., 2014). This does not necessarily preclude the existence of trait differentiation or local adaptation (Gonzalo-Turpin & Hazard, 2009). However, the differ- ences ingermination andgrowth could also becaused by maternalcarry-overeffectsduetodifferencesinseedprovi- sioning(Roach&Wulff,1987)orbyepigeneticdifferences (Bossdorf,Richards,&Pigliucci,2008).Seedlinggermina- tionandgrowthhavebeendemonstratedtobeinfluencedby maternaleffects viaseedsize (Fenner,2000).Howeverwe didnotattempttomeasureseedsizeinS.herbacea,because

its minute and hairy seeds, are very difficult to measure accurately.

Lackofhome-soiladvantagewithinthecurrent range

Wefoundthat thegerminationrate ofS.herbaceaseeds dependedonthesoiltreatment,indicatingthatsoilmicrobial communities differedamong ourstudy sites. The site dif- ferencesinsoilmicrobialcommunitycompositionarelikely drivenbythestrongenvironmentaldifferencesbetweenthe sites,suchasthesnowmelt-timedifferenceofupto40days betweenridgeandsnowbedplots andotherenvironmental factorssuchassoilmoisture,temperatureandplantcommu- nitycomposition(Nussbaumer,Rixen,&Schmidt,2012).

In spite of trait differences between plants of different originsandtheobservedsoil-origineffects,wefoundnoevi- denceforahome-soiladvantagewithrespecttosoilmicrobes withinthecurrentrangeofS.herbacea.Althoughwefound thatininoculafromhighaltitudesgerminationoflocalseeds washigherthanthatofforeignseeds,thiswasnottrueininoc- ulafromlowaltitudes.Similarly,localplantsgrewbetterthan foreignplantsinsoilfromlowaltitudes,buttheoppositewas trueinsoilfromhighaltitudes.Overall,wefoundnoconsis- tenthomevs.awayorlocalvs.foreigncontrasts.Similarly,a transplantexperimentofM.effusumfoundnoevidenceofa home-soiladvantage,butincreasedseedlingemergenceand growthofseedlingsgrowingincoldersoilrelativetotheir home soil, mainly driven by below-ground biotic interac- tions(DeFrenneetal.,2014).Despitethelackofahome-soil advantagewithinitscurrentrange,S.herbaceamightexhibit adaptivedifferentiationtootherimportantfactors,whichwe didnottestinthisstudy.

There are several possible explanations why we found nohome-soil advantagewith regardtosoil microbiota. In a genetic study along the same transects, Cortés et al.

(2014) found high gene-flow in S. herbacea populations among altitudes and microhabitats. High levels of gene flowbetweenourstudypopulationsmayhavecounteracted localadaptationtosoilmicrobes(Sambatti&Rice,2006).

Localadaptationcouldalsobeconstrainedbygeneticdrift (Blanquart,Gandon,&Nuismer,2012)andlowgeneticvari- ation (Kawecki & Ebert, 2004). Furthermore, it could be thatsoil-microbialcommunitiesposeonlyverysmallorno selection pressures on the measured traits, or that tempo- ralchangesinthesecommunitiesinvolveopposingselective pressures,andthusconstrainlocaladaptation(Galloway&

Fenster, 2000). Finally, we cannot exclude the possibility thatthenitrogenaddition,whichweappliedtoavoidnutri- entlimitation, hasmaskedpotentiallysmall effects of soil biota.Inanycase,thelackofadiscerniblehome-soiladvan- tagemay be beneficial for S. herbacea,if climate change forcesthedwarfshrub tomigratetonewmicrohabitats or altitudeswithinthecurrentrange,whereit mightfacenew soilmicrobialcommunities.

(9)

Limitedestablishmentabovethecurrent altitudinalrange

Therewerenodifferencesinthegerminationratesofseeds onsoilinoculafromtheirownhabitatcomparedtosoilinoc- ulafrombeyondthecurrentaltitudinalrangelimit.Likewise, finalbiomassandleaf areawerenotsignificantlydifferent forplantsgrownwiththeirhome-soilbiotaversussoilbiota from beyond the current range. However, growth rates of seedlingswereonaveragelowerwhentheyweregrownwith soilinoculafrombeyondthecurrentaltitudinalrange,which suggeststhat inthelongterm biomassproductionmaybe lowerfortheseplants.Theseresultsareconsistentwithsev- eralotherexperimentsdemonstratingreductioninfitnessand growthofplantstransplantedbeyondtheiraltitudinalrange (reviewedinHargreaves,Samis,&Eckert,2014).Thiseffect can be explained by missing positive plant-soil feedback above their range limit, as it was foundfor the mutualis- ticsymbiosis of legumesandrhizobia (Stanton-Geddes &

Anderson,2011)orinvasiveplantsandmycorrhiza(Nunez, Horton,&Simberloff,2009).Väreetal.(1997)didnotfind adecreaseinmycorrhization ratesofS.herbaceauptoan altitudeof900minNorthernScandinavia,whichiscompa- rabletoanaltitudeofca.2200mintheAlps,andistherefore notreflectiveofthealtitudinalgradientofourstudy.Other studiessupportadecreaseofmycorrhizationrateswithalti- tude(Read&Haselwandter1981;butsee:Ruotsalainen&

Väre,2004).Ourfindingsdemonstratethatinteractionswith soilbiotamayconstrainmigrationofS.herbaceatohigher altitudes.

Conclusions

Soil inoculafrom different originsaffectedseed germi- nationratesandgrowthofS.herbacea,indicatingthatsoil microbialcommunitieslikelydifferedamongourstudysites.

However,wedidnotfindanyconsistentevidenceofahome- soiladvantage,i.e. plantsdid not generallygerminateand growbetterinthepresenceoftheirlocalsoilbiota.Whenwe testedtheeffectsofsoilbiotafromabovethespecies’current rangelimit,wefoundseedlinggrowthratetobeonaverage reducedwithsoilinoculafromabovetherangelimit.Taken together,thissuggeststhatclimate-drivenmigrationtonew siteswithinthe current rangemightnot belimited bysoil biota,butthat the migrationof S. herbaceatohigher alti- tudesbeyonditscurrentrangemaybeconstrainedbyalack ofpositiveplant–soilfeedbacks.

Conflict of interest

The authors declare that they haveno conflict of inter- est,andthatallexperimentscomplywiththecurrentlawsof SwitzerlandandGermany.

Acknowledgments

We thank two anonymous reviewers for constructive comments on an earlier version of the manuscript. We thankChristineGiele,OtmarFicht,HeinzVahlenkampand MadalinParepafortheirideas,commentsandsupportduring theexperiment.WearegratefultoY.Boestch,M.Borho,I.

Breddin,D.Franciscus,S.Häggberg,E.Hallander,S.Keller, G.Klonner,C.Little, M.Liu, M.Matteodo,P. Nielsen,F.

Prahl, S.Renes, C.Scherrer,F.Schnider, Z.Wang andA.

Zieger forfieldassistance. Wearealso grateful toS.Kar- renberg,C.Lexer,C.RixenandS.Wipfforcommentingon thiswork. Thisresearchwas funded bytheSinergiagrant CRSI33 130409fromtheSwissNational Science Founda- tion(SNSF),SwitzerlandtoCR,MvKandSK.

References

Bates, D.,Maechler,M.,Bolker,B.,&Walker, S.(2013).lme4:

Linearmixed-effectsmodelsusingEigenandS4.Availablefrom.

http://cran.r-project.org/package=lme4

Beerling,D. J.(1998). Biologicalfloraofthe BritishIslesSalix herbaceaL.JournalofEcology,86,872–895.

Beniston,M.,Keller,F.,Koffi,B.,&Goyette,S.(2003).Estimatesof snowaccumulationandvolumeintheSwissAlpsunderchanging climaticconditions.TheoreticalandAppliedClimatology,76, 125–140.

Blanquart, F.,Gandon,S., &Nuismer, S.L.(2012). Theeffects of migrationanddrifton localadaptationtoaheterogeneous environment.JournalofEvolutionaryBiology,25,1351–1363.

Bossdorf,O.,Richards,C.L.,&Pigliucci,M.(2008).Epigenetics forecologists.EcologyLetters,11,106–115.

Byars,S.G.,Papst,W.,&Hoffmann,A.A.(2007).Localadaptation andcogradientselectioninthealpineplant,Poahiemata,along anarrowaltitudinalgradient.Evolution,61,2925–2941.

Cavieres,L.,&Arroyo,M.(2000).Seedgerminationresponseto coldstratificationperiodandthermalregimeinPhaceliasecunda (Hydrophyllaceae)–altitudinalvariationintheMediterranean Andesof.PlantEcology,149,1–8.

Chen,I.-C.,Hill,J.K.,Ohlemüller,R.,Roy,D.B.,&Thomas,C.D.

(2011).Rapidrangeshiftsofspeciesassociatedwithhighlevels ofclimatewarming.Science,333,1024–1025.

Clausen,J.,&Hiesey,W.M.(1958).Experimentalstudiesonthe nature of species. IV. Genetic structure of ecological races.

Washington,DC,USA:CarnegieInstitutionofWashingtonPub- lication615.

Cortés,A.,Waeber,S.,Lexer,C.,Sedlacek,J.,Wheeler,J.,vanKle- unen,M.,etal.(2014).Small-scalepatternsinsnowmelttiming affectgeneflowandthedistributionofgeneticdiversityinthe alpinedwarfshrubSalixherbacea.Heredity,onlineinadvance

(10)

of print. http://www.nature.com/hdy/journal/vaop/ncurrent/

full/hdy201419a.html

EEA.(2009).Regionalclimatechangeandadaptation—TheAlps facingthechallengeofchangingwaterresources.Copenhagen, Denmark:EuropeanEnvironmentAgency.

Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmer- mann,N.E.,Araújo,M.B.,etal.(2011).21stcenturyclimate change threatens mountain flora unequally across Europe.

GlobalChangeBiology,17,2330–2341.

Fenner, M. (2000). Seeds:The ecologyof regeneration in plant communities.Wallingford,UK:CABIPublishing.

De Frenne, P., Coomes, D. A., De Schrijver, A., Staelens, J., Alexander, J. M., Bernhardt-Römermann, M., et al. (2014).

Plantmovementsandclimatewarming:Intraspecificvariation ingrowthresponsestononlocalsoils.TheNewPhytologist,202, 431–441.

Galloway, L.F., & Fenster, C. B. (2000). Population differenti- ation in an annual legume: Local adaptation. Evolution, 54, 1173–1181.

Gellesch,E.,Hein,R.,Jaeschke,A.,Beierkuhnlein,C.,&Jentsch, A. (2013). Bioticinteractions in the face of climatechange.

ProgressinbotanyBerlin,Heidelberg,NewYork:Springer.

Gonzalo-Turpin,H.,&Hazard,L.(2009).Localadaptationoccurs alongaltitudinalgradientdespitetheexistenceofgeneflowin thealpineplantspeciesFestucaeskia.JournalofEcology,97, 742–751.

Graf,F.(1994).Ecologyandsociologyofmacromycetesinsnow- beds with Salixherbacea L. in the alpine Valley of Radönt (Grisons,Switzerland).Diss.Naturwiss.ETHZürich.

Graf,F.,&Brunner,I.(1996).Naturalandsynthesizedectomycor- rhizasofthealpinedwarfwillowSalixherbacea.Mycorrhiza, 227–235.

Grassein,F.,Lavorel,S.,&Till-Bottraud,I.(2014).Theimportance of bioticinteractionsand local adaptation forplant response toenvironmentalchanges:Fieldevidencealonganelevational gradient.GlobalChangeBiology,20,1452–1460.

Van Grunsven, R. H., van Der Putten, W. H., Bezemer, T.M., Tamis, W. L. M., Berendse, F., Veenendaal, E. M., et al.

(2007).Reducedplant-soilfeedbackofplantspeciesexpand- ingtheirrangeascomparedtonatives.JournalofEcology,95, 1050–1057.

Hargreaves,A.L.,Samis,K.E.,&Eckert,C.G.(2014).Arespecies’

rangelimitssimplynichelimitswritlarge?Areviewoftransplant experimentsbeyondtherange.TheAmericanNaturalist,online inadvanceofprint.http://www.jstor.org/stable/10.1086/674525 Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinference ingeneralparametricmodels.BiometricalJournal,50,346–363.

Kawecki,T.J.,&Ebert,D.(2004).Conceptualissuesinlocaladap- tation.EcologyLetters,7,1225–1241.

Körner,C.(2003).Alpineplantlife:Functionalplantecologyofhigh mountainecosystems;with47tables.Berlin,Germany:Springer Verlag.

Macel, M., Lawson, C. S., Mortimer, S. R., Smilauerova, M., Bischoff,A.,Crémieux,L.,etal.(2007).Climatevssoilfac- torsinlocaladaptationoftwocommonplantspecies.Ecology, 88,424–433.

Mühlmann,O.,&Peintner,U.(2008).MycobiontsofSalixherbacea on a glacierforefront in the Austrian Alps.Mycorrhiza, 18, 171–180.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple methodforobtainingR2fromgeneralizedlinearmixed-effects

models.InR.B.O’Hara(Ed.).MethodsinEcologyandEvolu- tion,4,133–142.

Nunez,M.,Horton,T.,&Simberloff,D.(2009).Lackofbelow- ground mutualisms hindersPinaceae invasions. Ecology, 90, 2352–2359.

Nussbaumer,A.,Rixen,C.,&Schmidt,M.W.I.(2012).Neighbour interactionsofanAlpinedwarfshrub(SalixherbaceaL.)andits influenceonbiodiversity.GeographischesInstitutderUniversität Zürich.

Parepa,M.,Schaffner,U.,&Bossdorf,O.(2013).Helpfromunder ground:Soilbiotafacilitateknotweedinvasion.Ecosphere,4.

Pauli, H., Gottfried, M., & Dullinger, S. (2012). Recent plant diversitychangesonEurope’smountainsummits.Science,336, 353–355.

Pei,M.H.M.,Royle, D.J.D.,&Hunter,T.(1996).Pathogenic specializationinMelampsoraepiteavarepiteaonSalix.Plant Pathology,45,679–690.

VanderPutten,W.H.,Bardgett,R.D.,Bever,J.D.,Bezemer,T.

M.,Casper,B.B.,Fukami,T.,etal.(2013).Plant-soilfeedbacks:

Thepast,thepresentandfuturechallenges(M.Hutchings(Ed.)).

JournalofEcology,101,265–276.

VanderPutten,W.H., Macel,M.,&Visser, M.E.(2010).Pre- dictingspeciesdistributionandabundanceresponsestoclimate change:Whyitisessentialtoincludebioticinteractionsacross trophiclevels.PhilosophicalTransactionsoftheRoyalSociety ofLondonSeriesB:BiologicalSciences,365,2025–2034.

RCoreTeam.(2013).R:Alanguageandenvironmentforstatis- ticalcomputing.Vienna,Austria:RFoundationforStatistical Computing.Availablefrom.http://www.r-project.org/

Read,D.J.,&Haselwandter,K.(1981).Observationsonthemycor- rhizalstatusofsomealpineplantcommunities.NewPhytologist, 88,341–352.

Reisch,C.,Schurm,S.,&Poschlod,P.(2007).Spatialgeneticstruc- tureandclonaldiversityinanalpinepopulationofSalixherbacea (Salicaceae).AnnalsofBotany,99,647–651.

Roach,D.,&Wulff,R.(1987).Maternaleffectsinplants.Annual ReviewofEcologyandSystematics,18,209–235.

Ruotsalainen,A.,&Väre,H.(2004).Rootfunguscolonizationalong analtitudinalgradientinNorthNorway.Arctic,Antarcticand AlpineResearch,36,239–243.

Sambatti,J.B.M.,&Rice,K.J.(2006).Localadaptation,patternsof selectionandgeneflowintheCalifornianserpentinesunflower (Helianthusexilis).Evolution,60,696–710.

Scherrer, D., & Körner, C. (2011). Topographically controlled thermal-habitat differentiation buffers alpine plant diver- sity against climate warming. Journal of Biogeography, 38, 406–416.

Shimono, Y. (2003). Intraspecific variations in seedling emer- genceandsurvivalofPotentillamatsumurae(Rosaceae)between alpinefellfield and snowbed habitats. Annals of Botany, 91, 21–29.

Shimono,Y.,&Kudo,G.(2005).Comparisonsofgerminationtraits ofalpineplantsbetweenfellfieldandsnowbedhabitats.Ecolog- icalResearch,20,189–197.

Stanton-Geddes, J.,& Anderson,C. G. (2011). Does afaculta- tivemutualismlimitspeciesrangeexpansion?Oecologia,167, 149–155.

Stocker,T.F.,Qin,D., Plattner,G.K.,Tignor,M.,Allen,S.K., Boschung,J.,etal. (2013).IPCC2013Summary forPolicy- makers.InClimateChange2013:ThePhysicalScienceBasis.

ContributionofWorkingGroupItotheFifthAssessmentReport

(11)

oftheIntergovernmentalPanelonClimateChange.Cambridge, UnitedKingdom/NewYork,NY,USA:CambridgeUniversity Press.

Thuiller,W.,Albert,C.,Araújo,M.B.,Berry,P.M.,Cabeza,M., Guisan,A.,etal.(2008).Predictingglobalchangeimpactson plantspecies’distributions:Futurechallenges.Perspectivesin PlantEcology,EvolutionandSystematics,9,137–152.

Tylianakis, J.M.,Didham, R.K., Bascompte,J., & Wardle, D.

a.(2008).Globalchangeandspeciesinteractionsinterrestrial ecosystems.EcologyLetters,11,1351–1363.

Väre,H.,Vestberg,M.,&Ohtonen,R.(1997).Shiftsinmycorrhiza and microbialactivity along an oroarcticaltitudinal gradient in northern Fennoscandia. Arctic and Alpine Research, 29, 93–104.

Wheeler,J.,Hoch,G.,Cortés,J.,Sedlacek,J.,Wipf,S.,&Rixen,C.

(2014).Increasedspringfreezingvulnerabilityforalpineshrubs underearlysnowmelt. Oecologia, onlineinadvanceofprint.

http://link.springer.com/article/10.1007/s00442-013-2872-8 Yao, F.,Vik,U., Brysting,A.A.K., Carlsen, T.,Halvorsen,R.,

&Kauserud,H.(2013).Substantialcompositionalturnoverof fungal communities in an alpine ridge-to-snowbed gradient.

MolecularEcology,5040–5052.

Zuur,A.F.,Ieno,E.N.,Walker,N.J.,Saveliev,A.A.,&Smith,G.

M.(2009).Mixedeffectsmodelsandextensionsinecologywith R.NewYork,NY,USA:Springer.

Zuur,A.F.,Hilbe,J.M.,&Elena,N.L.(2013).Abeginner’sguide toGLMandGLMMwithR.Newburgh,UK:HighlandStatistics Ltd.

Referenzen

ÄHNLICHE DOKUMENTE

(2010) found that evaporation changed stable isotope values of soil water. However, soil water pools, which were used by plants, did not substantially contribute to

To determine and disentangle the response of a widespread prostrate shrub to both climate warming and changes in snowmelt time, we investigated a wide range of phenological,

Furthermore, model simulations showed that at uniform soil water contents (wet-wet and dry-dry scenarios), the relative root water uptake depended uniquely on the

Interestingly, floral scent of male and female Salix caprea catkins was similarly attractive to its main flower visitor Apis mellifera, despite the differing total scent emission

One of the most applicable models has been the SOILN in APSIM (Agricultural Production Systems Simulator) framework, which has been tested successfully in

Modification of the method requires the selection of sampling sites of suitable sporocarps, which most likely occur clumped but isolated from sporocarps of other fungal taxa

More precisely, the direct and indirect (through pollination and florivory) effects of host plant population size on plant reproduction were investigated. The effect of

Geographic peripherality, habitat suitability, and genetic diversity at neutral loci 536. Our results based on neutral or overall genetic SNP sets agree with the hypothesised