• Keine Ergebnisse gefunden

Alan M. Turing 1936

N/A
N/A
Protected

Academic year: 2022

Aktie "Alan M. Turing 1936"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Martin Ziegler

decision decision problem problem

•Logicians Tarski, Alonzo Church (PhD advisor)

•Kurt Gödel (1931): There exist arithmetical

statements which are true but cannot be proven so.

Alan M. Turing 1936

• • first first scientific scientific calculations calculations on digital on digital computers computers

• • What What are are its its fundamental fundamental limitations limitations ? ?

• • Uncountably Uncountably many many P P ⊆ ⊆

• • but but countably countably many many ' ' algorithms algorithms ' '

• • Undecidable Undecidable Halting Problem H : : No No algorithm algorithm B B can can always always correctly correctly answer answer the the following following question question

Given

Given 〈 〈 A, A, x〉 x 〉 , , does does algorithm algorithm A A terminate terminate on on input input x x ? ? Proof (by contradiction): Consider Consider algor algor . . B B ' ' that that , , on on input input A A , , executes executes B B on on 〈 〈 A,A A,A 〉 〉

1941

Halting

Halting Problem Problem H H

Proof

Proof ( ( by by contradiction contradiction ): ):

A A

x x B B + +

− −

A A

A A

B' B'

∞ ∞

How How does does B B ' ' behave behave on on B' B' ? ? answer

answer , , loops loops infinitely infinitely . .

and,

and, upon upon a positive a positive

simulator

simulator / / interpreter interpreter B B ? ? B' B' B' B'

B' B'

(2)

Martin Ziegler

Formalities & Tools

''Definition:Definition:' ' AlgorithmAlgorithm

A A

decidesdecides setset

L L ⊆ ⊆ { { 0 0 , , 1 1 }* }*

ifif

•• on on inputsinputs

x x ∈ ∈ L L

printsprints 11 and and terminatesterminates,,

•• on on inputsinputs

x x ∉ ∉ L L

printsprints 00 and and terminatesterminates..

A A

semisemi--decidesdecides ifif terminatesterminates on on

x x ∈ ∈ L L

,, elseelse divergediverge..

all finite all finite

binary binary sequences sequences e.ge.g. "Turing . "Turing

machine machine""

Consider

Consider algor algor . . B B ' ' that that , on , on input input A A , , executes executes B B on on

〈 〈 A,A A,A 〉 〉 and, and, upon upon a positive a positive answer answer , , loops loops infinitely infinitely . .

countable countable!! Techniques

Techniques:: a) a) simulationsimulation c) c) dovetailingdovetailing

Theorem:

Theorem:

L L

decidabledecidable iffiff bothboth

L L , , L L

CC semisemi-decidable-decidable Infinite

Infinite

L L ⊆ ⊆ { { 0 0 , , 1 1 }* }*

isis semisemi-decidable-decidable iffiff

L L =range( =range( f f ) )

forfor somesome computablecomputable injectiveinjective

f f : : N N → → { { 0 0 , , 1 1 }* }*

b) b) diagonalizationdiagonalization egeg. . UU={ algorithms={ algorithms } } ×× { { inputsinputs }} Universes

Universes UU otherother thanthan

{ { 0 0 , , 1 1 }* }*

((e.ge.g. . NN):): encodeencode..

Halting

Halting Problem Problem H H only only semi semi - - decidable decidable

Hilbert Hotel Hilbert Hotel

d) d) reductionreduction (in/(in/outputoutput translationtranslation))

(3)

Martin Ziegler

Some Undecidable Problems

''Definition:Definition:' ' AlgorithmAlgorithm

A A

decidesdecides setset

L L ⊆ ⊆ { { 0 0 , , 1 1 }* }*

ifif

•• on on inputsinputs

x x ∈ ∈ L L

printsprints 11 and and terminatesterminates,,

•• on on inputsinputs

x x ∉ ∉ L L

printsprints 00 and and terminatesterminates..

Techniques

Techniques:: a) a) simulationsimulation c) c) dovetailingdovetailing

b) b) diagonalizationdiagonalization

For For

L,L' L,L' ⊆ ⊆ { { 0 0 , , 1 1 }* }*

writewrite

L L ≼ ≼ L' L'

ifif therethere isis a computablea computable

f f : : { { 0 0 , , 1 1 }* }* → → { { 0 0 , , 1 1 }* }*

such such thatthat

∀ ∀ x x : : x x ∈ ∈ L L ⇔ ⇔ f f ( ( x x ) ) ∈ ∈ L L '. '.

a) a)

L' L'

decidabledecidable ⇒⇒ so so

L L

. . b) b)

L L ≼ ≼ L' L' ≼ ≼ L'' L''

⇒⇒

L L ≼ ≼ L'' L''

Universes

Universes UU otherother thanthan

{ { 0 0 , , 1 1 }* }*

((e.ge.g. . NN):): encodeencode.. d) d) reductionreduction (in/(in/outputoutput translationtranslation)) Halting

Halting problemproblem: :

H H = { = { 〈 〈 A A , , x x 〉 〉 : : A A

terminatesterminates onon

x x } }

Hilbert's

Hilbert's 10th:10th: TheThe followingfollowing setset isis undecidableundecidable::

{ { 〈 〈 p p 〉 〉 | | p p ∈ ∈

NN

[ [ X X

11

, , … … X X

nn

], ], n n ∈ ∈

NN

, , ∃ ∃ x x

11

… … x x

nn

∈ ∈ N N p p ( ( x x

11

, , … … x x

nn

)=0 } )=0 }

Word Problem

Word Problem forfor finitelyfinitely presentedpresented groupsgroups Mortality

Mortality Problem Problem forfor twotwo 2121××21 21 matricesmatrices Homeomorphy

Homeomorphy of 2 finite of 2 finite simplicialsimplicial complexescomplexes

(4)

Martin Ziegler

integer integer

Exercise Questions

Which

Which of of thethe followingfollowing areare unun--/semi/semi--//decidabledecidable?? a) a) GivenGiven an integer, an integer, isis itit a prime a prime numbernumber??

b) b) GivenGiven a finite a finite stringstring overover ++,,××,(,(,,)),,00,1,1,,

X X

11

, , … … X X

n n

isis itit syntacticallysyntactically correctcorrect??

c) c) GivenGiven a a BooleanBoolean formulaformula

ϕ ϕ ( ( X X

11

, , … … X X

nn

) )

,, doesdoes itit havehave a a satisfyingsatisfying assignmentassignment?? d) d) GivenGiven

M M ∈ ∈

nn××nn and and

b b ∈ ∈

nn, ,

doesdoes therethere existsexists a a vectorvector

x x

s.t. s.t.

M M · · x x ≤ ≤ b b

?? e) e) GivenGiven an an algorithmalgorithm AA, , inputinput xx, and integer , and integer NN,,

doesdoes AA terminateterminate on on inputinput xx withinwithin NN stepssteps ??

f) Doesf) Does a givena given algorithmalgorithm terminateterminate on all on all inputsinputs?? g) g) DoesDoes givengiven algorithmalgorithm terminateterminate on on somesome inputinput??

realreal

(5)

Martin Ziegler

Computable Real Numbers

Theorem:

Theorem: For For r r ∈ ∈ , ,

t t he he following following are are equivalent equivalent : :

a) a) r r has a has a computable computable binary binary expansion expansion

b) b) There There is is an an algorithm algorithm printing printing , on , on input input n n ∈ ∈ , , some some a a ∈ ∈ with with | | r r - - a a /2 /2

n+1n+1

| | ≤ ≤ 2 2

--nn

. .

c) c) There There is is an an algorithm algorithm printing printing two two sequences

sequences ( ( q q

nn

) ) ⊆ ⊆ and ( and ( ε ε

nn

) ) with with | | r r - - q q

nn

| | ≤ ≤ ε ε

nn

→ → 0 0

H := {B,x: algorithm B terminates on input x }

There is an algorithm which, given n∈, prints bn{0,1} where r=∑n bn 2-n

b) c) holds uniformly,

a) does not [Turing'37]

numerators+

denominators

Ernst

Ernst Specker Specker (1949): (c) (1949): (c) ⇔ ⇔ Halting Halting problem problem plus (d) plus (d) d) d) There There is is an an algorithm algorithm printing printing ( ( q q

nn

) ) ⊆ ⊆ with with q q

nn

→ → r r . .

interval arithmetic

r[qn±εn]

Call Call r r ∈ ∈ computable computable if if

(6)

Martin Ziegler

Exercises: Computable Reals

r r ∈ ∈

computablecomputable iffiff an an algorithmalgorithm cancan printprint, , on on inputinput

n n ∈ ∈

, , somesome

a a

yetyet

∈ ∈

naivelynaivelywithwith

| | r r

computable

-

computable

- a a /2 /2

n+1n+1

| | ≤ ≤ 2 2

-n-n ..

a) a) EveryEvery rational has a rational has a computablecomputable binarybinary expansionexpansion b) Everyb) Every dyadicdyadic rational has tworational has two binarybinary expansionsexpansions c) Computablec) Computable binarybinary expansionexpansion computablecomputable realreal d) d) IfIf

a a , , b b

areare computablecomputable, , thenthen also also

a+b a+b , , a a · · b b , , 1/ 1/ a a ( ( a a ≠ ≠ 0) 0)

e) Fix

e) Fix

p p ∈ ∈

[ [ X X ] ]

. . ThenThen

p p

's's coefficientscoefficients areare computablecomputable

⇔ ⇔ p p ( ( x x ) )

isis computablecomputable forfor all all computablecomputable

x x

.. f) f) TheThe degreedegree of of everyevery

p p ∈ ∈

[ [ X X ] ]

isis computablecomputable..

g) g) EveryEvery algebraicalgebraic numbernumber isis computablecomputable; and so ; and so isis

π π . .

h) h) IfIf

x x

isis computablecomputable, , thenthen so so areare

exp( exp( x x ) ) , , sin( sin( x x ) ) , , log( log( x x ) )

j) For

j) For everyevery computablecomputable

x x

, ,

sign( sign( x x ) )

isis computablecomputable.. k) k) Specker'sSpecker's sequencesequence

( ( ∑ ∑

k>nk>n∈HH

2 2

-n-n

) )

kk isis computablecomputable,,

itsits limitlimit isis uncomputableuncomputable

(7)

Martin Ziegler

Uniformity, Sequences and Equality Testing

In In numerics numerics , , don't don't test test for for ( ( in in - - )equality )equality ! !

Fact:

Fact: There exists a computable sequence ( There exists a computable sequence ( r r

mm

) ) ⊆ ⊆ [0,1] [0,1]

such that {

such that { m m : : r r

mm

≠ ≠ 0 } is the Halting problem 0 } is the Halting problem H H . .

H := {B,x: algorithm B terminates on input x }

Reminder:

Reminder: For For r r ∈ ∈ , , t t he he following following are are equivalent equivalent : : a) a) ∃ ∃ algorithm algorithm deciding deciding r r 's 's bin. bin. expansion expansion

b) b) ∃ ∃ algorithm algorithm printing printing on on input input n n some some a a ∈ ∈ with with | | r r - - a a /2 /2

n+1n+1

| | ≤ ≤ 2 2

--nn

. .

c) c) ∃ ∃ algorithm algorithm printing printing ( ( q q

nn

),( ),( ε ε

nn

) ) ⊆ ⊆ with with | | r r - - q q

nn

| | ≤ ≤ ε ε

nn

→ → 0 0 Call (r

m

) ⊆ computable iff an algorithm can print, on input 〈 n,m 〉 ∈ , some awith |r

m

-a/2

n+1

|≤2

-n

.

a)a)b)b)⇔cc) ) computablecomputable transformation transformation on on algorithmsalgorithms b)b)aa) ') 'undecidableundecidable' '

casecase splitsplit on ron r

(8)

Martin Ziegler

x x ∈ ∈ computable computable ⇔ ⇔ | | x x - - a a

nn

/2 /2

nn+1+1

| | ≤ ≤ 2 2

--nn

for for recursive recursive ( ( a a

nn

) ) ⊆ ⊆

f

Uniformly Computable Real Functions

A A computable computable function

function must must be be continuous continuous

x' x

(9)

Martin Ziegler

Computable Weierstrass Theorem

Theorem:

Theorem: For For f f :[0,1] :[0,1] → → the the following following are are equivalent equivalent : : a) a) There There is is an an algorithm algorithm converting converting any any seq seq . . q q

nn

∈ ∈

n+1n+1

with with | | x x - - q q

nn

| | ≤ ≤ 2 2

--n n

into into p p

mm

∈ ∈

m+1m+1

with with | | f f ( ( x x ) ) - - p p

mm

| | ≤ ≤ 2 2

-m-m

b) b) There There is is an an algorithm algorithm printing printing a a sequence sequence (of (of degrees degrees

and and coefficient coefficient lists lists of) ( of) ( P P

nn

) ) ⊆ ⊆ [X [X ] ] with with || || f f - - P P

nn

|| || ≤ ≤ 2 2

-n-n

c) c) The The real real sequence sequence f f ( ( q q ), ), q q ∈ ∈ ∩ ∩ [0,1], [0,1], is is computable computable

&

& f f admits admits a a computable computable modulus modulus of uniform of uniform continuity. continuity

Call Call ( ( r r

mm

) ) ⊆ ⊆ computable computable iff iff an an algorithm algorithm can can print print , , on on input input n,m n,m ∈ ∈ , , some some q q ∈ ∈

n+1n+1

with with | | r r

mm

- - q q | | ≤ ≤ 2 2

--nn

. .

:= :=  

nn

nn

, ,

nn

:= := { { a a /2 /2

nn

: : a a ∈ ∈ } }

| | x x - - y y | | ≤ ≤ 2 2

--µ(µ(m)m)

⇒ ⇒ | | f f ( ( x x ) ) - - f f ( ( y y )| )| ≤ ≤ 2 2

--mm

Proof: Proof: a) a) ⇒ ⇒ c) c) ⇒ ⇒ b) b)

(10)

Martin Ziegler

uncomputable

uncomputable in in generalgeneral Exercises: Computable Real Functions

a) a) f f computable computable

⇒⇒

same same for for any any restriction restriction

b) b) exp exp , , sin sin , , cos cos , ln(1+ , ln(1+ x x ) ) are are computable computable functions functions c) c) For For a a computable computable sequence sequence a a =( =( a a

nn

), ),

the the power power series series x x → → ∑ ∑

nn

a a

nn

· · x x

nn

is is computable computable on on ( ( - - r,r r,r ) ) for for r r < < R R ( ( a a ) := 1/ ) := 1/ limsup limsup

nn

| | a a

nn

| |

1/n1/n

d) d) Let Let f f ∈ ∈ C[0,1] C[0,1] be be computable computable . . Then Then so so are are

∫ ∫ f f : : x x → → ∫ ∫

00xx

f f ( ( t t ) ) dt dt and and max( max( f f ): ): x x → → max{ max{ f f ( ( t t ): ): t t ≤ ≤ x x }. }.

e) e) If If ( ( x,m x,m ) ) →f → f

mm

( ( x x ) ) computable computable with with | | f f

nn

- - f f

mm

| |

≤ ≤ 2 2

-n-n

+2 +2

--mm

then

then

lim lim

nn

f f

nn is computable.is computable.

f) For

f) For computable computable a a ∈ ∈ , , f f :[0, :[0, a a ] ] → → , and , and

g To compute g To :[ :[ a a compute ,1] ,1] → → with with f f : : → → f f ( ( a a : : )= )= convert convert g g ( ( a a ) ) , , their their any any sequence sequence

join

join is is computable computable q q

nn

∈ ∈

nn+1 +1

with with | | x x - - q q

nn

| | ≤ ≤ 2 2

--n n

into into p p

mm

∈ ∈

m+1m+1

with with | | f f ( ( x x ) ) - - p p

mm

| | ≤ ≤ 2 2

--mm

(11)

Martin Ziegler

Computable Urysohn

Proof

Proof : : Let Let f f ( ( x x ):= ):= ∑ ∑

mm

rrmm rrmm++εεmm rrmm--εεmm

εεmm//22mm

Let Let ( ( r r

mm

) )

mm

, , ( ( ε ε

mm

) )

mm

⊆ ⊆ Q Q be be computable computable sequences sequences

Then Then there there is is a a computable computable f f :[0;1] :[0;1] → → [0;1] [0;1]

s.t.

s.t. f f

--11

[0] = [0;1] [0] = [0;1] \ \  

mm

( ( r r

mm

- - ε ε

mm

, , r r

mm

+ + ε ε

mm

) ) . . max(0,

max(0, ε ε m m - - | | x x - - r r

mm

|)/ |)/ 2 2

mm

C C

CC ''pulse' functionpulse' function

φφ((tt) = ) = exp(exp(--tt²²/1/1--tt²²))

||tt|<1|<1

(12)

Martin Ziegler

Specker'59: Uncomputable roots/argmin

approximating approximating a a root root vs vs . . approximate approximate root root

Lemma:

Lemma: There There are are computable computable sequences sequences

( ( r r

mm

) )

mm

, , ( ( ε ε

mm

) )

mm

⊆ ⊆ Q Q s.t. s.t. U U := :=  

mm

( ( r r

mm

- - ε ε

mm

, , r r

mm

+ + ε ε

mm

) )

contains

contains all all computable computable reals reals in [0;1] in [0;1]

and has

and has measure measure < < ½ ½ . .

Corollary

Corollary : : There There is is a a computable computable C C

f f :[0;1] :[0;1] → → [0;1] [0;1] s.t. s.t. f f

--11

[0] [0] has has measure measure > > ½ ½

but but contains contains no no computable computable real real number number . . Let Let ( ( r r

mm

) )

mm

, , ( ( ε ε

mm

) )

mm

⊆ ⊆ Q Q be be computable computable sequences sequences

Then Then there there is is a a computable computable f f :[0;1] :[0;1] → → [0;1] [0;1]

s.t.

s.t. f f

--11

[0] = [0;1] [0] = [0;1] \ \  

mm

( ( r r

mm

- - ε ε

mm

, , r r

m

C C

m

+ + ε ε

mm

) ) . .

(13)

Martin Ziegler

Singular Covering of Computable Reals

Lemma:

Lemma: There There are are computable computable sequences sequences

( ( r r

mm

) )

mm

, , ( ( ε ε

mm

) )

mm

⊆ ⊆ Q Q s.t. s.t. U U := :=  

mm

( ( r r

mm

- - ε ε

mm

, , r r

mm

+ + ε ε

mm

) )

contains

contains all all computable computable reals reals in [0;1] in [0;1]

and has

and has measure measure < < ½ ½ . . Proof

Proof : : Dove Dove - - tailing tailing w.r.t w.r.t . ( . ( M M , , t t ) ) : : If If Turing Turing machine machine # # M M within within t t

( ( but but not not t t - - 1 1 ) ) steps steps prints prints a a

11

, , … … a a

MM+5+5

s.t.

s.t. | | a a

kk

/2 /2

kk+1+1

- - a a

/2 /2

+1+1

| | ≤ ≤ 2 2

--kk

+2 +2

--

∀1 ∀ 1 ≤ ≤ k k , , ℓ ℓ ≤ ≤ M M +5 +5

then then let let r r

M,t〉M,t

:= := a a

MM+5+5

/2 /2

M+6M+6

and and ε ε

M,tM,t

:= := 2 2

-M-M--55

, , else else r r

M,tM,t

:= := 0 0 and and ε ε

M,t〉M,t

:= 2 := 2

--M,t〉M,t-3-3

. .

Machine

Machine computescomputes

r r ∈ ∈ R R

iffiff prints seq. prints seq.

a a

nn withwith

| | a a

nn

/2 /2

n+1 n+1

- - a a

mm

/2 /2

m+1 m+1

| | ≤ ≤ 2 2

--n n

+ + 2 2

--mm

. .

(14)

Martin Ziegler

• • g g

kk

( ( x x ):= ):= g g ( ( ( ( x x · · 2 2

ψψ((kk))

- - 1) 1) · · 2 2

kk

) ) / / 2 2

ψψ(k(k))

h' h' := := ∑ ∑

kk

g g

kk

• • g g

kk

( ( x x ):= ):= g g ( ( x x · · 2 2

ψψ((kk))

- - 1 1 ) ) / / 2 2

ψψ(k(k))

n n =1 =1 n n =2 =2

½½

¼¼

Fact Fact : : ∃ ∃ computable computable bijection bijection ψ ψ : : → → H H

• • g g and and ∫ ∫ g g computable computable

⅛⅛

½½

¼¼

⅛⅛ 11

00

Myhill'71:

Myhill'71: uncomputable uncomputable ∂∂∂∂ ∂∂∂∂ on on C C

11

[0,1] [0,1]

yet yet h h := := ∫ ∫ h' h' ∈ ∈ C C

11

[0;1] [0;1] computable computable . .

incomputable incomputable , ,

hat hat function function g g

• • g g

nn

( ( x x ):= ):= g g ( ( x x · · 2 2

nn

- - 1 1 ) ) /2 /2

nn

• • ∫ ∫ g g

kk

≤ ≤ 2 2

--kk

continuous continuous , ,

∑ ∑ ∑

nnHH

g g

nn

nn

g g

nn

e.g e.g . . H H ={2,3,5,...} ={2,3,5,...}

q.e.d

q.e.d . .

(15)

Martin Ziegler

The Case of the Wave Equation

Pour Pour - - El&Richards'81 construct a computable El&Richards'81 construct a computable ƒ∈ ƒ∈ C C

11

( (

33

) ) such that for

such that for g g :=0 the unique solution is :=0 the unique solution is in in computable at computable at t t =1 and =1 and x x =(0,0,0). =(0,0,0).

∂ ²/ ∂ t² u(x,t) = u(x,t), u(x,0)= ƒ (x), ∂ / ∂ t u(x,0)=g(x)

Church

Church - - Turing Turing Hypothesis Hypothesis ( ( Kleene Kleene ): ):

Everything

Everything that that can can be be computed computed by by a a Turing

Turing machine machine can can also also be be computed computed by by a a physical physical device device and and vice vice versa versa ! !

Myhill'71:

Myhill'71: computable computable h h ∈ ∈ C C 1 1 [0,1] [0,1]

with with uncomputable uncomputable h h '(1) '(1)

(16)

Martin Ziegler

The Case of the Wave Equation

Myhill'71:

Myhill'71: computable computable h h ∈ ∈ C C 1 1 [0,1] [0,1]

with with uncomputable uncomputable h h '(1) '(1)

Pour Pour - - El&Richards'81 construct a computable El&Richards'81 construct a computable ƒ∈ ƒ∈ C C

11

( (

33

) ) such that for

such that for g g :=0 the unique solution is :=0 the unique solution is in in computable. computable.

∂ ²/ ∂ t² u(x,t) = u(x,t), u(x,0)= ƒ (x), ∂ / ∂ t u(x,0)=g(x)

Kirchhoff's Kirchhoff's

formula

formula : :

(17)

Martin Ziegler

up to

up to permutationpermutation [Specker'67][Specker'67]

Example

Example fund. fund. theoremtheorem of of algebraalgebra:: Given

Given

a a

00

, , a a

d-d-11

∈ ∈

, , returnreturn rootsroots

x x

11

, , … … x x

dd

∈ ∈

of of

a a

00

+a +a

11

· · X+ X+ +a +a

d-d-11

· · X X

d-d-11

+X +X

dd

∈ ∈ [ [ X X ] ]

incl. multiplicitiesincl. multiplicities

Two Effects in Real Computability a) a) Multivalued Multivalued ' ' functions functions ' '

b) b) Discrete Discrete ' ' advice advice ' '

Example

Example floorfloor functionfunction: : givengiven

x x ∈ ∈

, , returnreturn itsits least integer

least integer upperupper boundbound Given

Given

x x

, , returnreturn somesome integer integer upper

upper bound: bound: computablecomputable!!

Example

Example matrixmatrix diagonalizationdiagonalization: : givengiven

A A ∈ ∈

d·(d(d--1)/21)/2,, return

return a a basisbasis of of eigenvectorseigenvectors

ThmThm:: ComputableComputable knowingknowing

| | σ σ ( ( A A )| )|

..ε·

cos(1/ε) sin(1/ε) sin(1/ε) cos(1/ε)

― discontinuousdiscontinuous::

―― discontinuousdiscontinuous..

Referenzen

ÄHNLICHE DOKUMENTE

Theorem: For For f f :[0,1] :[0,1] → → the the following following are are equivalent equivalent : : a) a) There There is is an an algorithm algorithm converting converting

Keywords— Multiconstrained 0–1 Knapsack Problem, hy- brid Genetic Algorithm, pre-optimized initialization, local improvement.. The sig- nificant difference to general 0–1

In my view, the important aspects are that while gold is not itself, in my view, the anchor to the international monetary system, it highlights the fact that there is increased

In particular, we discuss contributions of statistics to the field of artificial intelligence concerning methodological development, planning and design of studies, assessment of

Mathematische Grundlagen der Informatik RWTH

- RQ: How do the scientific councillors see the role of Open Science in the knowledge transfer between research and policy. - In-depth interviews with science councillors (SCs))

It used marriage negotiations to buy off the territories captured by the Latins. Finally, the Empire did not want to give up an illusion of Western military assistance against

Here my sense, especially if I look at what’s happening in Syria and Iraq right now, is we need to be able to maintain, for an organization like us, the ability to engage in