• Keine Ergebnisse gefunden

The Propogation of Uncertainty in Human Mortality Processes

N/A
N/A
Protected

Academic year: 2022

Aktie "The Propogation of Uncertainty in Human Mortality Processes"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHORS

THE PROPAGATION OF UNCERTAINTY IN HUMAN MORTAL1 TY PROCESSES

Anatoli I. Yashin Kenneth G. Manton Eric Stallard

July 1985

CP-85-36

Dr. Mantonts and Mr. Stallardts efforts in this research were supported by NIA Grant No.

AG01159-09 amd NSF Grant No. SES8219315.

C o l l a b o r a t i v e P a p e r s report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only

limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organi- zations supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

A-2361 Laxenburg, Austria

(2)
(3)

ABSTRACT

Human mortality and aging have frequently been modeled as stochastic diffusion processes. Estimates of the parameters of these processes have been made from various longitudinal studies. This paper shows how the

stochasticity intrinsic to those processes will propagate through time and generate uncertainty about the future physiological state of the population. Variance expressions are derived for the future values of the physiological variables; and for the conditional survival functions

and conditional life expectancies which reflect the uncertainty in the future values of the physiological variables. The results show that a major component of uncertainty is due to mortality. This suggests that '

the limits to forecasting may be different in physiological systems

subject to systematic mortality than in physical systems such as weather.

(4)
(5)

I. INTRODUCTION

I n t h e p h y s i c a l s c i e n c e s , e s p e c i a l l y i n m e t e o r o l o g y , t h e r e a r e w e l l developed t h e o r i e s a b o u t t h e limits t o f o r e c a s t i n g b e c a u s e o f t h e propaga- t i o n of u n c e r t a i n t y i n i n i t i a l c o n d i t i o n s and b e c a u s e of t h e s t o c h a s t i c i t y of t h e p r o c e s s d u r i n g t h e f o r e c a s t p e r i o d . T h i s p a p e r examines a similar problem f o r b i o l o g i c a l s y s t e m s and e s t a b l i s h e s c e r t a i n a n a l y t i c r e s u l t s c o n c e r n i n g t h e limits on t h e a b i l i t y t o f o r e c a s t changes i n h e a l t h s t a t u s and m o r t a l i t y rates i n human p o p u l a t i o n s . To e s t a b l i s h s u c h limits, one must f i r s t s p e c i f y t h e form of t h e p r o c e s s u n d e r c o n s i d e r a t i o n and t h e n , f o r t h e s p e c i f i c p r o c e s s , d e t e r m i n e how u n c e r t a i n t y ( i . e . , t h e v a r i a n c e of t h e f o r e c a s t e d q u a n t i t y ) i n c r e a s e s w i t h time.

The development o f o u r a n a l y t i c model p r o c e e d s a l o n g d i f f e r e n t ave- n u e s t h a n o t h e r i n v e s t i g a t i o n s . For example, Matis and Wehrly (1979) de- v e l o p e d e x p r e s s i o n s f o r t h e v a r i a n c e s of c e r t a i n c o n d i t i o n a l p a r a m e t e r s i n s t o c h a s t i c compartmental s y s t e m s ( e . g . , t h e c o n d i t i o n a l s u r v i v a l p r o b a b i l - i t y ) b a s e d upon models which i n c l u d e d v a r i o u s c o m b i n a t i o n s of e f f e c t s due t o f o u r d i s t i n c t c l a s s e s of s t o c h a s t i c i t y . Two of t h e s e c l a s s e s ( R l , R2) of s t o c h a s t i c i t y r e f e r r e d t o random changes a , ) i n i n i t i a l v a l u e s , o r b . ) i n h a z a r d r a t e s , between r e p l i c a t i o n s of an e n t i r e experiment ( p o p u l a t i o n ) . However, we wish t o f o c u s on a s i n g l e p o p u l a t i o n ( e x p e r i m e n t ) , and w i l l n o t p u r s u e t h i s t y p e of s t o c h a s t i c i t y . Two o t h e r c l a s s e s ( P l , P2) of s t o c h a s t i c i t y r e f e r r e d t o random e f f e c t s a . ) due t o d i s c r e t e numbers of p a r t i c l e s i n t h e s y s t e m o r b . ) due t o random r a t e c o e f f i c i e n t s of t h e p a r t i c l e s . I n t h e l i m i t , as t h e sample s i z e t e n d s t o i n f i n i t y t h e P2- s t o c h a s t i c i t y g i v e s r i s e t o a c o n t i n u o u s d i s t r i b u t i o n which i s isomorphic t o t h e f i x e d f r a i l t y model p r e s e n t e d i n Vaupel e t a l . (1979) and i n Manton and S t a l l a r d (1980, 1981, 1 9 8 4 a , b ) . Matis and Wehrly (1979) n o t e d t h i s p o i n t and s u g g e s t e d t h a t t h e i r s y s t e m c o u l d be extended t o i n c l u d e a c l a s s of s t o c h a s t i c models w i t h random d i f f e r e n t i a l e q u a t i o n s , b u t t h e y d i d n o t

(6)

p u r s u e t h i s avenue.

T h i s p a p e r c o n s i d e r s t h e c l a s s o f s t o c h a s t i c i t y due t o s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n s f o r t h e p a r t i c u l a r c a s e o f m u l t i v a r i a t e G a u s s i a n d i f f u s i o n p r o c e s s e s of t h e t y p e d e f i n e d i n Woodbury and Manton (1977) and Yashin e t a l . ( 1 9 8 5 a ) . F o r t h i s s p e c i a l c a s e , i t i s shown t h a t t h e s e pro- c e s s e s g i v e rise t o a form o f P 2 - s t o c h a s t i c i t y i n which t h e r a t e c o e f f i - c i e n t s a r e random among p a r t i c l e s b u t f o r which t h e a s s u m p t i o n o f f i x e d f r a i l t y i s

not

made. T h i s s u g g e s t s t h a t t h e s e new models w i l l be more b i o l o g i c a l l y r e a l i s t i c t h a n t h e f i x e d f r a i l t y models i n two i m p o r t a n t a s p e c t s . F i r s t , w e know from c l i n i c a l and e p i d e m i o l o g i c a l e v i d e n c e t h a t t h e r i s k of d e a t h depends upon t h e p h y s i o l o g i c a l s t a t e o f t h e i n d i v i d u a l . Consequently, a s u b s t a n t i a l component o f t h e u n c e r t a i n z y i n t h e r i s k o f d e a t h w i l l b e due t o t h e e f f e c t s o f t h i s p h y s i o l o g i c a l h e t e r o g e n e i t y . Second, w e know t h a t s u c h p h y s i o l o g i c a l v a r i a b l e s e v o l v e o v e r t i m e i n a manner t h a t c a n b e d e s c r i b e d by a m u l t i v a r i a t e d i f f u s i o n p r o c e s s . Thus, an a d d i t i o n a l component o f t h e u n c e r t a i n t y i n t h e r i s k o f d e a t h i n o u r m o r t a l i t y f o r e c a s t w i l l be due t o t h e e f f e c t s o f d i f f u s i o n . Thus, we

need t o d e t e r m i n e t h e v a r i a n c e , and i t s change o v e r t i m e , of t h e p a r a m e t e r s o f a c o n d i t i o n a l l i f e t a b l e whose p a r a m e t e r s a r e t h e m s e l v e s f u n c t i o n s of a m u l t i v a r i a t e d i f f u s i o n p r o c e s s i n s u r v i v a l - r e l e v a n t p h y s i o l o g i c a l v a r i - a b l e s .

The s t o c h a s t i c p r o c e s s model w e have s e l e c t e d i s due i n i t i a l l y t o Woodbury and Manton (1977). T h i s model d e s c r i b e s t h e e v o l u t i o n o f m o r t a l - i t y r i s k s a s a two component p r o c e s s governed by t h e Kolmogorov-Fokker- Planck e q u a t i o n . The s p e c i a l c a s e of a m u l t i v a r i a t e G a u s s i a n d i f f u s i o n p r o c e s s c a n be d e s c r i b e d by a . ) a l i n e a r a u t o r e g r e s s i v e model of change i n t h e p h y s i o l o g i c a l v a r i a b l e s , and b . ) a q u a d r a t i c f u n c t i o n d e s c r i b i n g t h e r e l a t i o n o f t h e h a z a r d r a t e t o t h e v a l u e s o f t h e p h y s i o l o g i c a l v a r i - a b l e s . T h i s two component p r o c e s s and t h e f u n c t i o n a l forms s e l e c t e d f o r

(7)

e a c h component ( i . e . , l i n e a r dynamics and q u a d r a t i c h a z a r d dependency) h a v e been found t o d e s c r i b e human p h y s i o l o g i c a l change and m o r t a l i t y i n a number o f e p i d e m i o l o g i c a l s t u d i e s of c h r o n i c d i s e a s e (Manton and Woodbury,l983,1985;

Manton e t a l . , 1 9 8 5 ) . F o r example, t h e r e i s c o n s i d e r a b l e e p i d e m i o l o g i c a l e v i d e n c e t o s u g g e s t t h e a p p r o p r i a t e n e s s o f t h e q u a d r a t i c h a z a r d f u n c t i o n f o r t o t a l m o r t a l i t y ( T y r o l e r e t a l . , 1 9 8 4 ) . The q u a d r a t i c h a z a r d f u n c t i o n a l s o i s c o n s i s t e n t w i t h t h e p h y s i o l o g i c a l dynamics o f s e v e r a l g e n e r a l t h e o r i e s of human a g i n g and m o r t a l i t y (Woodbury and Manton, 1 9 7 7 , 1 3 8 3 a , b ) .

Y a s h i n e t a l . (1985a) c o n s i d e r e d t h i s s t o c h a s t i c p r o c e s s model i n d e t a i l and e x t e n d e d i t t o t h e c a s e where n o t a l l t h e v a r i a b l e s d e f i n i n g t h e p h y s i o l o g i c a l s t a t e r e l e v a n t t o s u r v i v a l were measured. Yashin e t a l .

(1985b) c o n s i d e r e d t h e problem o f p r o d u c i n g maximum l i k e l i h o o d e s t i m a t e s f o r p a r a m e t e r s when b o t h o b s e r v e d and unobserved v a r i a b l e s were assumed t o i n f l u e n c e m o r t a l i t y and p r e s e n t e d a maximum l i k e l i h o o d e s t i m a t i o n s t r a t e g y . T h i s p a p e r c o n s i d e r s t h e s t o c h a s t i c i t y o f t h e s u r v i v a l c u r v e s g e n e r a t e d by t h i s p r o c e s s ; shows t h a t t h i s i s a form o f P 2 - s t o c h a s t i c i t y ( M a t i s and Wehrly, 1979) i n which t h e m o r t a l i t y r a t e s a r e random b e c a u s e t h e y a r e f u n c t i o n s o f a s t o c h a s t i c p r o c e s s ; a n a d i s c u s s c e r t a i n l i m i t s t o f o r e c a s t - i n g u n d e r s u c h a p r o c e s s .

11. STOCHASTIC PROCESS MODEL

We w i l l t a k e t h e model o f human m o r t a l i t y developed by Woodbury and Manton ( 1 9 7 7 , 1 9 8 3 a , b ) and e x t e n d e d by Yashin e t a l . (1985a) as t h e b a s i s f o r o u r a n a l y s i s o f t h e u n c e r t a i n t y of f u t u r e m o r t a l i t y r a t e s . T h i s model i s composed o f a s t o c h a s t i c p r o c e s s w i t h two d i s t i n c t components.

One component d e s c r i b e s t h e e v o l u t i o n o f t h e p h y s i o l o g i c a l s t a t u s o f s u r - v i v o r s . The second component d e s c r i b e s t h e r i s k o f d e a t h among p e r s o n s w i t h s p e c i f i c p h y s i o l o g i c a l c f i a r a c t e r i s t i c s . The f i r s t component c a n b e

d e f i n e d by s p e c i f y i n g t h a t t h e change i n Y t h e s t o c h a s t i c p r o c e s s d e s c r i b i n g t

'

p h y s i o l o g i c a l s t a t u s , s a t i s f i e s t h e f o l l o w i n g s t o c h a s t i c d i f f e r e n t i a l

(8)

e q u a t i o n

,.

dYt

-

[ a o ( t )

+

a l ( t ) y t ] d t

+

b ( t ) d N t

,

where t 1 0 , W i s k - d i m e n s i o n a l Wiener p r o c e s s , Y i s a n n-dimensional

t 0

v e c t o r o f G a u s s i a n random v a r i a b l e s w i t h j o i n t d i s t r i b u t i o n N(m O , y o ) ; t h e e l e m e n t s of t h e v e c t o r a o ( t ) and t h e m a t r i c e s a ( t ) and b ( t ) a r e bounded

1 f u n c t i o n s of t i m e .

The second component c a n b e d e f i n e d by assuming t h a t t h e m o r t a l i t y r a t e f o r i n d i v i d u a l s i n e a c h c o h o r t i s a n o n n e g a t i v e d e f i n i t e q u a d r a t i c f u n c t i o n of the p r o c e s s Y as f o l l o w s ,

t

u ( t , Yt) = Y' t Q ( t ) Y t

+

u o ( t )

.

( 2 )

T h i s f u n c t i o n was c a l l e d t h e c o n d i t i o n a l m o r t a l i t y r a t e i n Yashin e t a l . (1985a). The u n c o n d i t i o n a l o r o b s e r v e d m o r t a l i t y r a t e G ( t ) i s t h e mathe- m a t i c a l e x p e c t a t i o n o f ~ ( t , Y t ) , g i v e n by

where T d e n o t e s time o f d e a t h , where Y i s d i s t r i b u t e d as N ( m

t t ' Yt) 9 and

m and y t a r e t h e s o l u t i o n s o f t h e f o l l o w i n g o r d i n a r y d i f f e r e n t i a l equa- t

t i o n s ,

I f t h e p a r a m e t e r s a o ( t ) , a l ( t ) , b ( t ) , Q ( t ) and p ( t ) a r e s p e c i f i e d 0

a s known f u n c t i o n s o f t i m e ( o r a r e known c o n s t a n t s ) one c a n f o r e c a s t f u t u r e m o r t a l i t y s i m p l y u s i n g Eqs. ( 3 ) , ( 4 ) , and ( 5 ) . These f o r e c a s t i n g

e q u a t i o n s c a n p r o d u c e p r o j e c t e d t r a j e c t o r i e s f o r t h e s u r v i v a l p r o b a b i l i t y a n d t h e p a r a m e t e r s o f t h e d i s t r i b u t i o n N(m y ) o f s u r v i v o r s . However,

t ' t

t h e s e e q u a t i o n s s a y n o t h i n g a b o u t t h e v a r i a b i l i t y o f t h e c o n d i t i o n a l

(9)

m o r t a l i t y r a t e s , n o r of t h e t r a j e c t o r i e s o f t h e c o n d i t i o n a l s u r v i v a l p r o b a b i l i t i e s . I n t h e f o l l o w i n g s e c t i o n we d e r i v e t h e v a r i a n c e s o f t h e s e c o n d i t i o n a l s u r v i v a l q u a n t i t i e s .

111. VARIANCE ESTIMATES FOR MORTALITY FORECASTS

I n o r d e r t o c h a r a c t e r i z e t h e u n c e r t a i n t y o f f u t u r e m o r t a l i t y r a t e s we need t o d e r i v e e s t i m a t e s o f t h e v a r i a n c e o f c e r t a i n f o r e c a s t e d q u a n t i t i e s . I n t h i s s e c t i o n we d e r i v e e x p r e s s i o n s f o r t h e v a r i a n c e o f t h e c o n d i t i o n a l m o r t a l i t y r a t e , p ( t , Y t ) , t h e c o n d i t i o n a l s u r v i v a l p r o b a b i l i t y , I l ( t , Yo), t

and t h e c o n d i t i o n a l l i f e e x p e c t a n c y , e ( 0 , Y;)

,

where Y t =

IYS 1

s r [ 0 , t]

I

de- 0

n o t e s t h e e n t i r e t r a j e c t o r y o f t h e s t o c h a s t i c p r o c e s s o v e r t h e i n t e r v a l

[ o , t l .

A. V a r i a n c e o f t h e C o n d i t i o n a l M o r t a l i t y R a t e

By d e f i n i t i o n , a f o r e c a s t e d f u t u r e m o r t a l i t y r a t e r e f e r s t o m o r t a l i t y i n t h e s u b p o p u l a t i o n o f i n d i v i d u a l s s t i l l a l i v e a t t h e t a r g e t e d t i m e of t h e f o r e c a s t . T h i s means t h a t t h e v a r i a n c e o f t h e f o r e c a s t e d c o n d i t i o n a l mor- t a l i t y r a t e a t t i m e t s h o u l d b e c a l c u l a t e d c o n d i t i o n a l l y b o t h on t h e phy- s i o l o g i c a l c h a r a c t e r i s t i c s of t h e p o p u l a t i o n (Y ) and on t h e e v e n t ( T > t I

t

where T i s t h e t i m e of d e a t h . The c o n d i t i o n a l G a u s s i a n p r o p e r t y o f t h e d i s t r i b u t i o n o f t h e p r o c e s s ( i . e . , Y s N(mt, y ) ) and t h e q u a d r a t i c de-

t t

pendence of p ( t , Y ) on Y a l l o w u s t o d e t e r m i n e t h e f o r m u l a f o r t h e v a r i -

t t

a n c e o f t h e c o n d i t i o n a l m o r t a l i t y r a t e . The r e s u l t s c a n b e f o r m u l a t e d i n t h e f o l l o w i n g theorem:

Theorem: L e t t h e c o n d i t i o n a l m o r t a l i t y r a t e p ( t , Yt) depend upon t h e p r o c e s s Y as s p e c i f i e d i n e q u a t i o n ( 2 ) . L e t V ( t ) d e n o t e t h e

t

u

c o n d i t i o n a l v a r i a n c e o f p ( t

,

Y ) g i v e n { T > t

1.

Then, t

where mt and y s a t i s f y Eqs. ( 4 ) and ( 5 ) . t

(10)

The p r o o f o f t h i s theorem i s b a s e d on t h e r e s u l t s f o r c a l c u l a t i n g t h e v a r i a n c e o f t h e q u a d r a t i c form f o r i n d e p e n d e n t random v a r i a b l e s g i v e n by S e b e r (1977). T h i s we g e n e r a l i z e d t o t h e c a s e where t h e random v a r i - a b l e s a r e n o t i n d e p e n d e n t b u t can be t r a n s f o r m e d a s i n d i c a t e d i n t h e Appendix.

B. V a r i a n c e and C o v a r i a n c e o f t h e C o n d i t i o n a l S u r v i v a l P r o b a b i l i t y We now c o n s i d e r t h e c a l c u l a t i o n o f t h e v a r i a n c e and c o v a r i a n c e o f t h e c o n d i t i o n a l p r o b a b i l i t y o f s u r v i v a l . L e t L ( t , Y) = I ( t , Yo) b e t h e t c o n d i t i o n a l s u r v i v a l f u n c t i o n ,

a n d l e t k ( t ) b e t h e u n c o n d i t i o n a l s u n r i v a l f u n c t i o n , e ( t ) = P ( T > ~ )

where m and yU a r e t h e s o l u t i o n s of t h e d i f f e r e n t i a l e q u a t i o n s ( 4 ) and u

( 5 ) . L e t V I I ( t ) = C I I ( t , t ) d e n o t e t h e v a r i a n c e o f L ( t

,

Y) :

= E [ l 2 ( t , Y ) ]

-

I 1 2 ( t ) , ( 9 b )

and l e t C ( s , t ) d e n o t e t h e c o v a r i a n c e o f L(s,Y) and L ( t , Y ) . Then f o r II

where

(11)

and where rn('.) and y(') a r e t h e s o l u t i o n s o f t h e f o l l o w i n g o r d i n a r y d i f f e r e n -

U u

t i a l e q u a t i o n s

C. V a r i a n c e o f t h e C o n d i t i o n a l L i f e E x p e c t a n c i e s

L i f e e x p e c t a n c y a t b i r t h ( t i m e t = 0 ) c a n be c a l c u l a t e d e a s i l y when t h e a g e ( t i m e t ) s p e c i f i c m o r t a l i t y r a t e s a r e known. The c o n d i t i o n a l l i f e e x p e c t a n c y e ( 0 , Y)- = e ( 0 , Ym) i s t h e a v e r a g e s u r v i v a l t i m e f o r a s p e c i f i c

0

t r a j e c t o r y of t h e s t o c h a s t i c p r o c e s s Y o r t

'

e ( 0 , Y ) =

1

( t , ~ ) d t . (14)

The a v e r a g e l i f e e x p e c t a n c y at b i r t h e ( 0 ) c a n be c a l c u l a t e d b y t a k i n g t h e m a t h e m a t i c a l e x p e c t a t i o n o f t h e e x p r e s s i o n f o r e ( 0 , Y):

e(O> = Y ) ] ( 1 5 4

=

1;

L ( t ) d t . (15b)

L e t Ve(0) d e n o t e t h e v a r i a n c e of e ( 0 , Y). Then

Ve(0) = E [ ~ ' ( o , Y ) ]

-

c 2 ( 0 ) (16a)

=

1; 1;

c ~ ( s , t ) d s d t . (16b)

D. L i f e T a b l e P a r a m e t e r s

The s e q u e n c e o f s u r v i v a l f u n c t i o n v a l u e s L ( t ) , t ~ ( 0 , 1 , 2 ,

. . . I

may b e used t o form t h e f o r e c a s t e d c o h o r t l i f e t a b l e u s i n g t h e f o l l o w i n g s t a n d a r d f o r m u l a s (Chiang

,

1984) :

(12)

R e p l a c i n g L ( t ) i n (17)-(21) w i t h L ( t , Y) r e s u l t s i n a c o r r e s p o n d i n g l i f e t a b l e f o r t h e t r a j e c t o r y ym w i t h p a r a m e t e r s d ( t , Y ) 0

,

q ( t , Y ) , L ( t , Y ) , T ( t , Y )

,

and e ( t , Y ) whose e x p e c t a t i o n s a r e d ( t ) , q ( t ) , L ( t ) , T ( t ) , and e ( t ) , r e - s p e c t i v e l y , and whose v a r i a n c e s a r e :

V d ( t ) = V L ( t )

+

V L ( t + l )

-

2 C L ( t , t+1) (22)

where C L T ( t ) d e n o t e s t h e c o v a r i a n c e of L ( t , Y) and T ( t , Y ) , g i v e n by

I V . APPROXIMATIONS BASED ON A DISCRETE TTME MODEL

C a l c u l a t i o n o f t h e l i f e t a b l e p a r a m e t e r s i n (17)-(21) r e q u i r e s o n l y t h a t we have t h e c o r r e c t v a l u e s of 2 = L ( t ) , m t , and y t a t i n t e g e r v a l u e s

t

o f t . These may be e s t i m a t e d u s i n g t h e d i s c r e t e time form o f t h e model d e s c r i b e d i n Manton e t a l . (1985). I n t h i s form o f t h e model, t h e c o n t i n - uous t i m e p a r a m e t e r s a ( t )

,

a l ( t ) , b ( t ) , Q ( t ) , and u O ( t ) a r e r e p l a c e d w i t h

0

t h e d i s c r e t e t i m e p a r a m e t e r s a a Z t = b b ' , Q t , and p ' and Eqs.

O t ' It' t t O t '

( 1 ) and ( 2 ) a r e r e p l a c e d by:

"(Yt) = Y;

Qt

Y t

+

U O t '

L e t be t h e m a t h e m a t i c a l e x p e c t a t i o n o f

u

(Y ) . Then

t t t

- u t

= E [ u ~ ( Y ~ )

l ~ > t l

(30a)

= t r C ~ t t Y

1

+ m;

Q~

mt + "t. (30b)

L e t V b e t h e c o n d i t i o n a l v a r i a n c e o f

u t

(Y ) g i v e n

i ~ > t I.

Then, f o l l o w i n g

U t t

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

Referenzen

ÄHNLICHE DOKUMENTE

The alterna- tive, more closely aligned with publicly funded research policy, would be to build a key technologies platform open to all European industry, and therefore a tool

Well I think five or six minutes is an executive summary. I’m going to give you an executive summary of an executive summary, if you like. A few questions: has Iran’s regional

Rothemberg and Smith set out to fill this gap by studying the effects of uncertainty on resource allocation in the standard, static, general equilibrium, competitive, two-

Since, in this case, an estimate of the model error (which would be the prediction error if the calibration data were not available) is in fact available, a comparison of

a) După natura lor: riscuri pure şi riscuri speculative. Riscurile pure – reprezintă acea clasă de riscuri care prin producerea lor pot provoca numai pierderi

This thesis firstly provides two classification schemes involving different levels of detail (i.e., a taxonomy of smart things and related smart thing clusters)

The State and Future of the British Pub Listen to a talk on British pubs.. While listening, complete the

h{sodlqdeoh idfwv lv vwloo ydvw1 Wkh sxusrvh ri wklv sdshu zdv wr vkrz wkdw wklv glvfuhsdqf| ehwzhhq hpslulfdo dqg wkhruhwlfdo qglqjv pd| uhvxow iurp wkh idfw wkdw rqh lpsruwdqw