• Keine Ergebnisse gefunden

vNM–Stable Sets for Totally Balanced Games

N/A
N/A
Protected

Academic year: 2022

Aktie "vNM–Stable Sets for Totally Balanced Games"

Copied!
34
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Center for

Mathematical Economics

Working Papers 581

April 18, 2018

vNM–Stable Sets for

Totally Balanced Games

Joachim Rosenm¨ uller

Center for Mathematical Economics (IMW) Bielefeld University

Universit¨ atsstraße 25 D-33615 Bielefeld · Germany e-mail:

ISSN: 0931-6558

(2)

!

"

#

$

#

%

& " '

(

)

*+**

+***+*,

+ ,

-./

+ -0/

+ -1/

+ -2/

+ -3/!%

+

"

r

4

5

#

#

!%

#

q < r

#

' %%

4

5! "

"

#

%

#

"

#

'

#

#

% 6+

(

"

#

"

#

% 7

+

$$

$

+

%"%

+

8"

#

(

"

#

9 :

"

"

# 5!%

;

#

#

+

%%+

"

(

<

4

5

# 9

+

#

% 7

"

#

9

"

% +

#

$

"

$8

4

5

# 9

% +$ "

#

+

%%+ + $

# +

;

4

5=%%

+

"

"

##

"

#

#

9

%

&

(

$

4

5

%

(

#

#

(

>

9 8

#

+

$%% $

1

+ ( #

%

&

$ +

:;

# 5

!

+

?

$

"

#

"

" $

%

(3)

?

?

&

#

8

"

#

#

#

8

#

#

% *

(

8

#

;

#

9 "

#

"

#

% % !

"# $%&'(

!

")*+, --.

/!%

/

9

# -./

+ -0/

+ -1/

+ -2/

-3/%

0

#

$

$

41

/ " 5

+

2

34

%

"

#

5

+6' &7

# %8 -9/

:

;<&6=>%%&? #6@

!

"+7;A+7 B --C/

--- /%

)

+

$

! DE

FG

$

#

+

%%+

(I, F 0 , v)

$

I ∈

H

+

?" IJE

KGLM +

F 0

σ−

8 N! #

I

OPEJQ RQPSM!+

v

O

P EJQ RQ

PS EJTU

S ORQ

PS

!

#

"

v : F 0

H

+

$

$%%% V"

#

λ

% & 4 " #5+

+

v

8 # ! #

λ ρ (ρ ∈ R)

-%-!

v(S) := min {λ ρ (S) | ρ ∈ R} (S ∈ F 0 ),

-%.!

v = ^

r∈R

λ ρ .

C ρ

λ ρ (ρ ∈ R)

% & #

v

#'

v(I ) = 1

+# + #

Q ⊆ R, ∅ 6= Q 6= R

-%9!

1 = v(I) = λ ρ (I) < λ σ (I) (ρ ∈ Q, σ ∈ R \ Q) .

#

"

"

v

ILPWUORQPSTE ORPLMOPFFPWQ RQGM

v

" # #9 " #!%

# '

#

λ ρ (ρ ∈ Q)

OPLG " #+

λ ρ (ρ ∈ R \ Q

! "

%

7 2

34 +

$ $

XYZ[\R E]J

G

\

G R

A;6 ^&)=#66(_;?`&6<7&?6 --9

/!%

0

#

$

8

a

b cdefe

g d h

i h

i jk lm

n

(I, F 0 , v)

om p qprmk s t QFIU R ERQPS uv p rmpw

vxy

m

ξ

zun{

ξ(I ) = v(I)

k |{m vmn }~ urxnpnu}tv uv €mt}nm€ o

J (v)

k

| {

m O

PLG uv n

{

m v

m n }

~

urx n

p n

u }

t v

C (v) := {ξ ∈ J (v) ξ ≥ v}

‚

k s t urx

n

p n

u }

t

ξ

WPFQSERGM pt urxnpnu}t

η

zkykn

S ∈ F 0

u~

ξ

uv

G

ƒ

G ORQX

G

~

}

y

S,

uk mk„

-%…!

λ(S) > 0

pt€

ξ(S) ≤ v(S)

(4)

pt

€ u

~

-%.!

ξ(T ) > η(T ) (T ∈ F 0 , T ⊆ S, λ(T ) > 0)

{

}

€v n

yx

mk | {

p n

uv

„ m

m y vx

o

}

p

u n

u }

t }

~

S

pr}vn mm pmy ut

S

vnyun ury}mv unv p} pn

ξ

myvxv

η.

m zyunm

ξ dom S η

n}

u

t

€u

p n

m

€ }

ru

tp n

u }

tk n

uv v n

pt

€

p y€

n}

xv

m

ξ dom η

z{mtmmy

ξ dom S η

{

}

€v n

yx

m

~

}

y

#

}

p

u n

u }

t

S ∈ F 0

k

a

b cdefe

g d h

i i lm

n

v

om pqprmk s vmn

S ⊆ J (v)

uv pm€ p XYZ[\R E]JG

\

G R

u

~

n{mym uv t} puy

ξ, µ ∈ S

vx{ n{pn

ξ dom µ

{}€v nyxm 4

5

k

~}y mm

η ∈ J (v) \ S

n{mym muvnv

ξ ∈ S

vx{ n{pn

ξ dom η

uv vpnuvm€

4

(

5

k

& "

$

U

S QT

PLF #

O

PS RQ

S U

P U

M FP W

G J%

0 $

##

+ +$

#

#

λ ρ

$ + +%

$ 8

(

#

t ∈

T := {1, . . . , t}

$ IELRQ RQPS

I

-%0!

D = D T = {D τ } τ∈T

#

<

#

!

I

+ %%+

I = S

{τ∈T} D τ

%

#

#

;

V"

# +

λ(D τ ) = 1

t (τ ∈ T)

#

t ∈

#4#5!% #

I

#

(

1

+

λ(I ) = X

τ∈T

λ(D τ ) = X

τ∈T

1

t = t

t > 1 ;

+

$

t

t

!%

#

#

$

+

+

T ρ ⊆ T

$

-%1!

C ρ = [

τ∈T ρ

D τ (ρ ∈ R) .

0$

σ

"

F = F T

" #

4

95!

D

% #

I ∈ F

C ρ ∈ F (ρ ∈ R)

%

(5)

?

?

D 1 D t D τ D t

C 1 C 2

C r

λ 1 λ 2 λ r

1

1 t

0"

-%->

#

# #

#

8"

$

#

λ ρ

#

c ρ = {c ρ τ } τ∈T ∈

H

t +

-%2!

λ ρ = X

τ∈T

c ρ τ

D τ .

6

S

S

=

λ ρ

#

$%%%

F

% +

x ∈

H

t +

"

ϑ x

# $%%%

F

-%3!

ϑ x = X

τ∈T

x τ

D τ

ϑ x

#$

x

ILG[QFIU R ERQPS+ %%+$

-%-C!

Z

ϑ x dλ = X

τ∈T

λ(D τ )x τ = 1 t

X

τ∈T

x τ = 1 ,

%%+

X

τ∈T

x τ = t

%

#

'

v

# # #

λ ρ (ρ ∈ Q)

C (v)

-%--!

λ ρ (I) = X

τ∈T

λ ρ (D τ )c ρ τ = 1 t

X

τ∈T

c ρ τ = 1 = v(I) ,

%%

X

τ∈T

c ρ τ = t

0"

-%-

#

%

λ 1

λ 2

#

$

λ r

%

(6)

λ ρ

# #

#

#

"

9

+

#

+% & "

4

5

+

#

p y

n

j +

%%+ -.

/

%

+ $

4

5

+

4

#

5

+

4

"

# 5

+

4

5

+

%

0

(

#

+ I

LG [ O

P EJQ RQ

PS

"

a = (a τ ) τ∈T ∈

H

t + .

7

$

"V"

#

% *+

λ

# 8

-%-.!

λ(?) = {λ(? ∩ D τ )} τ∈T .

+ +

#

T ∈ F

+

-%-9!

a = (a τ ) τ∈T := {λ(T ∩ D τ )} τ∈T = λ(T )

T

$

-%-…!

λ(T ) = e λ(T ) = ea .

$

e = (1, . . . , 1)

!% 7$

a τ = λ(T ∩ D τ ) = 1

t

λ(T |D τ )

λ(D τ ) (τ ∈ T) .

+

T

# $%%%

F

+

λ(T |F)(?) = t X

τ∈T

a τ

D τ (?) ,

a

# #'

$%%%

F

%

/

+

a ∈

H

t +

%

ε > 0

#

εa τ ≤ λ(D τ ) (τ ∈ T)

% $

V

<

#

!

T εa

"

λ(T εa ∩ D τ ) = εa τ (τ ∈ T)

+$

"

-%-9!+

-%-.!

λ(T εa ) = εa , λ(T εa ) = εea .

λ(T εa |F)(?) = t X

τ∈T

εa τ

D τ (?) .

7 "

+

$

#

λ ρ (ρ ∈ R)

%

c ρ = {c ρ τ } τ∈T

8

λ ρ

" -%2!% "

"

λ ρ

# $

-%-0!

λ ρ (?) = {λ ρ (? ∩ D τ )} τ∈T = {c ρ τ λ(? ∩ D τ )} τ∈T

(7)

?

?

-%-1!

λ ρ (T εa ) = {c ρ τ λ(T εa ∩ D τ )} τ∈T = {c ρ τ εa τ } τ∈T ; λ ρ (T εa ) = εc ρ a.

6

c ρ

+ %%+

I

LG [

FG E

M U

LG

% N

-%--! $

c ρ (1, . . . , 1) = t = tλ ρ (I)

$

λ ρ ∈ C (v)

%

+

$ 8 I

LG [DE

FG

!

v :

H

t +

H "

-%-2!

v(a) = min ρ∈R c ρ a ;

v(1, . . . , 1) = t

% #

T εa

-%-3!

v(T εa ) = v(εa) = εv(a) .

)"$

#

I

LG [Q

F IU R ERQ

PSM

-%.C!

J (v) = (

x ∈

H

t + X

τ∈T

x τ = t )

I

LG [ O

PLG

-%.-!

C(v) := {x ∈ J (v ) x ≥ v}

$ -%--!%

(8)

ε

7

"

#

"

$

(

8

#

#

%

#

4

5

4

5%

+

" '

2

34

"

$+

$

$

#

2

34

%

#

λ ρ

+

%%

.%-!

c ρ :

H

t

H

, c ρ (a) := X

τ∈T

c ρ τ a τ = c ρ a .

c ρ (•)

?

λ ρ

% %"%+ #

a

#

ε > 0

#""

T εa

-%-1!!+$

.%.!

λ ρ (T εa ) = c ρ (εa) = εc ρ (a) = εc ρ a .

;

+

"

#

v

!

v(a) = min

ρ∈R c ρ (a) .

#

T εa εv(a) = min

ρ∈R εc ρ (a) = min

ρ∈R εc ρ (a) = min

ρ∈R λ ρ (T εa) = v(T εa ) .

a

b cde

f e

g d

i h

i jk lm n

.%9!

A :

a ∈

H

t + c ρ (a) ≥ 1 (ρ ∈ R) .

A e

€mt}nmv n{m vmn }~ mnymrp }utnv }~

A

k |{m mmrmtnv }~

A e

pym

p

m

€ n{

m LG

J

G XE

S R X

G OR

PLM }

y LG

J

G XE

S R I

LG [ O

P EJQ RQ

PSM

k

‚

k }

y

ε > 0

p }punu}t

T

uv pm€

ε

[LGJGXESR u~ n{mym uv p ymmptn

m

n}

y

a ∈ A e

vx{ n{pn

λ(T ) = εa

k m n{mt zyunm

T = T εa

pt€

v }

r

m n

ur

m v v

mp

}

~

pt

ε

a

[LGJGXESR }punu}tk

$

+

ε

+

% +

#

a

" #

min{c ρ (a) ρ ∈ R} = v(a).

$

# '

a

"

a 0 := a v(a) =

λ(T )

v(T ) ,

(9)

?

ε

?

v(a 0 ) = min{c ρ (a 0 ) ρ ∈ R} = 1

v(a) v(a) = 1 .

+

a 0

A

% +#

ε > 0

#

ε 0 := ε v(a v(a) 0 )

ε 0 := ε v(a v(a) 0 ) = ε v(a) 1 ≤ ε

$

v(T ε 0 a 0 ) = ε 0 v (a 0 ) = ε v(a 0 )

v(a) v(a) = εv(a 0 )

v(T ε 0 a 0 ) = ε 0 v (a 0 ) = ε v(a 0 )

v(a) v(a) = εv(a 0 )

$

T ε 0 a 0

% + " # +

$

A

% + "

a 0

A

+ (#

A

% 6$+$ 8 ( #

A e

a 0

% # # $

ε

4 *

# 5!

"

#

#

$

#

#

% &

#

p y

n

-./

"

;

"

%

*$ $ +$$

$

#

9"

#

8

#

#

α = {α ρ } ρ∈R

OPSXG

α ρ ≥ 0, (ρ ∈ R)

X

ρ∈R

α ρ = 1,

%

$+ 8

V

##

"

#

+

#

?"

%

b

i i }

y

pt



a b ∈ A

n{mym muvnv

¯ a ∈ A

vx{ n{pn

jk

a ¯ ≤ a b

‚

k | {

m y

m uv

p v

m

n

E ⊆ A e

„ vp

E =

a (k) k ∈ K ⊆ A e

zun{

K := {1, . . . , K }

}

~

y

m

m

pt n

m

n}

yv

p v

z m

p v

p v

m n}

~

}

t

m

}

m u

mt n

v

{γ k } k∈K

vx {

n{

p n

.%…!

a ¯ = X

k∈K

γ k a (k)

{}

€v n

yx

mk

(10)

k

~

min{c ρ a b ρ ∈ R 0 } = 1

„ n{mtn{mymuv v}rm

ρ ∈ R

vx{ n{pn~}y

k ∈ K c ρ ( a) = b c ρ (¯ a) = c ρ (a (k) ) = 1

{}

€v n

yx

mk

I

LPP T

V

##

9%.

p y

n

2

34

%

& $

#

#

%

bgb

i

b d

b e

f

d

b

bgb

i lm

n

ϑ, η

om urxnpnu}tv pt€

m

n

S

om p }punu}t vx{ n{pn

ϑ dom S η

k |{mt n{mym uv

ε 0 > 0

vx{ n{pn~}y

p

0 < ε < ε 0

n{

m y

m uv

p y

m

m

pt n

m

n}

y

a ? ∈ A e

pt€ pt

ε

ymmptn }punu}t

T = T a ? ε ⊆ S

vpnuv~utq

λ(T ) = εa ?

pt€

ϑ dom T η .

t }n{

m y

z }

y€v

„

z u

n{

y

m v

m

n n}

€ }

ru

tp n

u }

t u

n

uv vx u

mt n

pt

€

tm

m vv

p y

n}

}

t vu€

m

y

ε

ymmptn }punu}tv }tk

I

LPP

T " 9

#

| {

m }

y

m r

k

p y

n

2

34

%%

-./!

;

" "

#

%

$ " 8

#

%

a

b cde

f e

g d

i i jk lm

n

x

om pymurxnpnu}t pt€ mn

y ∈

H

t

k sv}„ mn

a

om pym}punu}tk mv{p vp n{pn

x

WPFQSERGM

y

XQE

a

u~

.%.!

xa ≤ v(a)

pt€

x τ > y τ

~

}

y

p

τ

zun{

a τ > 0 .

m

z yu

n

m

x dom a y

n} ut€upnm €}rutpnu} }runnutq n{m

a

u~ n{mxptw

n

u

p n

u }

t uv

qmtm y

p

k

‚

k lm

n

v

ompymqprmk svmn }~ ymurxnpnu}tvuv pm€XYZ[\R E]JG

u

~

n{mym uv t}puy

x, y ∈

vx{ n{pn

x dom y

{}€v nyxm 4

5

k

~}y mm ymurxnpnu}t

y ∈ /

n{mym muvnv

x ∈

vx{ n{pn

x dom y

{}€v nyxm 4( 5k

*

4

*

# 5

$

#

#

$+ +

#

#

+%%+

(

#

A

%

a

b cdefe

g d

i

i }

y

pt



t }

ttmqp n

u

m r

mp vxy

p

o

m

~

x

t

n

u }

t

ϑ

mn

.%0!

m τ := ess inf D τ (τ ∈ T)

pt€

m := (m τ ) τ∈T .

m

uv n{m mn}y }~ mvvmtnup FQSQFE }~

ϑ

k

(11)

?

ε

?

b

i i lm

n

x

om pymurxnpnu}t pt€ mn

ϑ

om p t}ttmqpnum rmpw

vxy

p

o

m

~

x

t

n

u }

tk lm

n

m

€mt}nm n{m mn}y }~ ruturp }~

ϑ

k ~„ ~}y v}rm

y

m

}

p

u n

u }

t

a

zm {pm

x dom a m

„ n{mt n{mym uv

ε 0 > 0

vx{ n{pn~}y p

ε

z u

n{

0 < ε < ε 0

n{

m y

m uv

pt

ε

ymmptn }punu}t

T ε = T εa

vx{ n{pn

.%1!

ϑ x dom T ε a ϑ

{

}

€v n

yx

mk

gg

#

-./

+

"

#

$9 2

34

%

i b

i

i

gg

i i lm n

o m p

n

p

o

m v

m n }

~

y

m

urx

n

p n

u }

t v

k | {

mt

H := {ϑ x x ∈

}

uv

p

n

p

o

m v

m n

k

gg

1 st STEP :

V

η ∈ / H

% V

m

##

η

% $+

m

#+

η

# +

η = ϑ m

%

m ∈ /

% *

m

#

+

#

m ∈ /

%

*

x ∈

a ?

x dom a ? m

% 7"

V

##

.%0 $ 9$ +

ε > 0

$

ϑ x dom T ε a? η

+

H

( %

2 nd STEP :

V

ϑ x , ϑ y ∈ H

##

T

ϑ x dom T ϑ y

% N

*

#

$

#

+

a ? ∈ A e

ε > 0

+$

ϑ x dom T ε a? ϑ y

% N

ϑ x , ϑ y

F

#

#

x dom a ? y

+ " %

H

+

%

i b

i

i

$+

(

.%2!

:=

(

x ∈

H

T ∃α = {α ρ } ρ∈R

4

( 5 %

%

x ≥ X

ρ∈R

α ρ c ρ )

.

)

" $

x ∈

( # #

λ ρ

""

(

"

%

(12)

b

i

i

&$

;

#

#

{c ρ } ρ∈R

SPS[WGDGSGLERG% #

#

"

#

#

9

#

#

"

%

*

#

" %%

;

#

8

4

#

$ 5

"

%

#

+8 + $%%%"%

{c ρ } ρ∈R

(# % 0+ #

σ ∈ R c σ = X

ρ∈R\{σ}

α r c ρ

$

4

(

5

{α ρ } ρ∈R\{σ}

+

a ∈

H

T c σ a = X

ρ∈R\{σ}

α ρ c ρ a ≥ min{c ρ a | ρ ∈ R \ {σ}} ,

v(a) = min

ρ∈R c ρ (a) = min

ρ∈R\{σ} c ρ (a) .

6+

c σ

# # %

""

$ "

"

SPS [W

G D

GSGL E O

K

$ 9

#

{c ρ } ρ∈R

u

tmp y

 u

t

€

m



mt

€

mt

n%

$ 8

#

#

;

#

#

"

" %

0

(

#

+

+ %%+

(

#

a ∈ A e

% V

.%3!

T := {τ ∈ T a τ > 0}

R := {ρ ∈ R λ ρ a = 1 } .

&

T

R

OELE ORGLQMRQOM

a

% < +$

$ $ '

a

;

#

;

{a τ } τ∈T

.%-C!

c ρ a = 1 ρ ∈ R a τ = 0 τ ∈ T \ T .

7" + 8

(

#

A e

#

{c ρ } ρ∈R

" %

+

$ 9"

#

"

$

8

#

{c ρ } ρ∈R

%

*

+

%%

#

+

|T |, |R |

#

a

+ $

|T | = |R | > 0

% 7"+

$ .%0! OE

L E OR

GL Q

Q

S D

MKM R

GF

a

% + .%-C! ?

#

|T | = |R |

;

|T | = |R | a τ (τ ∈ T )

%

+

#

$ $ $ $

#

#

{c ρ } ρ∈R

"

(

%

(13)

?

ε

?

◦ eeeeee

0

A

(# $

ε

! $ 8 .%2!% N

8

A

$

xa ≥ 1

x ∈

A

SPLFEJM %

# '"

#

#

∂A

A

A e

% 6+#

a ∈ ∂A

"

{x ∈

xa = 1}

*

+;

"

+

+

(

#

A

+

(t − 1)

# !" +

%%+TE O

G

R % $

b

i i

.%--!

=

x ∈

H

t + xa ≥ 1(a ∈ A) =

x ∈

H

t + xa ≥ 1(a ∈ A e )

p v

z m

p v

.%-.!

A =

a ∈

H

t + xa ≥ 1 (x ∈

) =

a ∈

H

t + c ρ a ≥ 1 (ρ ∈ R)

#

"

A

#9 %

(14)

*

$

SPS [W

G D

GSGL E O

K

(

#

a ∈ A e

; 8

OE

L E OR

GL Q

M RQO

M +

9%-!

T := {τ ∈ T a τ > 0}

R := {ρ ∈ R λ ρ a = 1 }

$

|T | = |R | > 0

% $ '

a

;

'"

# +

%%+

#

;

{a τ } τ∈T

9%.!

c ρ a = 1 ρ ∈ R

a τ = 0 τ ∈ T \ T

9%.!?

#

|R |

;

|T | = |R | a τ (τ ∈ T )

%

a ∈ A e

% 7 (#

A

+

a

" "

(

#

"% *

+

#

" "

(

#

#

"

;

8

9%.!

+

(

"

8

R

% >

bgb

i h

i lm

n

a ∈ A e

om p ymmptn ym}punu}t pt€ mn

T , R

o m

n{

m

{

p y

p

n

m yuv

n

uv

z u

n{

|T | = |R | =: s ≥ 2

k lmn

π ∈ R

k |{mt

n{

m y

m m uv

n

v

p x

t u

x

m

a ? = a ∈ A e

zun{ {pypnmyuvnuv

T ?

„

R ?

vx{ n{pn{m

u

t n

m y

p

9%9!

[a , a ? ] := {ta + (1 − t)a ? 0 ≤ t ≤ 1}

uv

pt m

€

qm }

~

A

pt€ }tm }~ n{m~}}zutq pnmytpnumv {}€ nyxm

jk u

n {

m y

n {

m y

m m uv

n

v

τ ∈ T

vx{ n{pn

9%…!

T ? = T \ {τ } , R ? = R \ {π} .

‚

k y

m

v

m n{

m y

m m uv

n

v v }

r

m

σ / ∈ R

vx{ n{pn

9%.!

T ? = T , R ? = (R \ {π}) ∪ {σ} .

gg

1 st STEP :

'"

#

c ρ a = 1 (ρ ∈ R ) a τ = 0 (τ / ∈ T ) .

9%0!

(15)

?

?

"

!

#

"

c π

#

# +

%%+

9%1!

R \{π}

T :=

(

a ∈

H

t c ρ a = 1 (ρ ∈ R \ {π}) a τ = 0 (τ / ∈ T )

) .

7

a

(#

A

+

A

A

% 8 ? $

A

#

(

#

a ?

A

%

$

>

a ?

8 ;

a τ

C

#

τ ∈ T

% /

a ?

8 ;

c σ a = 1

%

1 st STEP :

& 8 $

9%2!

T ? = T \ {τ } , R ? = (R \ {π}) .

a

; !#

c ρ a = 1 (ρ ∈ R ? )

a τ = 0 (τ / ∈ T ? ) .

9%3!

2 nd STEP :

*

a ?

#

c ρ a = 1 (ρ ∈ (R \ {π}) ∪ {σ})

a τ = 0 (τ / ∈ T ) .

9%-C!

$

9%--!

T ? = T , R ? = (R \ {π}) ∪ {σ}.

i b

i

i

bgb

i i lm

n

a ∈ A e

om p ymmptn mn}y pt€ mn

T , R

om n{m

{

p y

p

n

m yuv

n

uv

z u

n

{

|T | = |R | =: s

k lmn

τ / ∈ T

k |{mt n{mym muvnv p

x

t u

x

m

a ? = a ∈ A e

zun{ {pypnmyuvnuv

T ?

„

R ?

vx{ n{pn {m utnmyp

9%-.!

[a , a ? ] := {ta + (1 − t)a ? 0 ≤ t ≤ 1}

uv

pt m

€

qm }

~

A

pt€ }tm }~ n{m~}}zutq pnmytpnumv {}€ nyxm

jk u

n{

m y

n{

m y

m m uv

n

v

σ / ∈ R

vx{ n{pn

9%-9!

T ? = T ∪ {τ } , R ? = R ∪ {σ} .

(16)

‚

k y

m

v

m n{

m y

m m uv

n

v v }

r

m

b τ ∈ T

vx{ n{pn

9%-…!

T ? = (T \ { τ b }) ∪ {τ } , R ? = R .

gg

(

#

a

$ "

"

τ

#+%%+ #" ;

a τ = 0

!

9%-.!

R

T ∪{τ} :=

(

a ∈

H

t c ρ a = 1 (ρ ∈ R )

a τ = 0 (τ / ∈ (T ∪ {τ})) )

.

$

A

"

A

+

(

$

a ?

%

i b

i

i

gg

i

i lm

n

a ∈ A e

om p ymmptnym}punu}t pt€ mn

T , R

om

n{

m

{

p y

p

n

m yuv

n

uv

k | {

mt

a

uv }pnm€ }t m€qmv

9%-0!

[a , a ? ] := {ta + (1 − t)a ? 0 ≤ t ≤ 1}

z u

n{

tm u

q {

o }

yu

tq

m y

n

u

m

v

a (ρ ∈ R )

pt€

a (τ / ∈ T )

p}y€utq n} |{m}w

y

m r

kj pt

€

| {

m }

y

m r

k

‚

k }

y

m }

m y

„

jk

~

s = |T | = |R | = 1

„ vp

R = {π}

pt€

T = { b τ }

„ n{mt

a = e τ b

uv

p

o p

vuv

m

n}

y }

~

H

t

}

t n

p u

tm

€ u

t xv

n }

tm

A π 1

k k t n{uv pvm n{mym

p y

m m

p

n



t − 1

p€pmtn m€qmv

[a , a ]

~}y

τ ∈ T \ { b τ}

zun{ mun{my

T ? = (T \ { τ b }) ∪ {τ } , R ? = R

p}y€utq n} 9%-9! }y mvm

T ? = (T \ { b τ}) ∪ {τ } , R ? = R

p}y€utq n} 9%-…!k |{pn uv„

n{

m y

m uv

p

€

m



p y

n

xy

m m

€

qm

~

}

y

mp

{

a

~

}

y

mp

{

τ 6= b τ

k

‚

k

v

s ≥ 2

„ n{mt n{mym pym mpn

t

p€ pmtn m€qmv

[a , a ? ]

k |{mvm pym

m u

n{

m y

}

o n

p u

tm

€

o



€

m



p y

n

u

tq u

t

€uy

m

n

u }

t }

~

v }

r

m

τ

pv ut |{m}ymrk‚

}

y

o



mp u

tq v

}

r

m

A π 1

pv ut kjk

k s t



m

n

y

m r

p

a

}~

A

{pv pn r}vn

r

}vunum }}y€utpnmvk

a

b cdefe

g d

i i lm

n

a ∈ A e

om p ymmptnym}punu}t pt€ mn

T , R

om

n{

m

{

p y

p

n

m yuv

n

uv

k lm

n

τ ∈ T , π ∈ R

k

jk

m

v

p

 n{

p

n

a

uv LGWUOGWn}

a

up

(τ, π) ∈ T × R

u~ 9%…!uv pk

| {

p n

uv

„

~

}

y n{

m v

m

}

t

€

m

€

qm

a

€mvyuom€o 9%9!pt€n{m}yymv}t€utq

{

p y

p

n

m yuv

n

uv

z m

{

p

m

9%-1!

T = T \ {τ } , R = R \ {π} .

m

z yu

n

m

a τ,π ⇒ a .

pt

€ y

m

~

m y

n}

n{

m }



m y

p n

u }

t u

t

€u

p n

m

€

p v

p

y }

m vv

}

~

y

m

€x n

u }

t

}

y xv n

LG WUORQ

PS

k

Referenzen

ÄHNLICHE DOKUMENTE

– Equation of Motion and Possible Calculation Approaches – Calibration Concept and Simulation Architecture.. • Parameters

To fill the gap, and motivated to understand the mutual dependencies between intrinsic frequency, voltage resonance, and population spiking resonance, I employ the Gaussian

We study the parameterized complexity of detecting small backdoor sets for instances of the propositional satisfiability problem (SAT).. The notion of backdoor sets has been

[r]

We focus on convex vNM–Stable Sets of the game and we present an existence theorem valid for “Large Economies” (the term is not quite orthodox).. There are some basic assumptions

Universit¨ atsstraße 25 D-33615 Bielefeld · Germany e-mail: imw@uni-bielefeld.de http://www.imw.uni-bielefeld.de/wp/.

Die Merkmale des Portfolios sind nicht festgelegt und können sich im Laufe der Zeit innerhalb der Grenzen des Fondsprospekts ändern.. Aktien Anleihen

Orbits along a balanced growth path of the homogeneous system are defined as a solution exhibiting common constant geometric contraction or expansion of all state variables in