• Keine Ergebnisse gefunden

3. Mass spectrometry - functional principle - ionization

N/A
N/A
Protected

Academic year: 2022

Aktie "3. Mass spectrometry - functional principle - ionization"

Copied!
31
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Tandem Mass Spectrometry Detection Methods for Shellfish Toxins

(ASP, DSP, PSP)

(2)

2. Toxins

3. Mass spectrometry - functional principle - ionization

- mass analyzers - quadrupoles

- triple quad scan modes 4. Algal toxin - spirolides

MS/MS methods - yessotoxins - PSTs

- multi toxin method 1. Introduction

5. Conclusions

(3)
(4)

2005 1970

Global Distribution of Paralytic Shellfish Poisoning Events

(5)

N H HOOC

HOOC

2

3 4

5 7 6

8

1'

5'

6'

7' 8'

COOH

Toxins

Diatoms

Pseudo-Nitzschia pungens

Amnesic Shellfish Poisoning

Domoic acid

(6)

Dinoflagellates

O

O O

O O

O

O O

O O O

OH

O

O O

O O

O O

O O

O O O O O O

O O O O O

O

OH

OH H

H H

OH

OH OH

H H H

H OH

H HO

OH

H OH

H OH

HOH H

OH H H H H H H OH H H H H

OSO3Na OH H H H H

OHH H H H H H

OH H

OH OH H H H H H H

H H H H H OH HO

HO

H H OH H HO OH

OH

HO OH

NaO3SO

H

HN

N N

H H N

NH 2 OH OH O

H 2 N O

H 2 N

Paralytic Shellfish Poisoning

Saxitoxin

O O

O O

O O

O O

O

O O

O

H H H

H H H

H H

H HO

H H H

H H

H

O

Brevetoxin

Maitotoxin Yessotoxin

O

O O

O O

O O

O O

O O

-O3SO

Me H

H

Me

H

H Me

Me Me H H H H H

Me H H H H H

H H

H H

H HO

-O3SO

OH

13-desmethyl spirolide C

O O

N

O

O O OH

HO

2 3

31

13

Azaspiracid-1

NH

O O

O O O O O O

OH

O

OH HO H

H H

H

H

H

H A

B

C D

E

F H G I

1

10

13

14

21

28 26

32 37

40

H O

O O O H

O

O O

O

O H O

O H

O H O

Neurotoxic Shellfish Poisoning Diarrhetic Shellfish Poisoning

Okadaic acid

Toxins

Lingulodinium polyedrum

(7)

1. Ionization Ion source

3. Mass separation Mass analyzer

4. Ion detection Electron multiplier 2. Acceleration Interface

Functional Principle

Mass spectrometry is the determination of mass to charge (m/z) ratio of any compound

Process Instrumentation

(8)

Electrospray ion source

Ionization

(9)

Mass Analyzers

2 categories: scanning and non-scanning analyzers

time-of-flight (TOF)

Fourier-transform ion cyclotron resonance (FT-ICR)

Sector field Quadrupole

Acurate quantitation

Ion trap

Exact mass measurement

Structural information

cost

(10)

Quadrupole

m/z=100

m/z=1000 m/z=10

The magnetic frequencies of the quadrupole rods are modulated that way, that only a certain m/z value hits the detector at a time

Advantage: robustness

reproducible mass spectra

linear response over several orders of magnitude

Quadrupoles

(11)

Product ion scan

Q1 Q2 Q3

mass filter scan

Triple Quad Scan Modes

collision cell

(12)

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 T i m e , m i n

0 , 0 5 , 0 e 7 1 , 0 e 8 1 , 5 e 8 2 , 0 e 8 2 , 5 e 8 3 , 0 e 8 3 , 5 e 8 4 , 0 e 8 4 , 5 e 8 5 , 0 e 8 5 , 5 e 8 6 , 0 e 8 6 , 5 e 8

7 , 0 e 8 1 1 , 5 5

1 2 , 3 5

Sample A:

Product ion scan chromatogram of m/z 650

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0

m / z , a m u 2 ,0 e 6

4 ,0 e 6 6 ,0 e 6 8 ,0 e 6 1 ,0 e 7 1 ,2 e 7 1 ,4 e 7 1 ,6 e 7 1 ,8 e 7 2 ,0 e 7 2 ,2 e 7 2 ,4 e 7 2 ,6 e 7

2 ,8 e 7 4 0 2 ,2

1 6 4 , 1

6 3 2 ,4

3 8 4 , 2

6 1 4 , 3

1 7 7 , 1 2 0 6 ,2

3 6 6 , 3 3 0 2 ,2

2 2 0 ,2 3 5 6 , 2 5 9 6 , 3

1 4 7 , 1

4 8 0 , 3

2 4 8 , 2 2 5 8 ,2 4 1 2 ,3

1 1 9 , 0 1 5 7 , 1 1 8 7 , 1 2 0 8 , 2 2 9 8 , 2 3 0 4 , 3 3 7 2 , 2 4 3 0 , 3 5 1 6 , 3 5 3 4 , 2 5 7 0 ,4 5 8 6 , 4 6 5 0 , 4

Product ion spectrum of peak @ 11.55 min

11.55 min

Triple Quad Scan Modes

(13)

Multiple Reaction Monitoring (MRM)

collision cell mass filter mass filter

Triple Quad Scan Modes

Q1 Q2 Q3

(14)

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 T i me , mi n

0 , 0 1 , 0 e 5 2 , 0 e 5 3 , 0 e 5 4 , 0 e 5 5 , 0 e 5 6 , 0 e 5 7 , 0 e 5 8 , 0 e 5 9 , 0 e 5 1 , 0 e 6 1 , 1 e 6 1 , 2 e 6 1 , 3 e 6

1 , 4 e 6 1 1 , 5 3

1 2 , 3 4

Sample A:

MRM chromatogram of the transition m/z 650 > 164

11.53 min

6 4 0 ,5 /1 6 4 , 1 6 5 0 , 5 / 1 6 4 ,1

Q 1 /Q 3 M a s s e s , a m u 0 ,0

1 ,0 e 5 2 ,0 e 5 3 ,0 e 5 4 ,0 e 5 5 ,0 e 5 6 ,0 e 5 7 ,0 e 5 8 ,0 e 5 9 ,0 e 5 1 ,0 e 6 1 ,1 e 6 1 ,2 e 6 1 ,3 e 6 1 ,4 e 6

MRM “spectrum” of peak @ 11.53 min

Triple Quad Scan Modes

(15)

O O

N

O

O O

OH

HO

2 3

31

13

13-desmethyl spirolide C

Example: Spirolides

Polarity: positive

Alexandrium ostenfeldii

(16)

Sleno et al. (2004) Anal Bioanal Chem 378 : 969-976 Fragmentation pattern of

13-desmethyl spirolide C

Example: Spirolides

(17)

Chromatography

Luna C18 150x3 mm, 3 µm, 100 Å A: 2mM NH 4 HCOO, 50 mM HCOOH

B: 2mM NH 4 HCOO, 50 mM HCOOH in 95% ACN Linear Gradient: 22%B Æ 65%B (0-50 min) Flow rate: 200 µl/min

Temperature: 35°C

API 4000 QTrap, positive, MRM CUR: 20

CAD: High IS: 5500 TEM: 650 GS1: 40 GS2: 70 ihe: ON

DP: 121

EP: 10

CE: 57

CXP: 22

spirolide C

20-Me spirolide G

? ?

? ?

?

? ?

?

Example: Spirolides

(18)

O

O

O

O

O

O O

O O

O O

- O 3 SO

Me H

H

Me

H

H Me

Me Me H

H H

H H

Me H H H H H

H H

H H

H HO

- O 3 SO

OH

yessotoxin

Example: Yessotoxins

Polarity: negative

Gonyaulax

spinifera Lingulodinium

polyedrum Protoceratium

reticulatum

Protoceratium reticulatum

Lingulodinium polyedrum

Gonyaulax spinifera

(19)

Miles et al. (2005) Harmful Algae 4 : 1075-1091

The most abundant fragment of all

YTXs is the loss of SO 3 from the

sulfate groups

Example: Yessotoxins

(20)

5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 Time, min

0,0 2,0e4 4,0e4 6,0e4 8,0e4 1,0e5 1,2e5 1,4e5 1,6e5 1,8e5 2,0e5 2,2e5 2,4e5 2,6e5 2,8e5

7,87

1047.6 > 967.6 1141.6 > 1061.6 1143.6 > 1063.6 1175.6 > 1095.6 1273.6 > 1193.6

LC-MS/MS MRM Chromatogram of a Protoceratium reticulatum isolate from the Benguela Current, South Africa

Example: Yessotoxins

(21)

Alexandrium

andersonii catenella fundyense minutum peruvianum tamarense tamiyavanichii Pyrodinium

bahamense Gymnodinium

catenatum Anabaena

circinalis

lemmermannii Aphanizomenon

flos-aquae Cylindrospermopsis

raciborskii Lyngbya

wollei Microcystis

aeruginosa Alexandrium tamarense

Microcystis aeruginosa Pyrodinium bahamense

HN

N N

H H N

NH 2 OH OH O

H 2 N O

H 2 N

Alexandrium catenella

Example: PSP

(22)

Toxin R1 R2 R3 R4 MW Ions formed

STX H H H 301 [M-H + ] + = 300

NEO OH H H 317 [M-H + ] + = 316

GTX1 OH H OSO 3 - 412 M + = 412

GTX2 H H OSO 3 - 396 M + = 396

GTX3 H OSO 3 - H 396 M + = 396

GTX4 OH OSO 3 - H 412 M + = 412

B1= GTX5 H H H 380 M + = 380

B2= GTX6 OH H H 396 M + = 396

C3 OH H OSO 3 - 492 [M-SO 3 - ] + = 412

C1 H H OSO 3 - 476 [M-SO 3 - ] + = 396

C2 H OSO 3 - H 476 [M-SO 3 - ] + = 396

C4 OH OSO 3 - H 492 [M-SO 3 - ] + = 412

dc-STX H H H 258 [M-H + ] + = 257

dc-NEO OH H H 274 [M-H + ] + = 273

dc-GTX1 OH H OSO 3 - 369 M + = 369

dc-GTX2 H H OSO 3 - 353 M + = 353

dc-GTX3 H OSO 3 - H 353 M + = 353

dc-GTX4 OH OSO 3 - H 369 M + = 369

H (Decarbamoyl-)

CO-NH-SO 3 - (N-Sulfocarbamoyl-)

CO-NH 2 (Carbamoyl-)

Example: PSP

(23)

HILIC-LC-MS/MS MRM Chromatogram of Paralytic Shellfish Toxins

Example: PSP

(24)

Definition: Multi methods aim to analyze toxins of as many as possible different classes

Limitations: limited amount single compounds

group elution of every toxin class required Multi Method

Problems: each compound class requires individual MS parameters:

(curtain gas, ion source temperature, ionization voltage, auxiliary gas flows, ion polarity, quadrupol voltages, fragmentation energy)

Prerequisites: extractability under same conditions elution with same solvent system

Summary: Multimethods are a compromise between a number of

toxins to be analyzed and sensivity

(25)

5. Dinophysistoxins HO

O O OH

O

O O

O

OH O

OH

OH O

6. Pectenotoxins

O O

O O

O O O

O

OH O

OH

OH

O O

A B

C

D E

F

7

14

3. Spirolides NH

O

O

O O O O

O O OH

O

OH HO H

H H

H

H

H

H A

B

C D

E

F H G I

1

10

13

14

21

28 26

32 37

40

Protoperidinium crassipes

Prorocentrum lima

Dinophysis acuminata

?

Multi Method

1. ASP

2. Gymnodimine

4. Azaspiracids

7. Yessotoxins

(26)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time, min

0,0 1000,0 2000,0 3000,0 4000,0 5000,0 6000,0 7000,0 8000,0 9000,0 1,0e4 1,1e4 1,2e4 1,3e4 1,4e4 1,5e4 1,6e4 1,7e4

7,36

9,61

8,33

8,50 8,15

12,25 0,84 7,07

0,71 11,71

9,02

Period 1:

Domoic acid (ASP)

Period 2: cyclic imino toxins (spirolides, gymnodimine)

Period 3:

Polyether toxins

(DTX, PTX, YTX, AZP)

LC-MS/MS MRM

multi period chromatogram of a field sample from

Alfacs Bay, Catalonia, Spain

Multi Method

(27)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti m e,mi n

0, 0

1000, 0

2000, 0

3000, 0

4000, 0

5000, 0

6000, 0

7000, 0

8000, 0

9000, 0

1, 0e4

1, 1e4

1, 2e4

1, 3e4

1, 4e4

1, 5e4

1, 6e4

1, 7e4

7, 36

9, 61

8, 33

8, 50

8, 15

12,25

7, 07

0, 84

0, 71 11, 71

9, 02

8, 8 8 , 9 9 , 0 9, 1 9 , 2 9, 3 9 , 4 9 , 5 9, 6 9 , 7 9 , 8 9, 9 1 0 , 0 1 0, 1 10 , 2 1 0 , 3 1 0, 4 10 , 5 1 0 , 6 1 0, 7 10 , 8 1 0 , 9 1 1, 0 11 , 1

Ti me, mi n 0, 00

50 0 , 0 0 10 0 0, 00 15 0 0, 00 20 0 0, 00 25 0 0, 00 30 0 0, 00 35 0 0, 00 40 0 0, 00 45 0 0, 00 50 0 0, 00 55 0 0, 00 60 0 0, 00 65 0 0, 00 70 0 0, 00 75 0 0, 00 80 0 0, 00 85 0 0, 00 90 0 0, 00 95 0 0, 00 1, 00 e 4 1, 05 e 4 1, 10 e 4 1, 15 e 4

9, 61

9.61 min

5 0 8 ,3 /4 9 0 , 1 6 9 2 ,6 /1 6 4 , 1 6 9 2 , 6 / 1 5 0 , 1 6 9 4 , 6 / 1 6 4 , 1 6 9 4 , 6 / 1 5 0 , 1 7 0 6 , 6 / 1 6 4 , 1 7 0 8 , 6 / 1 6 4 ,1

0 ,0 0 5 0 0 , 0 0 1 0 0 0 ,0 0 1 5 0 0 ,0 0 2 0 0 0 ,0 0 2 5 0 0 ,0 0 3 0 0 0 ,0 0 3 5 0 0 ,0 0 4 0 0 0 ,0 0 4 5 0 0 ,0 0

5 0 0 0 ,0 0 gymnodimine

13-desmethyl spirolide C

Spirolide A

13-desmethyl spirolide D

Spirolide B Spirolide C Spirolide D

spectrum of peak @ 9.61 min Period 2:

cyclic imino toxins (spirolides, gymnodimine)

Multi Method

LC-MS/MS MRM

multi period chromatogram of a field sample from

Alfacs Bay, Catalonia, Spain

(28)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti m e,mi n

0, 0

1000, 0

2000, 0

3000, 0

4000, 0

5000, 0

6000, 0

7000, 0

8000, 0

9000, 0

1, 0e4

1, 1e4

1, 2e4

1, 3e4

1, 4e4

1, 5e4

1, 6e4

1, 7e4

7, 36

9, 61

8, 33

8, 50

8, 15

12,25

7, 07

0, 84

0, 71 11, 71

9, 02

1 1, 4 1 1, 6 1 1, 8 1 2, 0 1 2, 2 1 2, 4 1 2, 6 1 2, 8 1 3 , 0 1 3 , 2 1 3 , 4 1 3 , 6 1 3 , 8 1 4 , 0 14 , 2 14 , 4 14 , 6 14 , 8 15 , 0 15 , 2 15 , 4 1 5, 6 1 5, 8

Ti me, mi n 0

10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0

18 0 0 1 2 , 2 5

1 1 , 7 7 1 1 , 7 1

1 2, 73

1 3 , 6 0 13 , 7 2

14 , 2 7 14 , 6 7 1 5 , 2 2 1 5 , 7 2

11.71 min

Period 3: polyether toxins (DTX, PTX, YTX, AZP)

822, 6/ 223, 1 836, 6/ 237, 1 946, 6/ 223, 1 876, 6/ 213, 1 874, 6/ 213, 1 894, 6/ 213, 1 892, 6/ 213, 1 842, 6/ 824, 6 1160, 6/ 965, 6

Q1/ Q3 Masses, amu 0

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 770

okadaic acid

dinophysistoxin-1

okadaic acid C8 diol ester

pectenotoxin-2

pectenotoxin-12

pectenotoxin-2 seco acid

pectenotoxin-11

azaspiracid-1

Spectrum of peak @ 11.71 min

Multi Method

LC-MS/MS MRM

multi period chromatogram of a field sample from

Alfacs Bay, Catalonia, Spain

(29)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti m e,mi n

0, 0

1000, 0

2000, 0

3000, 0

4000, 0

5000, 0

6000, 0

7000, 0

8000, 0

9000, 0

1, 0e4

1, 1e4

1, 2e4

1, 3e4

1, 4e4

1, 5e4

1, 6e4

1, 7e4

7, 36

9, 61

8, 33

8, 50

8, 15

12,25

7, 07

0, 84

0, 71 11, 71

9, 02

1 1, 4 1 1, 6 1 1, 8 1 2, 0 1 2, 2 1 2, 4 1 2, 6 1 2, 8 1 3 , 0 1 3 , 2 1 3 , 4 1 3 , 6 1 3 , 8 1 4 , 0 14 , 2 14 , 4 14 , 6 14 , 8 15 , 0 15 , 2 15 , 4 1 5, 6 1 5, 8

Ti me, mi n 0

10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0

18 0 0 1 2 , 2 5

1 1 , 7 7 1 1 , 7 1

1 2, 73

1 3 , 6 0 13 , 7 2

14 , 2 7 14 , 6 7 1 5 , 2 2 1 5 , 7 2

Period 3: polyether toxins (DTX, PTX, YTX, AZP)

8 2 2 ,6 /2 2 3 , 1 8 3 6 ,6 /2 3 7 , 1 9 4 6 ,6 /2 2 3 , 1 8 7 6 ,6 / 2 1 3 ,1 8 7 4 , 6 / 2 1 3 ,1 8 9 4 , 6 / 2 1 3 ,1 8 9 2 , 6 / 2 1 3 ,1 8 4 2 , 6 / 8 2 4 ,6 1 1 6 0 , 6 / 9 6 5 , 6 0

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

okadaic acid

dinophysistoxin-1

okadaic acid C8 diol ester

pectenotoxin-2

pectenotoxin-12

pectenotoxin-2 seco acid

pectenotoxin-11

Spectrum of peak @ 12.25 min

yessotoxin

azaspiracid-1

Multi Method

12.25 min

LC-MS/MS MRM

multi period chromatogram of a field sample from

Alfacs Bay, Catalonia, Spain

(30)

5. Multi methods are a good tool for screening a defined amount of different toxins, but do not give an overall toxin response

1. The mass analyzer of choice for quantitation of algal toxins by LC-MS is the quadrupole (or better: triple quad)

2. Ionization of algal toxins is best achieved by electrospray

ionization (ESI) with acidic and basic modifiers (formic acid and ammonium formate, respectively) in the mobile phase

3. Most toxin classes can be identified by characteristic group fragments of the individual components

4. Hydrophilic Interaction (HILIC) stationary phases for the first

time allow to analyze very polar PSTs by LC-MS

(31)

Wolfgang Drebing, AWI

…and for your attention!

Referenzen

ÄHNLICHE DOKUMENTE

Figure A14. Offline nano-ESI-MS of a solution containing CaM and both AC8 peptides. Deconvoluted singly charged mass spectra are presented. Scheme of cross-linking reactions using

The ions in this series were assigned with an average mass accuracy of 10 ppm over the range m/z 800–1800 to HMMD-M3000 species with DPs ranging from 9 to 21, which is in agreement

To investigate the sulfation pattern ofCS/DS structures expressed in CNS, we introduced here a novel method based on an advanced system encompassing fully automated

Abstract We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to

Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention & National Institutes of Health. Biosafety in Microbiological

In the present study, the gas-phase dissociation of platinated oligonucleotides and methylphosphonate- oligodeoxynucleotides has been investigated by electro- spray ionization

Bond rearrangement and protonation of the leaving group (y ion) by the protonated nucleobase would finally result in cleavage of the phosphodiester backbone and in the formation of

The unassigned features might arise from the transitions between the X 1 A 1 ground state and the next higher excited states or as a result of vibronic coupling between