• Keine Ergebnisse gefunden

Probability of occurrence (%)

N/A
N/A
Protected

Academic year: 2022

Aktie "Probability of occurrence (%)"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Unit 3:

Identification of Hazardous Events

H.P. Nachtnebel

Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau

Unit 3 Hazard Identification H.P. Nachtnebel

(2)

Objectives

 Risk assessment is based on the

estimation of probabilities of hazardous events

estimation of a loss (damage) function for env. risk

or dose-response function for health risk

 This modules analysis probabilities of hazardous

events

(3)

Risk Definition

 A hazardous event

 A probability distribution function (pdf)

 The consequences (damages, victims,..)

f (Q)

Q

Potential Damages D (Q)

Q X*

old

 

*

) ( )

(

*) (

X

dX X

D X

f X

R

Unit 3 Hazard Identification H.P. Nachtnebel

page 3

(4)

Identification of extremes

(5)

page 5

Time Series of Runoff and Precipitation

continuous

discrete

Unit 3 Hazard Identification H.P. Nachtnebel

(6)

An Example

 A critical load has to be analysed

What is the probability that this level is exceeded ?

Threshold Q*

(7)

page 7

An Example:

temporal variability of water availability

Demand

Run length of decrease

Unit 3 Hazard Identification H.P. Nachtnebel

(8)

An Example: surplus and deficit

Deficits D

i

Surplus S

i

(9)

page 9

Extremes

Annual series: each largest value in a year

Unit 3 Hazard Identification H.P. Nachtnebel

(10)

Partial Duration Series

All independent values above the threshold level

e.g. 1991 check the time distance and the minimum in between

Threshold Q*

(11)

A comparison of an annual with a partial series

Seite 11

Unit 3 Hazard Identification H.P. Nachtnebel

(12)

Distribution of selected flood peaks

Peak discharge Q

Probability of occurrence (%)

Q*

(13)

Seite 13

Example of 2 distributions

 Normal distribution

• 2-parameters

• Symetric

• Unbounded on both sides

Jahresniederschlag Jahrestemperatur

Unit 3 Hazard Identification H.P. Nachtnebel

(14)

Example of 2 distributions

 Normal distribution

• 2-parameters

• Symetric

• Unbounded on both sides

 Gumbel distribution

Jahresniederschlag Jahrestemperatur

(15)

page 15

Useful Distributions for Extremes

 Log-Normaldistribution

 Gumbeldistribution

 Log-Gumbeldistribution

 Pearson III-distribution

 Log-Pearson III distribution

 Weibull distribution

 Wakeby distribution

 Gamma distribution

 ….

Unit 3 Hazard Identification H.P. Nachtnebel

(16)

Quantils and distribution

 Relation between Q and P(Q>Q T )

• F(Q) is the distribution function

• f(Q) is the density function

f(Q)

Q Q

0

F(Q)

1

Area right from Q

T

= 1/T

Q

T

(17)

Gumbel distribution

• 2 parameters: a, c

• Double exponential

• Left side bounded, rigt side unbounded

page 17

Take the log

Unit 3 Hazard Identification H.P. Nachtnebel

(18)

Gumbel distribution

• 2 parameters: a, c

• Double exponential

• Left side bounded, rigt side unbounded Take the log

Take the log and multiply by (-1)

(19)

Gumbel distribution

• 2 parameters: a, c

• Double exponential

• Left side bounded, rigt side unbounded

page 19

Take the log

Take the log and multiply by (-1)

= y

T

is a straight line

Unit 3 Hazard Identification H.P. Nachtnebel

(20)

Example: Estimation of a rare event

 Plotting Positions

often Weibull plotting is used

Jahr 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

Q

max

342 415 199 278 512 333 395 607 212 437

Rank 6 4 10

8 2 7 5 1 9 3

T 1,7 2,5 1 1,3

5 1,4

2 10 1,1 3,3

Weib.

1,8

2,8

1,1

1,4

5,5

1,6

2,2

11

1,2

3,7

(21)

page 21

Graphical Representation

Wahrscheinlichkeitspapier für Gumbel-Verteilung

0 20 40 60 80 100

-2 -1 0 1 2 3 4 5 6 7

reduzierte Variable yT

X

1.001 1.01 1.1 1.2 1.5 2 3 4 5 10 25 50 100 200 300 400 500 1000

Wiederkehrintervall

0.1 1 50 75 80 90 96 98 99 99.8 99.9

Unterschreitungswahrscheinlichkeit [%]

Modus Mittel

200 300 400 500 600 700

800 900 1000 1100

925

Q(m3/s)

??

Unit 3 Hazard Identification H.P. Nachtnebel

(22)

Computational Approach

 Gumbel distribution F(x): has parameters a and c

 Parameters a and c can be related to 𝑥 and s x

(23)

Computational Approach

 Gumbel distribution F(x): has parameters a and c

 Parameters a and c can be related to 𝑥 and s x

 Estimation of a rare event x T

page 23

Unit 3 Hazard Identification H.P. Nachtnebel

(24)

Computational approach

 Estimation of and s x

 (m 3 /s)

 s x : 128,3 (m 3 /s)

 K T is f (T) and is available in any statistic book

 for T = 100 K T = 4,323

 x T=100 = 928 (m3/s)

(25)

Sampling uncertainty

 Each estimated value has a pdf (uncertainty)

 Because we have a small sample

 Another sample would yield different results

 Lets make an experiment!

• Perfect model and perfect observations

• 1000 years „observed“ (simulated)

• Take sub-samples each of 25 years

• Extreme value analysis for each sub-sample

page 25

Unit 3 Hazard Identification H.P. Nachtnebel

(26)

Sampling uncertainty

 Assumptions:

Perfect observations

Perfect model

1000 years observed

Take sub-samples each of 25 years

Extreme value analysis for each sub sample

Using all data

(27)

Estimation uncertainty

 The shorter the observation length n the larger is the uncertainty

 The larger the variance s x the larger is the uncertainty

 The lower the probability of occurrence (the larger T) the larger is the uncertainty

 The larger the confidence level  the larger is the uncertainty

 With probability of 95 % x T = 928 +- 409,18 (m 3 /s)

page 27

Unit 3 Hazard Identification H.P. Nachtnebel

(28)

Comparison of different pdfs (models) fitted to the same data set

HQ Statistik Ill - Vandans

Jährliche Reihe

0 50 100 150 200 250 300 350 400 450 500

48.8 68.8 88.8 108.8 128.8 148.8 168.8 188.8 208.8 228.8 248.8 268.8 288.8 308.8 328.8

Q sortiert nach WEIBULL P III

95% Konfidenzintervall P III Gumbel

95% Konfidenzintervall Gumbel LP III

95% Konfidenzintervall LP III AEV

95% Konfidenzintervall AEV

200 500 50 100

10 30 2 5

1.05 1.5 T

0.998 0.966 0.98

0.5 0.8

0.05 Pu

HQ [m³/s]

300 0.997

(29)

Summary and conclusions

 A time series has been observed

 A critical threshold is being defined

 annual or partial series is obtained

 A model is chosen and fitted to the extremes

 Extrapolation and estimation of rare events (X 100 , X 500 ,…)

 Assessing the uncertainty

page 29

Unit 3 Hazard Identification H.P. Nachtnebel

Referenzen

ÄHNLICHE DOKUMENTE

Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M , the class σ[M ] of all M -subgenerated modules is mono-correct if and only if M

(4) What are the likely differences to emerge between insurance premiums and the level of protection in states w h c h are hghly regulated (e.g., New Jersey)

North Korea has long engaged in provocative behavior on the Korean peninsula, recently including cyber attacks, but the probability of general war with South Korea remains

There are also a number of papers devoted to numerical solution of probabilistic constrained programming (for references see Prekopa [32, 331). In the present paper we

The substance release rate depends on the phase of the substance released (see 3.1.1, p. 5), the area of release (the size of the hole) and the difference in temperature and pressure

When we performed PCR using primers located in the 6th exon of Prdm2, the observed mRNA level of Prdm2 were remarkably high, which was totally contrary to result using

From the paradox of the negative probabilities of events in a triangular room, it follows that even the observation of all without an exception pairs of events from the observed set

Qualitatively, score ratios between faces decreased from upright to inverted orientation, suggesting that the faces became less discriminable by inversion.. In the literature,