• Keine Ergebnisse gefunden

Low Power Wireless Sensor Module

N/A
N/A
Protected

Academic year: 2022

Aktie "Low Power Wireless Sensor Module"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Low Power Wireless Sensor Module

Ultra low power IEEE 802.15.4 compliant wireless sensor module

Humidity, Light, and Temperature sensors with USB

Product Description

Tmote Sky is an ultra low power wireless module for use in sensor networks, monitoring applications, and rapid application prototyping. Tmote Sky

leverages industry standards like USB and IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating humidity, temperature, and light sensors, and providing flexible interconnection with peripherals, Tmote Sky enables a wide range of mesh network applications. Tmote

Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes increased performance, functionality, and expansion. With TinyOS support out-of-the-box, Tmote Sky leverages emerging wireless protocols and the open source software movement.

Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while decreasing cost and package size.

Key Features

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

• Interoperability with other IEEE 802.15.4 devices

• 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

• Integrated onboard antenna with 50m range indoors / 125m range outdoors

• Integrated Humidity, Temperature, and Light sensors

• Ultra low current consumption

• Fast wakeup from sleep (<6μs)

• Hardware link-layer encryption and authentication

• Programming and data collection via USB

• 16-pin expansion support and optional SMA antenna connector

• TinyOS support : mesh networking and communication implementation

• Complies with FCC Part 15 and Industry Canada regulations

• Environmentally friendly – complies with RoHS regulations

(2)

Low Power Wireless Sensor Module

Table of Contents

Product Description...1

Key Features...1

Table of Contents...2

Module Description ...3

Power ...4

Typical Operating Conditions ...4

Mechanical Characteristics ...5

Block Diagram...6

Schematic ...7

Microprocessor ...9

Description ...9

Typical Operating Conditions ...9

PC Communication ...9

Programming...10

Block Diagram...12

Radio...13

Description ...13

Typical Operating Conditions ...14

Measured Output Power ...14

Antenna...15

Internal Antenna without Battery Pack ...15

Internal Antenna with Battery Pack ...15

Radiation Pattern ...16

External Flash ...17

Typical Operating Conditions ...17

Flash Hardware Write Protection ...18

Sensors...19

Humidity/Temperature Sensor ...19

Light Sensors ...20

Expansion Connector...21

Internal Temperature and Voltage Monitoring...23

Agency Certification ...24

FCC Certification...24

OEM Labeling requirement ...24

FCC Notices...25

General Information ...25

Document History...26

Product Status Definitions...26

Disclaimer ...27

Address Information ...28

Headquarters ...28

(3)

Low Power Wireless Sensor Module

Module Description

The Tmote Sky module is a low power “mote” with integrated sensors, radio, antenna, microcontroller, and programming capabilities.

USB Connector

User Button

Reset Button

Photosynthetically Active Radiation

Sensor

(optional) Total Solar Radiation

Sensor (optional)

10-pin expansion connector 6-pin expansion

connector

Internal Antenna

CC2420

Radio SMA

Antenna Connector

(optional) Humidity

Temperature Sensor (optional)

USB Transmit LED

USB Receive LED LEDs

USB Microcontroller

Digital switch Isolating USB from

microcontroller JTAG

connector USB

Connector

User Button

Reset Button

Photosynthetically Active Radiation

Sensor

(optional) Total Solar Radiation

Sensor (optional)

10-pin expansion connector 6-pin expansion

connector

Internal Antenna

CC2420

Radio SMA

Antenna Connector

(optional) Humidity

Temperature Sensor (optional)

USB Transmit LED

USB Receive LED LEDs

USB Microcontroller

Digital switch Isolating USB from

microcontroller JTAG

connector

USB Flash (2kB)

ST Code Flash (1MB) Texas Instruments

MSP430 F1611 microcontroller

32kHz oscillator

48-bit silicon serial ID 2-pin SVS

connector

USB Flash (2kB)

ST Code Flash (1MB) Texas Instruments

MSP430 F1611 microcontroller

32kHz oscillator

48-bit silicon serial ID 2-pin SVS

connector

Figure 1 : Front and Back of the Tmote Sky module

(4)

Low Power Wireless Sensor Module

Power

Tmote Sky may be powered by two AA batteries. The module was designed to fit the two AA battery form factor. AA cells may be used in the operating range of 2.1 to 3.6V DC, however the voltage must be at least 2.7V when programming the microcontroller flash or external flash.

If the Tmote Sky module is plugged into the USB port for programming or communication, it will receive power from the host computer. The mote operating voltage when attached to USB is 3V. If Tmote will always be attached to a USB port, no battery pack is necessary.

The 16-pin expansion connector (described in the Section on page 17) can provide power to the module. Any of the battery terminal connections may also provide power to the module. At no point should the input voltage exceed 3.6V—doing so may damage the microcontroller, radio, or other components.

Typical Operating Conditions

MIN NOM MAX UNIT

Supply voltage 2.1 3.6 V

Supply voltage during flash memory programming 2.7 3.6 V Operating free air temperature -40 85 oC Current Consumption: MCU on, Radio RX 21.8 23 mA Current Consumption: MCU on, Radio TX 19.5 21 mA Current Consumption: MCU on, Radio off 1800 2400 μA Current Consumption: MCU idle, Radio off 54.5 1200 μA Current Consumption: MCU standby 5.1 21.0 μA

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage.

(5)

Low Power Wireless Sensor Module

Mechanical Characteristics

r e v o c t o n o d

; a n n e t n a d r a o b - n O

1 4 5

6

2 3

s l a i r e t a m g n i t c u d n o c h t i w

3 6 1 . 3

0 8 5 . 2 7

6 2 . 1

6 5 2 .

3 1 5 .

Tag X Y Size Notes

1 0.183 0.099 Ø 0.090 Mounting hole, do not use metal fixture 2 2.454 0.099 Ø 0.090 Mounting hole

3 2.454 1.151 Ø 0.090 Mounting hole

4 0.755 0.162 Ø 0.066 Pin 1 of 10-pin 0.1in rect IDC connector 5 1.099 0.163 Ø 0.066 Pin 1 of 6-pin 0.1in rect IDC connector 6 2.139 0.909 Ø 0.034 Pin 1 of 8-pin 2mm rect JTAG connector

Figure 2 : Physical dimensions of Tmote Sky.

All units are in inches unless otherwise noted.

MIN NOM MAX UNIT

Width 1.24 1.26 1.29 in

Length 2.55 2.58 2.60 in

Height (without battery pack and SMA antenna) 0.24 0.26 0.27 in

(6)

Low Power Wireless Sensor Module

Block Diagram

CC2420 Radio 2.4 GHz

IEEE 802.15.4 compliant PCB

Antenna

SMA Coax

4

2

6

2

UART[0] 2

2 I2C[0]

6 ADC[0-3,6-7]

4 GPIO

Humidity Temperature

Sensor PAR Sensor

TSR Sensor

ADC[4]

ADC[5]

I/O Power

SPI I/O

4

Power

Reset User

10-pin + 6-pinIDC header

SVSin SVSout TI MSP430 Microcontroller

UART[1]

P1.1/P2.2 Reset

TCK SPI[0] P1[0,3,4]

P4[1,5,6]

SPI[0]

I2C[0]

Silicon Serial ID 1-wire

7 JTAG 8-pin JTAG

2mm IDC header SVS 2-pin

IDC header

USB 2.0 UART/RS232 Functionality RX/TX RTS/DTR

JTAG Write Protection

ST Flash 1024k (2.7V)

Figure 3 : Functional Block Diagram of the Tmote Sky module, its components, and buses

(7)

Low Power Wireless Sensor Module

Schematic

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

VCCin

LED1 RESET

LED2

LED3 DVCC

HUM_SCL

AVCC

RADIO_SO

RADIO_SI FLASH_CS

ADC4

ADC0 ADC1

UART0RX UART0TX I2C_SCL I2C_SDA GIO1

ADC6 ADC7

VCCin

GIO2 GIO3

SVSin SVSout

P_DVCC

DVCC RADIO_SCLK FLASH_HOLD UART1TX

P_DVCC

ADC2

FLASH_HOLD

FLASH_CS

GIO2

ADC2

RADIO_SO

ADC5 DAC0 ADC6

HUM_SDA

ADC0

SVSin ADC7

ADC1GIO1

HUM_SCL

ADC4

LED2

UART1RX

UserINT

RESET GIO3

ADC3

DVCC

TMS TDO

HUM_PWR

HUM_SDA UART0TX

TCK LED3

UART0RX

GIO0

AVCC I2C_SDARADIO_SI

TDI SVSout

UART1RX

HUM_PWR

ADC5

LED1

I2C_SCLRADIO_SCLK

UART1TX

SVSout

1Wire

DVCC DVCC

1Wire DVCC

RESET TMS

DVCC

DVCC

TDI TDO

TCK DVCC

DVCC

UserINT

UserINT RESET

ADC3 GIO0

ADC0

RADIO_CS

RADIO_GIO0 RADIO_GIO1

RADIO_SFD RADIO_RESET RADIO_VREF_EN

DVCC

P_DVCC

VCCin RESET

PKT_INT UART1TX

RADIO_SCLK RADIO_SO RADIO_SI

UART1RX

TMS TDI TDO

TCK

OFFPAGELEFT-L

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

1 3

Thursday, May 11, 2006 Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

1 3

Thursday, May 11, 2006 Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

1 3

Thursday, May 11, 2006 OPTIONAL

FLASH MCU

SENSORS POWER

LEDS

OPTIONAL OPTIONAL

DAC0 TimerA Capture

EXPANSION

MOUNTING HOLES RESET SWITCH

USER SWITCH

Prev Flash Pwr

DMAE0 DAC1/SVSin

ACLK

Nonplated near antenna

JTAG

SERIAL ID By default, R_VREF connects to ground.

If R_VREF is moved to adjacent pins, external voltage reference may be connected to ADC0; in that case ensure that ADC0 is configured as an IO pin in the input direction.

R7

470 R7

470 R10

10k R10 10k

J10 J10

11

R16

0 open R16

0 open R1

100k R1 100k

D6 Blue Clear - 404-1028-1-ND

D6 Blue Clear - 404-1028-1-ND

1 2

R14

0 open R14

0 open R5

5.1M R5 5.1M

R2 2.2k R2 2.2k

U5

M25P80 U5

M25P80 1 S 2 Q 3 W 4 VssHOLDVccDC 5678

J11 J11

11

SW2

EVQ-P2K02Q SW2

EVQ-P2K02Q

1 2

U0

TI_MSP430_F1611 U0

TI_MSP430_F1611 1 DVcc

P6.3/A3 2

P6.4/A4 3

P6.5/A5 4

P6.6/A6/DAC0 5

P6.7/A7/DAC1/SVSIN 6

Vref+

7

8 XIN XOUT/TCLK 9

VeREF+

10 Vref-/VeREF- 11

P1.0/TACLK 12

P1.1/TA0/BSLTX 13

P1.2/TA1 14

P1.3/TA2 15

P1.4/SMCLK 16

P1.5/TA017 P1.6/TA118 P1.7/TA219 P2.0/ACLK20 P2.1/TAINCLK21 P2.2/CAOUT/TA0/BSLRX22 P2.3/CA0/TA123 P2.4/CA1/TA224 P2.5/Rosc25 P2.6/ADC12CLK/DMAE026 P2.7/TA027 P3.0/STE028 P3.1/SIMO0/SDA29 P3.2/SOMI030 P3.3/UCLK0/SCL31 P3.4/UTXD032 P3.5/URXD0 33 P3.6/UTXD1 34 P3.7/URXD1 35 P4.0/TB0 36 P4.1/TB1 37 P4.2/TB2 38 P4.3/TB3 39 P4.4/TB4 40 P4.5/TB5 41 P4.6/TB6 42 P4.7/TBCLK43 P5.0/STE1 44 P5.1/SIMO1 45 P5.2/SOMI1 46 P5.3/UCLK1 47 P5.4/MCLK 48

P5.5/SMCLK49

P5.6/ACLK50

P5.7/TBoutH/SVSOUT51

XT2OUT52

XT2IN53

TDO/TDI54

TDI55

TMS56

TCK57

RST/NMI58

P6.0/A059

P6.1/A160

P6.2/A261

AVss62

DVss63

AVcc64

R9

100 R9

100 R15

0 open R15

0 open

C2 0.1u C2 0.1u

R12 100k 1%

R12 100k 1%

U9

DS2411 U9

DS2411 1 I/OVcc 2

GND 3

J12 J12

11

D4

Red Clear - 404-1017-1-ND D4

Red Clear - 404-1017-1-ND

1 2

C5 0.1u C5

0.1u L2

F Bead 240-1035-1 L2 F Bead 240-1035-1

1 2

R_VREF 0Ohm jumper R_VREF 0Ohm jumper

1 2

3

GND X0

32kHz GND X0

32kHz 1 2 3

C1 0.1u C1 0.1u

U7

2pin Header - 2mm U7

2pin Header - 2mm

1 1 2 2

R8

220 R8

220

C3 10uF C3 10uF

D5

Green Clear - 404-1021-1-ND D5

Green Clear - 404-1021-1-ND

1 2

U2

10pin Header - 0.1"

U2

10pin Header - 0.1"

1 1 22

3 3 44

5 5 66

7 7 88

9 9 1010

D2 S1087 Photodiode D2 S1087 Photodiode

D3 S1087-01 Photodiode D3 S1087-01 Photodiode

ROSC 2.2k

ROSC 2.2k C4

0.1u C4 0.1u

R4 470k R4 470k U4

PWR_CONN U4

PWR_CONN + 1 - 2

C6 0.1u C6 0.1u U8

8pin Header - 2mm U8

8pin Header - 2mm

1 1 22

3 3 44

5 5 66

7 7 88

C9 0.1u C9 0.1u SW1

EVQ-P2K02Q SW1

EVQ-P2K02Q

1 2

HUMIDITY/

TEMP SENSOR U3

SHT11 HUMIDITY/

TEMP SENSOR U3

SHT11 SCLK3 4 VCC

1 GND SDA2

U28

6pin Header U28

6pin Header

1 1 22

3 3 44

5 5 66

R11 100k 1%

R11 100k 1%

(8)

Low Power Wireless Sensor Module

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

D D V A _ K 4 2 C C

3 D D V D _ K 4 2 C C D

D V A _ K 4 2 C C

D D V D _ K 4 2 C C

CC24K_AVDD CC24K_DVDD3

CC24K_AVDD

D D V D _ K 4 2 C C

D D V D _ K 4 2 C C

3 D D V D _ K 4 2 C C

CC24K_DVDD

3 D D V D _ K 4 2 C C D

D V D _ K 4 2 C C D

D V A _ K 4 2 C C

3 D D V D _ K 4 2 C C

3 D D V D _ K 4 2 C C

CC24K_AVDD

T E S E R _ O I D A R

D F S _ O I D A R

C C V D

0 O I G _ O I D A R

T N I _ T K P

O S _ O I D A R

K L C S _ O I D A R

I S _ O I D A R

S C _ O I D A R

1 O I G _ O I D A R N E _ F E R V _ O I D A R

D D V D _ K 4 2 C C

e l t i T

v e R r

e b m u N t n e m u c o D e z i S

t e e h S :

e t a

D of

y e l e k r e B C U : 4 0 0 2 t h g i r y p o C ) c

( B

s o l e T

B

3 2 4 0 0 2 , 9 2 r e b m e t p e S , y a d s e n d e W

4 . 5 1 . 2 0 8 0 2 4 2 C

C WirelessRadio z

H G 4 . 2 t a

n o i t a l o s i

0 5 e s u ohmtraces

z H G 4 . 2 matchingnetwork

s m h o 0 5 o t d e h c t a m

1 8 L

% 5 n 5 . 7

1 2

3 L

1 - 5 3 0 1 - 0 4 2 d a e B F

1 2

1 8 3 C

0 p n

% 5 p 2 2 1 X

f p 6 1 - Z H M 6 1 4

8 C n 0 1

1 A

T N A _ B C P _ 0 2 4 2 C C

123

7 C u 1 . 0

1 6 L

% 5 n 5 . 7

1 2 6 8 C p 8 6

3 7 C

0 p n p 5 2 . 0 - / + p 6 . 5

1 2

3

6 7 4 R k 0 1 2

8 C p 8 6

2 7 4 R m 1 2

6 L

% 5 n 6 . 5

1 2

7 8 C

u 1 .

0 C8

u 1 . 0 3

8 C p 8 6

3 7 4 R m 1

1 8 C

0 p n p 5 2 . 0 - / + p 5 . 0

0 1 U

0 2 4 2 C C D R U A G _ O C 1 V

O C V _ D D V 2 A

E R P _ D D V 3 A

1 F R _ D D V 4 A

D N 5 G

P _ F 6 R

H C T I W S _ X R X 7 T

N _ F 8 R

D N 9 G

W S _ D D V 0 A 1

C 1 N 1

C 2 N 1

NC13 AVDD_RF214 AVDD_IF215 NC16 AVDD_ADC17 DVDD_ADC18 DGND_GUARD19 DGUARD20 RESETn21 DGND22 DSUB_PADS23 DSUB_CORE24 3 . 3 D D V

D 25

8 . 1 D D V

D 26

D F S 27

A C C 28

P O F I F 29

O F I F 30

n S C 31

K L C S 32

I S 33 O S 34

M A R _ D D V

D 35

C N 36

AVDD_XOSC1637

XOSC16_Q238

XOSC16_Q139

NC40

VREG_EN41

VREG_OUT42

VREG_IN43

AVDD_IF144

R_BIAS45

ATEST246

ATEST147

AVDD_CHP48

X E _ D N 9 G 4 5

8 C u 1 . 0

4 7 4 R k 0 1 2

A A M S RF1GND2GND3GND4GND5

4 6 C

<

R S E w o L F u 0

1 5ohm

1 6 C 0 p n p 5 2 . 0 - / + p 5 . 0

5 7 4 R 0

1 9 3 C

0 p n

% 5 p 2 2

1 5 4 R

% 1 k 3 4

1 7 C

r 5 x

% 0 1 p 6 . 5

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

U_VCC

U_VCC

U_AVCC

U_VCC3.3 USB+

USB- USB- USB- USB- USB- USB-

U_VCC

VCCin

RTS U_VCC U_VCC3.3

P_DVCC

RXD TXD

P_DVCC

DTR

RXD P_DVCC

P_DVCC UART1TX

TXD UART1RX

DVCC

DCD RI DSR

DCD

DVCC

RTS DTR

RESET TCK

TCK DVCC DSRRI

TMS TDI TDO TCK

P_DVCC

U_VCC U_VCC EECS

EESK EEDATA

VCCin P_DVCC

UART1TX

UART1RX DVCC

USB5V

DVCC

RESET TCK TMS TDI TDO TCK

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

3 3

Thursday, April 06, 2006 Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

3 3

Thursday, April 06, 2006 Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky

B

3 3

Thursday, April 06, 2006 Used for Reading Serial / Programming

Connects and Powered via USB

USB INTERFACE

I/O BUFFER

MOTE POWER USB POWER FILTER

USB Interface

RESET SEQUENCE RECOGNITION

USB IDENTIFICATION EEPROM

U23

93C46 U23

93C46 1 CS 2 SK 3 DIN

4 DOUT GND 5

NC 6 NC 7 VCC8 C23

0.1u C23 0.1u

R27 2.2k R27 2.2k

R29 10k R29 10k

U27 ADG715BRU

U27 ADG715BRU

5S1S2 7S3 9S4 11S5 14S6 16S7 18S8

20 D8 19

D7 17 D6 15 D5 13 D4 12 D3 10 D2 8 D1 6 3SDA 1SCLK

24A0 22A1

VCC2 GND4

VSS21

23RST

C25 10u C25 10u

U25 TC55RP33 U25 TC55RP33

GND1

Vin2 3 Vout

D22

LLSD103A D22

LLSD103A

1 2

U22

USB A U22

USB A 44 33 22 11

L20 F Bead 240-1035-1 L20 F Bead 240-1035-1

1 2

R26 100 R26 100

D21

Red Clear - 404-1017-1-ND D21

Red Clear - 404-1017-1-ND 1 2

R31 10k R31 10k D20

Green Clear - 404-1021-1-ND D20

Green Clear - 404-1021-1-ND 1 2 R25 100 R25 100 C21

33n C21 33n

C24 0.1u C24 0.1u

U20

FT232BM U20

FT232BM 3V3OUT 6

USBDM 8

USBDP 7

RSTOUT#

5 RESET#

4 27XTIN

XTOUT 28 32EECS

1 EESK EEDATA 2 31TEST

AGND29 GND9 GND17 SLEEP# 10 PWREN# 15 PWRCTL 14 RXLED#TXLED#TXDEN111216 RI# 18 DCD# 19 DSR#13DTR#CTS#RTS#VCCIORXDTXD 202122232425

VCC26

VCC3

AVCC30

C22 0.1u C22 0.1u C20

0.1u C20 0.1u

R20 470

R20 470

R24 1.5k R24 1.5k

U29 NC7WZ126

U29 NC7WZ126

11OE

21A 1Y6

72OE

52A 2Y3

Vcc8Gnd4

R28 10k R28 10k

Figure 4 : Schematics for the Tmote Sky module

(9)

Low Power Wireless Sensor Module

Microprocessor

Description

The low power operation of the Tmote Sky module is due to the ultra low power Texas

Instruments MSP430 F1611 microcontroller featuring 10kB of RAM, 48kB of flash, and 128B of information storage. This 16-bit RISC processor features extremely low active and sleep current consumption that permits Tmote to run for years on a single pair of AA batteries. The MSP430 has an internal digitally controlled oscillator (DCO) that may operate up to 8MHz. The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at room temperature.

When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. Although the DCO frequency changes with voltage and temperature, it may be calibrated by using the 32kHz oscillator.

In addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC ports. The ADC internal ports may be used to read the internal thermistor or monitor the battery voltage.

A variety of peripherals are available including SPI, UART, digital I/O ports, Watchdog timer, and Timers with capture and compare functionality. The F1611 also includes a 2-port 12-bit DAC module, Supply Voltage Supervisor, and 3-port DMA controller.

The features of the MSP430 F1611 are presented in detail in the Texas Instruments MSP430x1xx Family User’s Guide available at http://ti.com/msp430.

Typical Operating Conditions

MIN NOM MAX UNIT Supply voltage during program execution 1.8 3.6 V Supply voltage during flash memory programming 2.7 3.6 V Operating free air temperature -40 85 oC Low frequency crystal frequency 32.768 kHz Active current at Vcc = 3V, 1MHz 500 600 μA Sleep current in LPM3 Vcc = 3V, 32.768kHz active 2.6 3.0 μA

Wake up from LPM3 (low power mode) 6 μs

PC Communication

Tmote Sky uses a USB controller from FTDI to communicate with the host computer. In order to communicate with the mote, the FTDI drivers must be installed on the host. FTDI provides drivers for Windows, Linux, BSD, Macintosh, and Windows CE. These drivers are included on the Moteiv CD shipped with your order. Windows users will need the Virtual Com Port (VCP) drivers. They may also be downloaded from FTDI’s website at: http://www.ftdichip.com/

Tmote Sky appears as a COM port in Windows’ device manager (or as a device in /dev in Linux, OSX, and BSD). Multiple Tmote Sky motes may be connected to a single computer’s USB ports at the same time. Each mote will receive a different COM port identifier. In the example below, one Tmote is connected and assigned COM6 “USB Serial Port”.

An application may read from Tmote Sky by opening the COM port assigned to the Tmote Sky mote. Tmote communicates with the host PC through USART1 on the TI MSP430.

(10)

Low Power Wireless Sensor Module

Figure 5 : Device Manager showing Tmote Sky installed as COM6

The motelist command line utility lists all of the Tmote Sky motes currently connected to a computer. This utility optionally lists previously connected motes that the system has cached.

Invoke motelist with the -h option for more information.

> motelist

Reference CommPort Description

--- --- --- M49WD0S6 COM6 Moteiv tmote sky

NOTE: Tmote Sky uses an I2C digital switch to prevent unwanted conventional serial port signals from reaching the TI microcontroller. The I2C protocol must be implemented and sent over the RTS and DTR lines in order to obtain direct access between the Tmote Sky and USB controller. The UART lines do not use the I2C switch allowing direct

communication (but not programming or JTAG) without additional software.

Programming

The Tmote Sky module is programmed through the onboard USB connector. A modified version of the MSP430 Bootstrap Loader, msp430-bsl, programs the microcontroller’s flash.

Tmote has a unique hardware circuit that prevents the mote from spuriously resetting. This hardware circuit makes it necessary to have a special sequence sent to the module in order to program it.

By invoking msp430-bsl, verify you have the patched BSL by looking for the “telos” keyword.

Version 1.39-telos-7 or later is required for Tmote Sky.

> msp430-bsl

MSP430 Bootstrap Loader Version: 1.39-telos-7 Use -h for help

(11)

Low Power Wireless Sensor Module

To communicate with Tmote Sky, the MSP430 Bootstrap Loader requires a set of options to provide the proper signals to the microcontroller to initiate programming. For convenience, the options have been folded into a single Tmote flag:

--tmote

To program a Tmote Sky module on COM3 (or /dev/ttyUSB2 in Linux) with an application image named app.ihex, invoke the MSP430 Bootstrap loader with the following options.

> msp430-bsl --tmote -c 2 -r -e -I -p app.ihex MSP430 Bootstrap Loader Version: 1.39-telos-7 Mass Erase...

Transmit default password ...

Invoking BSL...

Transmit default password ...

Current bootstrap loader version: 1.61 (Device ID: f16c) Changing baudrate to 38400 ...

Program ...

2742 bytes programmed.

Reset device ...

If you are using TinyOS, it has support for programming Tmote Sky. After compiling your application, you may install it with the following command

> make tmote install.x bsl,n

Where x is the 16-bit address assigned to the mote and n is the COM port that Tmote Sky is currently using. Note that not including “bsl” or “bsl,n” will program automatically using the bsl to the first Telos mote found on the USB bus using the motelist command.

For more information about the options in the MSP430 Bootstrap loader, invoke msp430-bsl with the -h option to display the help information.

Motelist and msp430-bsl are available from Moteiv Corporation at http://www.moteiv.com in the “Support” section.

NOTE: msp430-bsl starts counting from 0, but COM ports in Windows start counting at 1.

If Tmote Sky is connected to COM3 in Windows, you must program it using “-c 2” or

“bsl,2” when invoking msp430-bsl. In Linux, Tmote Sky will appear as /dev/ttyUSB2 and may be programmed using “-c 2” or “bsl,2”.

(12)

Low Power Wireless Sensor Module

Block Diagram

Oscillator System

Clock 32kHz

ACLK SMCLK

CPU 16 bit 16 reg multiply

Flash RAM

12-bit ADC 8 Channels

<10μs Conv

12-bit DAC 2 Channels

16-bit bus

I/O Port 3/4 16 I/Os I/O Port 1/2

16 I/Os Interrupts

I/O Port 5/6 8 I/Os

MCLK

Watchdog Timer 15/16 bit

Timer A 3 CC reg

Comparator A Timer B

7 CC reg

USART0 UART

SPI I2C DMA

Controller 3 Channels

USART1 UART

SPI

CC2420 Radio Interrupts & SPI

PC UART via USB

Figure 6 : Block diagram of the TI MSP430 microcontroller and its connection to other peripherals in the Tmote Sky module

(13)

Low Power Wireless Sensor Module

Radio

Description

Tmote Sky features the Chipcon CC2420 radio for wireless communications. The CC2420 is an IEEE 802.15.4 compliant radio providing the PHY and some MAC functions. With sensitivity exceeding the IEEE 802.15.4 specification and low power operation, the CC2420 provides reliable wireless communication. The CC2420 is highly configurable for many applications with the default radio settings providing IEEE 802.15.4 compliance. Features and usage of the CC2420 is available in Chipcon’s datasheet at http://www.chipcon.com

The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port and a series of digital I/O lines and interrupts (see the Schematics on page 7 for more information). The radio may be shut off by the microcontroller for low power duty cycled operation.

The CC2420 has programmable output power. Common CC2420 register values and their corresponding current consumption and output power are shown in Figure 7.

PA_LEVEL TXCTRL register Output Power [dBm] Current Consumption [mA]

31 0xA0FF 0 17.4

27 0xA0FB -1 16.5

23 0xA0F7 -3 15.2

19 0xA0F3 -5 13.9

15 0xA0EF -7 12.5

11 0xA0EB -10 11.2

7 0xA0E7 -15 9.9

3 0xA0E3 -25 8.5

Figure 7 : Output power configuration for the CC2420

The CC2420 provides a digital received signal strength indicator (RSSI) that may be read any time. Additionally, on each packet reception, the CC2420 samples the first eight chips, calculates the error rate, and produces a link quality indication (LQI) value with each received packet. A mapping from RSSI to the RF level in dBm is shown in Figure 8.

Figure 8 : Received Signal Strength Indicator mapping to RF Power [dBm]

(14)

Low Power Wireless Sensor Module

Typical Operating Conditions

MIN NOM MAX UNIT Supply voltage during radio operation (Vreg on) 2.1 3.6 V Operating free air temperature -40 85 oC

RF frequency range 2400 2483.5 MHz

Transmit bit rate 250 250 kbps

Nominal output power -3 0 dBm

Programmable output power range 40 dBm

Receiver sensitivity -90 -94 dBm

Current consumption: Radio transmitting at 0 dBm 17.4 mA Current consumption: Radio receiving 19.7 mA Current consumption: Radio on, Oscillator on 365 μΑ Current consumption: Idle mode, Oscillator off 20 μΑ Current consumption: Power Down mode, Vreg off 1 μΑ Voltage regulator current draw 13 20 29 μΑ Radio oscillator startup time 580 860 μs

Measured Output Power

The RF output power of the Tmote Sky module from the CC2420 radio is shown in Figure 9.

For this test, the Tmote Sky module is transmitting at 2.405GHz (IEEE 802.15.4 channel 11) using the O-QPSK modulation with DSSS. The CC2420 programmed output power is set to 0 dBm. The measured output power of the entire modulated spectrum is 2.4 dBm.

2.4 2.401 2.402 2.403 2.404 2.405 2.406 2.407 2.408 2.409 2.41

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5 0

Frequency (GHz)

Output power (dBm)

RWB: 100 kHz VWB: 100 kHz Sweep: 50ms

Figure 9 : Measured RF output power over the modulated spectrum from the Tmote Sky module

(15)

Low Power Wireless Sensor Module

Antenna

Tmote Sky’s internal antenna is an Inverted-F microstrip design protruding from the end of the board away from the battery pack. The Inverted-F antenna is a wire monopole where the top section is folded down to be parallel with the ground plane. Although not a perfect

omnidirectional pattern, the antenna may attain 50-meter range indoors and upwards of 125- meter range outdoors. Measurements of the internal antenna’s performance with and without a battery pack are show in Figure 10 and Figure 11. Approximate radiation patterns for the Inverted-F antenna as provided by Chipcon AS are shown in Figure 12 and Figure 13.

Internal Antenna without Battery Pack

2004/11/25 Thr 14:44:06

CH2 S11 SMITH(R+jX) FS 1.000

MKR 3: 2.483 958 333GHz 65.166 4.083

Cor

3:2.483 958GHz 65.041 4.227 270.843pH 2:2.450 000GHz 39.757 -4.623 14.050pF 1:2.400 000GHz 40.014 -40.598 1.633pF

3

1 2

START 2.3GHz [ 10.00 dBm] STOP 2.55GHz −502.3 2.325 2.35 2.375 2.4 2.425 2.45 2.475 2.5 2.525 2.55

−45

−40

−35

−30

−25

−20

−15

−10

−5 0

Frequency (GHz)

Log(|S11|) (dB)

1

2 3

4

1: 2.400 GHz −7.40 dB 2: 2.450 GHz −16.58 dB 3: 2.485 GHz −16.58 dB 4: 2.500 GHz −12.50 dB

Figure 10 : S11 measurements for the internal inverted-F antenna when no battery pack is present

Internal Antenna with Battery Pack

2004/11/25 Thr 14:49:13

CH2 S11 SMITH(R+jX) FS 1.000

MKR 3: 2.483 958 333GHz 57.265 7.168

Cor

3:2.483 958GHz 57.205 7.146 457.900pH 2:2.450 000GHz 34.763 -8.204 7.917pF 1:2.400 000GHz 38.610 -49.225 1.347pF

1 2

3

START 2.3GHz [ 10.00 dBm] STOP 2.55GHz −502.3 2.325 2.35 2.375 2.4 2.425 2.45 2.475 2.5 2.525 2.55

−45

−40

−35

−30

−25

−20

−15

−10

−5 0

Frequency (GHz)

Log(|S11|) (dB)

1

2

3 4

1: 2.400 GHz −5.10 dB 2: 2.450 GHz −13.27 dB 3: 2.485 GHz −20.92 dB 4: 2.500 GHz −12.24 dB

Figure 11 : S11 measurements for the internal inverted-F antenna with battery pack underneath

(16)

Low Power Wireless Sensor Module

Radiation Pattern

Figure 12 : Radiated pattern of the Inverted-F antenna with horizontal mounting (from Chipcon AS)

Figure 13 : Radiated pattern of the Inverted-F antenna with vertical mounting (from Chipcon AS)

Referenzen

ÄHNLICHE DOKUMENTE

Bald wird eine Low-Power-Variante von Wi- Fi verfügbar sein, die sich zwar nicht für die Übertragung von TV-Signalen oder Computer-Downloads eignet, aber im Home

“These calculations show that the power consumption of IoT devices will by no me- Overview of IoT applications, which were included in the iHomeLab researchers at the

transitions: 10 from active to sleep, 01 from sleep to active Idle time long enough, shut down time short enough, transition power low enough, sleep current low enough.

Wenn Sie Ihre Anlage näher als 500 m von der Küste entfernt aufstellen müssen, verwenden Sie bitte die spezielle Installationsanleitung für eine Installation in

The “GASB Sensor Platform Wireless Capability Extension and Power Consumption Optimization” Project was started in order to allow multiple GASB Sensor Platforms to be used

Although there are many available energy harvesting products on the market, wireless energy transfer by using visible light communication that powers solar cell as well

By the specification of pre- and post-conditions as well as test cases, test data generation for both structural and functional testing is reduced to a reachability problem as known

The STA architecture offers a high degree of data reusability: Data that produced in the current cycle can be directly routed to other processing units in the following