• Keine Ergebnisse gefunden

A Methodology for Regional Energy Supply Optimization

N/A
N/A
Protected

Academic year: 2022

Aktie "A Methodology for Regional Energy Supply Optimization"

Copied!
34
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A METHODOLOGY F O R R E G I O N A L ENERGY S U P P L Y O P T I M I Z A T I O N

H. S t e h f e s t

July 1976

Research Memoranda are interim reports on research being con- ducted by the International I n s t i t ~ t e for Applied Systems Analysis, and as such receive only limited scientific review. Views or opin- ions contained herein d o not necessarily represent those o f the Institute or of the National Member Organizations supporting the Institute.

(2)
(3)

Preface

This report is one of series describing a multi-

disciplinary multinational IIASA research study on Management of Energy/Environment Systems. The primary objective of the research is the development of quantitative tools for energy and environment policy design and analysis

--

or, in a broad- er sense, the development of a coherent, realistic approach to energy/environment management. Particular attention is being devoted to the design and use of these tools at the regional level. The outputs of this research program include concepts, applied methodologies, and case studies. During 1975, case studies were emphasized; they focused on three greatly differing regions, namely, the German Democratic Republic, the Rhhe-Alpes region in southern France, and the state of Wisconsin in the U.S.A. The IIASA research was con- ducted within a network of collaborating institution~,composed of the Institut fur Energetik, Leipzig; the Institut Economique et Juridique de lV6nergie, Grenoble; and the University of

Wisconsin, Madison.

Other publications on the management of energy/environment systems are listed in the Appendix at the end of this report.

Wesley K. Foe11

(4)
(5)

Abstract

This paper presents tne essential features of a model for regional energy supply optimization. The approach

proposed in the paper differs significantly from other models dealing with similar problems. These models are in most

cases linear optimization models with a single attribute objective function (usually costs); other aspects such as the impact on the environment, are included in the form of constraints. The method described here attempts to include simultaneously several attributes of a certain energy

supply strategy related to its economical and ecological consequences in a multiattribute utility function, which is then used as the objective function of the optimization model.

(6)
(7)

TABLE OF CONTENTS

I n t r o d u c t i o n

. . .

1

. . .

G e n e r a l D e s c r i p t i o n o f t h e Approach 3

. . .

T h e O b j e c t i v e F u n c t i o n 7

. . .

T h e A t t r i b u t e s 9

. . .

C o n s t r a i n t s 1 2

I n p u t s

. . .

1 3

C o m p u t a t i o n a l A s p e c t s

. . . . . . .

-; 14

. . .

A p p l i c a t i o n s a n d E x t e n s i o n s 1 5

F i g u r e s

. . .

1 6

T a b l e s

. . .

1 8

References

. . .

2 5

2 6

. . .

(8)
(9)

1. Introduction

Among the most important decisions taken by any legis- lative or administrative body are the decisions on energy policy, because energy is a major driving force of almost all economic activities. Accordingly there have been many attempts at building more or less sophisticated tools to facilitate and rationalize the decision-making process on

energy policy. They range from simple extrapolation tech- niques over simulation models [5,11] and input-output models

[8]

to optimization models, which mainly,deal with optimi- zation of energy supply at given demand [4,6,7,101. The optimization models quoted have two major deficiencies, which were the motives for the work in hand:

Firstly, their objective -functions do not include envircn- mental impacts, although decisions on the energy system ought to be the result of a trade-off between economic and environmental impacts. In some cases constraints for certain pollutant emissions are imposed, but emission values are not very meaningful in evaluating environmental impacts, and the resolution of environmental-economic trade-offs by vary- ing environmental constraints is a tedious process, which

does not make very clear the actual preferences of the decision- maker.

Secondly, the supply optimization models are not very well

suited for application to a relatively small region with

its many links to other parts of the same country. The ideal

case for those models is a large, completely selfcontained,

(10)

and homogeneous country.

Therefore, the goal of this work was to develop a supply

optimization model which can handle the economy-environment

trade-offs explicitly and which is applicable on a regional

level. As in

171

and [lo], much attention was to be paid to

the substitutability of the different energy forms within the

demand sectors. The optimization was to be done for a time

period of 50 1-ears.

(11)

General Description of the Approach

Decisions concerning the energy supply system of a

region have, in general, many consequences, all of which have to be taken into account simultaneously, if one is to find the moptimal'' decision. Subjective judgement will be inavoidable during the decision process, in particular as far as the

weighting of the various consequences is concerned. A rational way of decision-making under these circumstances is the use of multiattribute utility functions

[9

I . The so-called attributes, which are the independent variables of those functions, measure one or several classes of consequences of the decisions under discussion. An attribute related to energy policy decisions could be, for instance, the SO2 concentration, which could be a measure of all impacts of SO2 on human beings

and objects. The utility function expresses the degree of satisfaction of a person-for all possible combinations of attribute values, and in case of uncertainty about the attri- bute values the expected value of the utility function is the?

criterion for the choice among the decision alternatives. This means, the maximization of the expectation of his utility

function is what the decision-maker should want, if he wants to be logically consistent with his preference structure.

The utility function can be assessed by means of a sequence of relatively simple questions to the decision-maker [1191- Thereby the decision-maker's own understanding of his problem

is greatly improved. Considering all these characteristics,

the multiattribute utility theory approach seems to be very

suitable for the supply optimization problem. Therefore, the

objective function to be maximized is assumed to be a multi-

attribute u-:ility function.

(12)

The model o f t h e r e g i o n a l e n e r g y s y s t e m w h i c h i s u s e d f o r t h e s u p p l y o p t i m i z a t i o n i s shown s c h e m a t i c a l l y i n F i g u r e 1. E n e r g y c o n t a i n e d i n p r i m a r y e n e r g y r e s o u r c e s P i i s c o n v e r t e d i n t o i n t e r - m e d i a t e e n e r g y f o r m s I w h i c h i n t u r n i s u s e d by d i f f e r e n t demand

k

s e c t o r s D R . The e s s e n t i a l v a r i a b l e s o f t h e p r o b l e m a r e t h e y e a r l y e n e r g y f l o w s x

j i k and YjkR a n d t h e c o r r e s p o n d i n g c a p a c i t i e s Ax j i k and AyjkR t o b e b u i l t i n t h e same y e a r s . T h e r e a r e , i n g e n e r a l , more t h a n o n e f l o w b e t w e e n o n e a n d t h e same P I

-

o r I D

-

p a i r

i k k R

w h i c h d i f f e r w i t h r e s p e c t t o e n v i r o n m e n t a l p r o t e c t i o n e x p e n d i t u r e f o r t h e c o n v e r s i o n p r o c e s s o r w i t h r e s p e c t t o l o c a t i o n o f t h e p r o - cess ( e . g . i n s i d e o r o u t s i d e t h e r e g i o n ) . B u t i n s t e a d o f h a v i n g more t h a n o n e f l o w b e t w e e n o n e p a i r , o n e c o u l d r a i s e t h e number o f p r i m a r y e n e r g y , s e c o n d a r y e n e r g y and demand c a t e g o r i e s a p p r o - p r i a t e l y . The s u b s c r i p t which o u g h t t o b e u s e d f o r d i s t i n c t i o n b e t w e e n f l o w s i n c a s e o f m u l t i p l i c i t y i s l e f t o u t i n t h e f o l l o w i n g i f t h e r e i s no a m b i g u i t y . I n p r i n c i p l e , o n e c o u l d d i s p e n s e w i t h t h e i n t e r m e d i a t e e n e r g y c a t e g o r i e s a n d l o o k d i r e c t l y o n a l l a d m i s s i b l e f l o w s b e t w e e n PiDR

-

p a i r s . T h i s would i n c r e a s e t h e number o f v a r i a b l e s , w h i c h i s a d i s a d v a n t a g e f o r o p t i m i z a t i o n , b u t o n t h e o t h e r hand o n e would h a v e a few less c o n s t r a i n t s f o r t h e o p t i m i z a t i o n (see S e c t i o n 6 ) , w h i c h i s b e n e f i c i a l . The scheme i n F i g u r e 1 was c h o s e n b e c a u s e i t seems t o b e c l e a r e r a n d e a s i e r t o m a n i p u l a t e .

The w h o l e s e t o f f l o w s w h i c h a r e t a k e n i n t o a c c o u n t f o r t h e r e g i o n a l e n e r g y s u p p l y o p t i m i z a t i o n a r e shown i n T a b l e s 1 a n d 2 . S o l a r e n e r g y i s assumed t o b e c o n v e r t e d i n t o elec- t r i c i t y t h r o u g h p h o t o - v o l t a i c c e l l s o n l y . The s y n t h e t i c f u e l i s t r e a t e d a s i f i t was h y d r o g e n . U s e o f o f f - p e a k e l e c t r i c i t y

(13)

f o r pumped s t o r a g e and s y n t h e t i c f u e l p r o d u c t i o n a r e l o o k e d upon a s demand c a t e g o r i e s , and t h e s t o r e d e n e r g y i s f e d b a c k t o t h e p r i m a r y e n e r g y s i d e . A l t e r n a t i v e s f o r p o l l u t i o n a b a t e m e n t m e a s u r e s a r e c o n s i d e r e d o n l y f o r c o n v e r s i o n and n o t f o r consumption p r o c e s s e s . F o r c o o l i n g o f e l e c t r i c power p l a n t s , o n l y wet and d r y c o o l i n g t o w e r s a r e c o n s i d e r e d . And n o t more t h a n two a l t e r n a t i v e s f o r t h e l o c a t i o n o f t h e c o n v e r s i o n p r o c e s s e s a r e assumed.

One c a n s e e from T a b l e s 1 a n d 2 t h a t t h e number o f v a r i a b l e s o f t h e s u p p l y o p t i m i z a t i o n problem i s v e r y h i g h i f t h e o p t i m i z a t i o n i s t o b e done o v e r s e v e r a l t i m e ? e r i 6 2 s . The same a p p l i e s t o t h e number o f c o n s t r a i n t s . T h e r e f o r e t h e o n l y o p t i m i z a t i o n t e c h n i q u e which c a n be a p p l i e d a t

r e a s o n a b l e c o m p u t a t i o n a l e f f o r t i s l i n e a r programming. T h i s means t h e o p t i m i z a t i o n p r o b l e m h a s t o have t h e f o l l o w i n g form:

T T T T

Maximize A X

+

B AX + C Y

+

D AY = U ( X , A X , Y , A Y ) (1)

T >

s u b j e c t t o E ~

+

~F ~ ~ A X X

+

Gk Y

+

H ~ ~ A Y Rk

,

k = l ,

. . .

k , ( 2 )

w h e r e X , A X , Y , B Y a r e v e c t o r s composed o f a l l x j i k , A X j i k ' y j k e , and Ayjke, r e s p e c t i v e l y , and A , B, C , D , E k , F k , G k , H k

are c o n s t a n t v e c t o r s o f a p p r o p r i a t e l e n g t h . T h i s means, t h e u t i l i t y f u n c t i o n h a s t o b e a l i n e a r f u n c t i o n ?f £10-VJS a n d c a p a c i t i e s . I t i s d e s c r i b e d i n d e t a i l i n S e c t i o n 3 . The c o n s t r a i n t s

,

w h i c h g u a r a n t e e i n p a r t i c u l a r , t h a t t h e given demands a r e m e t , a r e d i s c u s s e d i n S e c t i o n 5.

F o r an o p t i m i z a t i o n o n a r e g i o n a l s c a l e , s i n g l e c o n v e r s i o n

(14)

o r c o n s u m p t i o n i n s t a l l a t i o n s may b e r e l e v a n t . T h e r e f o r e , i t may b e n e c e s s a r y t o impose some i n t e g e r c o n s t r a i n t s i n a d d i t i o n t o ( 2 ) and ( 3 ) w h i c h g u a r a n t e e r e a s o n a b l e p l a n t s i z e s :

Axjik = 0 mod s i k , A y j l i l k l =

o

mod t i l k l f o r some j , j ' , i , i t , k , k t .

I n c a s e s w h e r e e n e r g y f l o w s d i f f e r o n l y by t h e p o l l u t i o n a b a t e m e n t e f f o r t , i t may b e r e a s o n a b l e t o p u t t h e sum o f t h e c o r r e s p o n d i n g c a p a c i t i e s o n t h e l e f t - h a n d s i d e o f t h e c o n s t r a i n t s , w h i c h means t h a t t h e a b a t e m e n t e f f o r t c a n b e v a r i e d c o n t i n u o u s l y b e t w e e n t h e t w o e x t r e m e s g i v e n i n T a b l e 1. With t h e a d d i t i o n a l c o n s t r a i n t s

( 4 ) , t h e s u p p l y o p t i m i z a t i o n p r o b l e m i s a mixed i n t e g e r - l i n e a r

programming p r o b l e m . The c o m p u t a t i o n a l s o l u t i o n o f i t i s d i s c u s s e d i n S e c t i o n 7 .

(15)

3 . The O b j e c t i v e F u n c t i o n

I n g e n e r a l , t h e a c t u a l u t i l i t y f u n c t i o n U ( X , A X , Y , AY) i s a n o n - l i n e a r , non s e p a r a b l e f u n c t i o n , and t h e p r o b l e m a r i s e s how t o a p p r o x i m a t e i t by a l i n e a r f u n c t i o n o f t h e k i n d ( 1 ) .

F i r s t o f a l l t h e i m p a c t s s h o u l d b e a g g r e g a t e d i n t o a t t r i - b u t e s a i i n s u c h a way t h a t t h e y a r e p r e f e r e n t i a l l y i n d e p e n d e n t and u t i l i t y i n d e p e n d e n t [ 9 ] , which i s , i n g e n e r a l , p o s s i b l e . Then e i t h e r L91

N

where 0 < ki < 1, 1

+

k = .rr (1

+

k k i ) , and i= 1

U and ui a r e s c a l e d from z e r o t o o n e .

I f U i s o f form ( S ) , a l i n e a r o b j e c t i v e f u n c t i o n (1) i s o b t a i n e d by l i n e a r i z i n g a l l s i n g l e a t t r i b u t e u t i l i t y f u n c t i o n s

u. 1

.

I f ( 6 ) a p p l i e s , q u i t e o f t e n k i s c l o s e enough t o z e r o s o t h a t ( 5 ) c a n b e u s e d a s a n a p p r o x i m a t i o n t o ( 6 )

.

I f ( 5 ) i s n o t

a good a p p r o x i m a t i o n t o ( 6 ) one c a n u s e t h e l i n e a r f u n c t i o n s which d e s c r i b e t h e t a n g e n t p l a n e s o f

U

( a s a f u n c t i o n o f u i ) i n

a s e a r c h t e c h n i q u e ( s e e , f o r i n s t a n c e , [ 1 2 ] ) , which u s e s l i n e a r programming f o r e a c h s e a r c h s t e p . One can a l s o n a r r o w t h e admis-

s i b l e r a n g e s f o r some o f t h e a t t r i b u t e s , which i n c r e a s e s t h e

(16)

chance of (5) being the appropriate from. But this means that additional constraints have to be introduced (see Sect.

5),

which might even make the problem insoluble (no feasible solu- tion) .

The single attribute utility functions ui in most cases come out from the assessment process as linear functions. If nonlinearities are relevant, they are in most practical cases such that the function is concave (see Fig.2), since concavity indicates risk aversion. Then for the optimization a polygon approximation to the function can be used without relevant loss of efficiency 121. (The number of variables and constraints thereby is raised by the number of edges of the polygon approx- imation). If a utility function becomes convex, the application of linear programming is difficult. But again one could do

with narrowed ranges of the attributes, which make a linear approximation more reasonable.

Finally, in order to have a linear objective function, the

attributes have to be linear functions of the components of X I

AX, Y, AY. This is in practice always well fulfilled if the

plant sizes for each flow are assumed to be fixed.

(17)

4 . The A t t r i b u t e s

The a t t r i b u t e s s e l e c t e d f o r t h e r e g i o n a l e n e r g y s u p p l y o p t i m i z a t i o n a r e l i s t e d i n T a b l e 3 a l o n g w i t h a s h o r t d e s c r i p - t i o n . The maxim b e h i n d t h i s c h o i c e was t o c o v e r w i t h t h e a t t r i - b u t e s t h e c o n s e q u e n c e s o f e n e r g y c o n v e r s i o n and consumption a s f a r a s t h e y a r e n o t c o n t r o v e r s i a l . Those p a r t s of t h e s e r i e s o f c o n s e q u e n c e s which depend on s u b j e c t i v e judgements s h o u l d

b e d e c i d e d on by t h e d e c i s i o n maker t h r o u g h h i s u t i l i t y f u n c t i o n . One c a n , f o r i n s t a n c e , r e l a t i v e l y a c c u r a t e l y e s t i m a t e t h e i n - c r e a s e i n SO2 c o n c e n t r a t i o n due t o combustion o f o i l and c o a l , b u t it i s h a r d t o p r e d i c t what t h i s means w i t h r e g a r d t o human l i f e t i m e ; t h e r e f o r e t h e SO2 c o n c e n t r a t i o n i n c r e a s e was c h c s e n a s an a t t r i b u t e r a t h e r t h a n a d d i t i o n a l d e a t h s . I f " a d d i t i o n a l d e a t h s " was used a s an a t t r i b u t e t h e s u b j e c t i v e p r o b a b i l i t i e s f o r a d d i t i o n a l d e a t h s due t o i n c r e a s e d SO2 l e v e l s would have t o be a s s e s s e d a l s o b e c a u s e t h e e x p e c t a t i o n o f t h e u t i l i t y i s t h e c r i t e r i o n t o b e maximized. S i n c e t h i s w i l l most l i k e l y p u z z l e t h e d e c i s i o n maker, s u c h a t t r i b u t e s have been a v o i d e d .

( I n a d d i t i o n , d e c i s i o n makers a r e u s u a l l y r e l u c t a n t t o make e x p l i c i t t h e i r p r e f e r e n c e s between human l i v e s and economic q u a n t i t i t e s which would b e n e c e s s i t a t e d by a n " a d d i t i o n a l d e a t h s " a t t r i b u t e ) . I n e i t h e r c a s e a d e t a i l e d d i s c u s s i o n of p o s s i b l e c o n s e q u e n c e s o f i n c r e a s e d SO l e v e l s i s n e c e s s a r y

2 b e f o r e t h e a s s e s s m e n t .

A n o t h e r i m p o r t a n t a s p e c t f o r t h e c h o i c e o f t h e a t t r i b u t e s was t o t a k e i n t o a c c o u n t t h e d i f f e r e n c e s between t h o s e r e g i o n s which a r e r e l e v a n t f o r m e e t i n g t h e e n e r g y demand of t h e r e g i o n

(18)

i n v e s t i g a t e d . D i f f e r e n c e s t o be c o n s i d e r e d e x i s t , f o r i n s t a n c e , w i t h r e g a r d t o a i r p o l l u t a n t d i s p e r s i o n c h a r a c t e r i s t i c s , o r w i t h r e g a r d t o p o p u l a t i o n d e n s i t y and d i s t r i b u t i o n . I n p r i n - c i p l e o n e c o u l d d e f i n e two d i f f e r e n t a t t r i b u t e s f o r t h e s a v e k i n d o f i m p a c t i n two d i f f e r e n t r e g i o n s . But i n o . r d e r t o k2ey t h e problem e a s y t o s u r v e y , i m p a c t s o f t h e same k i n d i n a l l r e g i o n s c o n s i d e r e d were a g g r e g a t e d i n t o o n e a t t r i b u t e . How-

e v e r , i n a s s e s s i n g t h e u t i l i t y f u n c t i o n o f a d e c i s i o n maker one h a s t o b e v e r y f l e x i b l e a s t o t h e a t t r i b u t e s . U s u a l l y t h e k i n d a n d number o f a t t r i b u t e s c h a n g e i n t h e c o u r s e o f t h e a s s e s s m e n t p r o c e d u r e .

The a t t r i b u t e s l i s t e d i n T a b l e 3 c o v e r m a i n l y i m p a c t s on human b e i n g s . T h i s means t h a t a t t r i b u t e s which c a n b e l o o k e d upon a s a n a m b i e n t c o n c e n t r a t i o n a r e w e i g h t e d w i t h p o p u l a t i o n d e n s i t y ; t h e y a r e named " e x p o s u r e s " . I f a; i s t h e l e v e l o f o n e o f t h o s e a t t r i b u t e s , t h e t o t a l i m p a c t a t t a c h e d t o a ' i s

i t h e same a s i f a l l p e o p l e i n t h e r e g i o n i n v e s t i g a t e d were e x - p o s e d t o t h e a m b i e n t c o n c e n t r a t i o n a:

,

g i v e n t h a t t h e d o s e - e f f e c t r e l a t i o n s h i p i s l i n e a r . T h i s r e f l e c t s t h e f a c t t h a t i m p a c t s o u t s i d e t h e r e g i o n h a v e t h e same w e i g h t a s i n s i d e .

I n p r i n c i p l e , t h e a t t r i b u t e s f o r d i f f e r e n t y e a r s h a v e t o b e t r e a t e d a s d i f f e r e n t a t t r i b u t e s a n d t h e d e c i s i o n m a k e r ' s p r e f e r e n c e o v e r t h e y e a r s c a n b e a s s e s s e d i n t h e same way a s o v e r d i f f e r e n t a t t r i b u t e s . A s i m p l e r a p p r o a c h t o t h e p r o b l e m , which i s f o l l o w e d f o r t h e p r e s e n t , i s t o a s s e s s a d i s c o u n t r a t e f o r e a c h o f t h e a t t r i b u t e s .

T h o s e l e v e J s o f a t t r i b u t e s which depend on a t m o s p h e r i c d i s p e r s i o n a r e c a l c u l a t e d i n t h e f o l l o w i n g way: Assuming

(19)

i s o t r o p i c w i n d , t h e g r o u n d l e v e l c o n c e n t r a t i o n C ( R ) a t d i s t a n c e R f r o m a p o i n t s o u r c e c a n b e c a l c u l a t e d a p p r o x i m a t e l y f r o m t h e f o l l o w i n g f o r m u l a 131 :

w h e r e :

q = s o u r c e s t r e n g t h ,

u

= mean wind v e l o c i t y ,

H = t h i c k n e s s o f d i s p e r s i o n l a y e r ,

X

= r e s i d e n c e t i m e o f t h e m a t e r i a l i n t h e a t m o s p h e r e , f = r a t i o b e t w e e n g r o u n d l e v e l c o n c e n t r a t i o n a n d

z

v e r t i c a l mean v a l u e o f c o n c e n t r a t i o n , which i s a n a l y t i c a l l y known.

The c o n c e n t r a t i o n which t h e p o p u l a t i o n o f a r e g i o n i s e x p o s e d t o i s c a l c u l a t e d u s i n g a n e x p r e s s i o n f o r t h e c o n c e n t r a t i o n w i t h -

i n a u n i f o r m a r e a s o u r c e , which i s a n i n t e g r a t i o n o v e r ( 7 ) . Two k i n d s o f a r e a s o u r c e s were c o n s i d e r e d : e m i s s i o n s w h i c h a r e a t t a c h e d t o human s e t t l e m e n t s a r e c o n s i d e r e d a s a r e a s o u r c e s o f t h e same s i z e a s t h e c i t i e s , a l l o t h e r e m i s s i o n s a r e assumed t o b e d i s t r i b u t e d u n i f o r m l y o v e r t h e w h o l e r e g i o n . ( I n c a l c u - l a t i n g t h e c o n c e n t r a t i o n i n c i t i e s o f a c e r t a i n s i z e , a l l o t h e r s e t t l e m e n t e m i s s i o n s c o n t r i b u t e t o t h e b a c k g r o u n d a s i f t h e y w e r e d i s t r i b u t e d u n i f o r m l y o v e r t h e whole r e g i o n , t o o . ) One c a n , o f c o u r s e , u s e more s o p h i s t i c a t e d m e t h o d s f o r t h e c a l c u - l a t i o n o f t h e a m b i e n t c o n c e n t r a t i o n , a s l o n g a s n o s i t e s p e c i f i c c h a r a c t e r i s t i c s o f t h e e m i s s i o n s a r e t o b e t a k e n i n t o a c c o u n t .

(20)

5. C o n s t r a i n t s

The c o n s t r a i n t s o f t y p e ( 2 ) which a r e used f o r t h e e n e r g y s u p p l y o p t i m i z a t i o n a r e l i s t e d i n T a b l e 4 . Most o f them a r e

s e l f - e x p l a n a t o r y . C o n s t r a i n t s o f t y p e 5 s a y t h a t a new t e c h - n o l o g y c a n o n l y b e i n t r o d u c e d a t a l i m i t e d r a t e , which depends on how much i s a l r e a d y i n v e s t e d w i t h t h i s new t e c h n o l o g y i n t h e p a s t .

C o n s t r a i n t s o f t y p e 7 a r e d e r i v e d i n t h e f o l l o w i n g way:

A s s u m e t h a t t h e l o a d f a c t o r f o r an i n t e r m e d i a t e e n e r g y i ( e . g . e l e c t r i c i t y ) be X o , i r r e s p e c t i v e o f t h e t o t a l amount o f e n e r g y . I f now c a p a c i t i e s o f o f f - p e a k ' u s e r s ( i . e . u s e r s which c a n u s e i n t e r m e d i a t e e n e r g y i a t any t i m e , e . g . e l e c t r i c c a r s , pumped s t o r a g e e t c . ) a r e i n s t a l l e d , t h e l o a d f a c t o r i n c r e a s e s a s a f u n c t i o n o f t h e t o t a l o f f - p e a k u s e r c a p a c i t y a c c o r d i n g t o t h e c u r v e shown i n F i g . 3 . The c u r v e , which g i v e s a n u p p e r l i m i t f o r t h e amount o f i n t e r m e d i a t e e n e r g y i t i s a l w a y s c o n c a v e . T h e r e f o r e , t h e c o n s t r a i n t which i s r e p r e s e n t e d by t h e c u r v e i n F i g . 3 c a n b e a p p r o x i m a t e d by t h o s e l i n e a r c o n s t r a i n t s o f t y p e 7 and one o f t y p e 4 , which a r e r e p r e s e n t e d by f o u r s t r a i g h t l i n e s i n F i g , 3 . By means of t h e s e c o n s t r a i n t s t h e i n t r o d u c - t i o n o f o f f - p e a k u s e r s can be i n v e s t i g a t e d w i t h o u t h a v i n g d i f - f e r e n t l o a d c a t e g o r i e s , which would i n c r e a s e t h e s i z e o f t h e problem c o n s i d e r a b l y .

(21)

6 . I n p u t s

The i n p u t d a t a , which w e r e a l r e a d y d e a l t w i t h i m p l i c i t l y i n C h a p t e r s 3 t h r o u g h 5 , c a n b e a r r a n g e d i n t h r e e g r o u p s , which d e f i n e

-

t h e i n i t i a l s i t u a t i o n ,

-

t h e i n t e r n a l s t r u c t u r e o f t h e e n e r g y s u p p l y s y s t e m ,

-

t h e p o l i c y v a r i a b l e s t o b e i n v e s t i g a t e d .

The i n i t i a l s i t u a t i o v i s g i v e n by t h e e x i s t i n g c a p a c i t i e s f o r a l l e n e r g y f l o w s and t h e a g e o f t h o s e c a p a c i t i e s .

The s e c o n d g r o u p c o m p r i s e s c o s t s , e f f i c i e n c i e s a n d e n v i r o n - m e n t a l i m p a c t d a t a o f t h e e n e r g y f l o w s . O t h e r d a t a which a r e r e l e - v a n t f o r t h e s t r u c t u r e o f t h e e n e r g y s y s t e m s a r e t h e l i f e t i m e s o f t h e i n s t a l l a t i o n s , t h e l o a d c h a r a c t e r i s t i c s , a n d t h e p l a n t s i z e s .

I n p u t d a t a which r e f l e c t p o l i c y i s s u e s a r e t h e s e c t o r a l e n e r g y demands ( a s f u n c t i o n s o f t i m e ) and t h e c o e f f i c i e n t s o f t h e u t i l i t y f u n c t i o n . C o n s t r a i n t s f o r s u p p l y o f b a s i c f u e l s a n d f o r g r o w t h o f c a p i t a l s t o c k s f o r c e r t a i n c o n v e r s i o n p r o c e s s e s a r e a l s o t o a l a r g e e x t e n t s u b j e c t t o p o l i t i c a l d e c i s i o n s .

(22)

Computational Aspects

The optimization model is applied for a time period of 50 years, which is divided into 10 steps. Then the number of vari- ables is - 1700, the number of constraints is - 1200, including the integer constraints (but not constraints of type

(5),

of course). This means that it is already a fairly large problem.

The MPSX package of IBM is being used, which has an option for

Mixed Integer Programming. It is questionable whether the opti-

mal solution of the problem will be reached within a reasonable

time. But since it is a branch and bound algorithm one can stop

at any time and get a suboptimal solution, which can be compared

with the solution of the simple linear problem (without integer

constraints), which gives an upper bound for the optimal value

of the utility function.

(23)

8 . A p p l i c a t i o n s and E x t e n s i o n s

The methodology d e s c r i b e d w i l l b e a p p l i e d t o Baden-Wfirtternbelrg, which i s o n e o f t h e f e d e r a l s t a t e s o f West Germany. T h i s i s

c a r r i e d o u t i n c l o s e c o n n e x i o n w i t h t h e d e c i s i o n m a k e r s who a r e r e s p o n s i b l e f o r e n e r g y p o l i c y on t h e f e d e r a l s t a t e l e v e l . The s u p p l y o p t i m i z a t i o n model i s i n t e n d e d t o become a t o o l f o r t h o s e d e c i s i o n makers which a l l o w s , i n p a r t i c u l a r , t o r a t i o n a l i z e t h e economy-environment c o n f l i c t r e s o l u t i o n and t o s t u d y t h e s e n s i -

t i v i t y o f t h e o p t i m a l s o l u t i o n t o v a r i a t i o n s o f t h e p o l i c y v a r i a b l t ~ s m e n t i o n e d i n C h a p t e r 6 .

The a p p r o a c h d e s c r i b e d i s a l s o t o b e e x t e n d e d m e t h o d o l o g i c a 1 l . y i n t o s e v e r a l d i r e c t i o n s . The main p r o b l e m s a r e t o make e n e r g y

demands s u b j e c t t o t h e o p t i m i z a t i o n , a n d t o u s e s o c i a l p r e f e r e n c e f u n c t i o n s a s o b j e c t i v e f u n c t i o n s , which a r e a g g r e g a t e d from i n d i - v i d u a l p r e f e r e n c e f u n c t i o n s . A n o t h e r p r o b l e m i s t h e b a l a n c i n g of t h e o p t i m i z a t i o n s o f d i f f e r e n t r e g i o n s . I f s e v e r a l r e g i o n s o p t i m : i z e t h e i r e n e r g y s u p p l y s y s t e m s s e p a r a t e l y , t h e r e s u l t s may l o o k i n -

e f f i c i e n t from a h i g h e r l e v e l p o i n t o f v i e w . S i m u l t a n e o u s o p t i - m i z a t i o n o f a l l r e g i o n s u s u a l l y i s u n f e a s i b l e b e c a u s e o f h i g h d i - m e n s i o n a l i t y . P e r h a p s a n i t e r a t i v e a l g o r i t h m c a n b e d e v e l o p e d which smoothes o u t i n c o n s i s t e n c i e s between d i f f e r e n t r e g i o n s .

Acknowledgement

The a u t h o r i s i n d e b t e d t o W . B u e h r i n g , R . D e n n i s , W . F o e l l , and A. H o l z l f o r many s t i m u l a t i n g d i s c u s s i o n s on t h i s work.

(24)

PRIMARY ENERGY INTERMEDIATE ENERGY DEMAND

P1 D 1

I1

P2 D2

I 2

I

P 3

I Ax D 3

j 32

X j i k = Flow o f e n e r g y f r o m P t o Ik i n t i m e p e r i o d j . i

A X j i k = C a p a c i t y f o r e n e r g y c o n v e r s i o n f r o m Pi t o Ik b u i l t i n t i m e p e r i o d j .

' j k t ' A y j k t a n a l o g o u s .

F i g 1: Scheme o f E n e r g y S u p p l y S y s t e m

F i g . 2 : T y p e s o f U t i l i t y F u n c t i o n s

(25)

F i g . 3 : Dependence o f Load F a c t o r h o n C a p a c i t y o f O f f - P e a k U s e r s .

(26)

T A E L E 1. ENERGY C O N V E R S I O N F L O W S . P r , i m a r y E n e r g y

I n t e r n e d i a t e E n e r g y

E L E C T R I C I T Y

HEAVY O I L

L I G H T O I L

A b b r e v i a t i o n s C O A L

LWR = l i g h t w a t e r r e a c t o r

LMFBR = l i q u i d m e t a l f a s t breeder r e a c t o r HTGR = h i g h t e m p e r a t u r e gas c o o l e d ' r e a c t o r

c . = c o o l i n g

.

O U T S I D E I N S I D E O U T S I D E

x x x

x

(27)

Table 2 ENERGY CONSUMPTION FLOWS

I

Services Zonstruc- Chemical Nisc. Pumped Synthetic & tion Mater- Ind. Ind. Storage Fuel from Households ials Ind. Off-Peak (except Electricity space & water heating) X

Trans- porta- tion X X X

Air Condi- tioning X X

DEMAND Space & Water X X X X

Primary Metals Ind. X X X X

IaTERMCDIATE ENERGY Electricity Heavy Oil Products Light Oil Products Synthetic Fue 1 Low Temp. Heat Gas Coal

X X X X X X

X X X X X

X X X X

(28)

TABLE 3. LIST OF ATTRIBUTES FOR REGIONAL ENERGY SUPPLY OPTIMISATION. 1. cost of energy supply ($/cap) 2. SO2 exposure (pg s02/m3) Evaluation: where i

=

index for the regions which are considered for energy production with SO2 emission, - x

=

(xl ,x2)

=

location, Ai

=

area of region i, p =-population density, p

=

population of the region under' investigation ,

0 Aa =

SO2 ground level concentration due to the energy system of the region investigated. Attached impacts: Early death, respiration diseases, destructi-on of monuments. 3. Relative humidity exposure

(%

decrease of saturation deficit) Evaluation: where 4

=

natural relative humidity,

A@ =

increase of relative humidity due to the energy system of the region investigated. Attached impacts: Increase of clouding, icing, fogging and humidity'

(29)

k Q Q)

7 4 m b

m --

o a

o u x aa, a

-

+J

5c.a

c r d

a, 0 tn

-rl .d -4

U P : Q

F a

-rl rn

a

a, C k rd U

rl +J

u-4 W

-4

0 C

r d . 0

a, * * h.4 k m + J m rd -0-4 k

0 ,-I a

II r d - r l 3

aa

C -4 E -4 0 fd . d m U

(30)

c

Q) c

u

rn - a \ a,

a a m

Q) -rl

-

LI

a

u

a L I U C, a

r d r d d b

Q) * * 1 Q) "

c, r n m k rn rnk r n c , O Q ) + , O

U Q) k U'4-4

B a n

a

a

a, 2 0

2

5 - 4 . 0 - u

!3 Y'

(31)

a C)

! 3 . 0 111 X r d h

x tn G k Q,

U c

-4 W

G 5 a, c,

4 rd

a

-n

a

u-I aJ

a

0 k

@J G c, 0 c

-4 H

c, k G

0 c,

oa 2

k Dl 5

E -4 a, 3 w E 111

-4 .a

G c,

-4 rb

x

m

I1

d

L X

.

d 'n C

c-?

a

A

A I r-4 Y

LZ d

sn

Y

(32)

cow 3 3 0 z W O

5

cia

LI El

W 4 U P4

co 3 H 0

z

U

(33)

9. References

[ll Buehring, W., A Model of Environmental Impacts from Electrical Generation in Wisconsin, Ph.D. Thesis, Department of Nuclear Engineering, University of Wisconsin, 1975.

[2] Dantzig, G., Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.

[3] Faude, D., Bayer, A., Halbritter, G., Spannagel, G., Stehfest, H., and Wintzer, D., Energie und Umwelt in Baden-Wiirttemberg, KFK 1966 UF, 1974.

[4] Finon, D., Optimization Model for the French Energy Sector, Energy Policy, 2, 2 (1974), pp.136-151.

[5] Foell, W.K., The Wisconsin Energy Model: A Tool for

Regional Energy Policy Analysis, IES Report No. 10,1974.

[6] Hildebrand, H.-J., Hedrich, P., and Ufer, D., Wirtschaft- lichskeitsrechnung, Verlag fiir Grundstoffindustrie, Leipzig, 1970.

171 Hoffman, K.C., The United States Energy System

-

A Unified

Planning Framework, Ph.D. Thesis, Polytechnic Institute of Brooklyn, 1972.

[8] Hudson, E.A., and Jorgenson, D., U.S. Energy Policy and Economic Growth: A Report to the Energy Policy Project, Data Resources Inc., Lexington, Massachusetts, 1974.

191 Keeney, R., and Raiffa, H., Decisions with Multiple Objectives, to be published by Wiley, New York, 1976.

[lo] Marcuse, M., Bodin, L., Cherniavsky, E., and Sanborn, Y., A Dynamic Time Dependent Model for the Analysis of Alternative Energy Policies, in Operational Research, 1975, Proc. IFORS Conf., Tokyo.

[Ill Mesarovic, M., and Pestel, E., Multilevel Computer Model of World Development Systems: Summary of the Proceedings, April 29-~ay3, 1974, IIASA Conference Proceedings CP-74-1.

[12] Spofford Jr., W.O., Total Environmental Quality Management Models, in R.A. Deininger, ed., Models for Environmental Pollution Control, Ann Arbor Science Publishers, Ann Arbor, Michigan, 1973.

(34)

-

26

-

APPENDIX

PAPERS I N THE IIASA PUBLICATION SERIES ON MANAGEMENT O F ENERGY/ENVIRONMENT SYSTEMS

K e e n e y , R.L., E n e r g y P o l i c y a n d V a l u e T r a d e o f f s , RM-75-76, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 5 .

F o e l l , W . K . , S c e n a r i o W r i t i n g : One Component o f a S y s t e m s A p p r o a c h t o ~ n e r g ~ / ~ n v i r o n m e n t Management, RM-76-20, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 .

B o r n , S . , C . C i c c h e t t i , R . Cudahy, J . P a p p a s , P . H e d r i c h , K , L i n d n e r , D . U f e r , J . - M . M a r t i n , D . F i n o n , E n e r g y / E n v i r o n m e n t Models a n d t h e i r R e l a t i o n s h i p t o P l a n n i n g

i n W i s c o n s i n , t h e German D e m o c r a t i c R e p u b l i c , a n d Rhane A l p e s , RM-76-21, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 . F o e l l , W . K . , The IIASA R e s e a r c h P r o g r a m o n Management o f

R e g i o n a l ~ n e r g y / ~ n v i r o n m e n t S y s t e m s , RM-76-40,

I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s ~ n a l y s i s ,

' L a x e n b u r g , A u s t r i a , 1 9 7 6 .

B u e h r i n g , W . A . , W . K . F o e l l , E n v i r o n m e n t a l I m p a c t o f E l e c t r i c a l G e n e r a t i o n : A S y s t e m w i d e A p p r o a c h , RR-76-13, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 . B u e h r i n g , W . A . , W.K. F o e l l , R.L. K e e n e y , Energy/

E n v i r o n m e n t Management: A p p l i c a t i o n o f D e c i s i o n A n a l y s i s , RR-76-14, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 . S t e h f e s t , H . , A M e t h o d o l o g y f o r R e g i o n a l E n e r g y S u p p l y

O p t i m i z a t i o n , RM-76-57, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 .

F o r t h c o m i n g

D e n n i s , R.L., R e g i o n a l A i r P o l l u t i o n I m p a c t : A D i s p e r s i o n M e t h o d o l o g y D e v e l o p e d a n d A p p l i e d t o E n e r g y S y s t e m s , RM-76-22, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 .

B u e h r i n g , W . A . , R.L. D e n n i s , E v a l u a t i o n o f H e a l t h E f f e c t s f r o m S u l f u r D i o x i d e E m i s s i o n s f o r a R e f e r e n c e C o a l - F i r e d Power P l a n t , RM-76-23, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 . B u e h r i n g , J . , WISSIM: An I n t e r a c t i v e C o m p u t e r S i m u l a t i o n

C o n t r o l L a n g u a g e , RM-76-24, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , L a x e n b u r g , A u s t r i a , 1 9 7 6 .

Referenzen

ÄHNLICHE DOKUMENTE

Note the number of variables on the right hand side need not be three, but can be any number greater than or equal to two depending on the level of detail desired. This

Biotechnological methods and bioindustrial products find their use in diverse domains; health care and pharmacy; industry (mostly chemicals); agriculture and the

Analysis of textbook sets, for teaching German as a foreign language at grammar schools, from the point of view of regional

In this section, we report the results of our computa- tional experiments where we compare the performance of the robust mirror descent SA method and the SAA method applied to

unlike the design models considered above, some behavioural models specifically include planning tools such as zoning, transportation network design (in terms of cost, speed,

It is very clear that scenario one offers the highest savings, without additional cooling water demand, requiring only one additional heat exchanger, one pipeline and one pump for

1) Mixing, the feed material for the melting process will comprise magnesia raw material and recyclable material. 2) Melting: Starting phase and fusion of magnesia raw material. 3)

To this end, different model systems such as in vitro cell culture and the zebrafish are suitable and complementary tools to identify potentially successful