• Keine Ergebnisse gefunden

Stochastic Control for Linear Discrete-Time Distributed-Lag Models

N/A
N/A
Protected

Academic year: 2022

Aktie "Stochastic Control for Linear Discrete-Time Distributed-Lag Models"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

STOCHASTIC CONTROL FOR LINEAR DISCRETE-TIME DISTRIBUTED-LAG MODELS

W. Brian Arthur

RR-77-18 August 1977

Research Reports provide the formal record of research conducted by the International Institute for Applied Systems Analysis. They are carefully reviewed before publication and represent, in the Institute's best judgment, competent scientific work. Views or opinions expressed therein, however, d o not necessarily reflect those of the National Member Organizations supporting the Institute o r of the Institute itself.

International Institute for Applied Systems Analysis

A-236

1

Laxenburg, Austria

(2)
(3)

PREFACE

Models with distributed-delay variables arise in many subjects of interest t o IIASA. They occur for example in economic planning as the distributed-lag policy model, in time-series analysis as the ARIMA process, and in population and agricultural planning as the age-dependent regenerative process. Derivation of optimal estimation and control procedures for such models is the subject of this paper.

(4)
(5)

S t o c h a s t i c C o n t r o l f o r L i n e a r D i s c r e t e - T i m e D i s t r i b u t e d - L a g M o d e l s

1 . INTRODUCTION

An i m p o r t a n t c l a s s o f l i n e a r - q u a d r a t i c G a u s s i a n p r o b l e m s h a s l a g g e d v a r i a b l e s i n t h e d y n a m i c s o r t h e o b s e r v a t i o n s : p r o b - l e m s w h e r e p r o c e s s b e h a v i o r d e p e n d s on t h e p a s t t r a j e c t o r y f o r e x a m p l e , w h e r e c o n t r o l a c t i o n i s r e t a r d e d , o r w h e r e i n f o r - m a t i o n i s d e l a y e d . F o r s u c h p r o b l e m s i n c o n t i n u o u s t i m e a f a i r l y c o m p r e h e n s i v e t h e o r y i s a v a i l a b l e ( s e e f o r e x a m p l e Koivo

( 1 9 7 4 ) , Kwong and W i l l s k y ( 1 9 7 7 ) , A r t h u r ( 1 9 7 7 ) ) ; f o r d i s c r e t e t i m e no s a t i s f a c t o r y c o m p r e h e n s i v e t h e o r y a s y e t e x i s t s , b u t c e r t a i n p r o c e d u r e s a r e a v a i l a b l e f o r n u m e r i c a l s o l u t i o n (Chow

( 1 9 7 5 ) , Aoki ( 1 9 7 6 ) ) .

B o t h t h e Chow a n d t h e Aoki p r o c e d u r e s r e d e f i n e t h e s t a t e v e c t o r t o o n e o f h i g h e r d i m e n s i o n t o t r a n s f o r m t h e o r i g i n a l l a g g e d p r o b l e m i n t o a n e q u i v a l e n t , b u t l a r g e r , n o n - l a g g e d p r o b - l e m . S t a n d a r d r e s u l t s t h e n a p p l y . W h i l e t h e s e m e t h o d s a r e c o n v e n i e n t t h e y s u f f e r d r a w b a c k s . T r a n s i t i o n m a t r i c e s f o r t h e e q u i v a l e n t p r o b l e m a r e l a r g e a n d s p a r s e , w i t h s i d e d i m e n s i o n ,V d e t e r m i n e d b y t h e d u r a t i o n o f t h e l o n g e s t l a g s . C a l c u l a t i o n o f t h e R i c c a t i s e q u e n c e t h e n r e q u i r e s o p e r a t i o n s o f o r d e r N~ a t e a c h s t e p . A l s o , s i n c e r e s u l t s a r e e x p r e s s e d i n t e r m s o f t h e new, n o n - l a g g e d p r o b l e m , much o f t h e s p e c i a l s t r u c t u r e o f t h e t i m e - l a g c o n t r o l l e r a n d e s t i m a t o r i s o b s c u r e d .

I t would b e b e t t e r f r o m b o t h c o m p u t a t i o n a l a n d t h e o r e t i c a l p o i n t s o f v i e w t o d e r i v e r e s u l t s i n t e r m s o f t h e o r i g i n a l p r o b l e m a n d i n n o n - s p a r s e f o r m . F o r c o n t i n u o u s - t i m e p r o b l e m s t h i s i s p o s s i b l e , u s i n g t h e s o - c a l l e d C a r a t h g o d o r y a n d m a x i m u m - p r i n c i p l e - F r e d h o l m t e c h n i q u e s . T h e s e , h o w e v e r , a r e i l l - s u i t e d t o d i s c r e t e t i m e a n d t o p r o b l e m s w i t h d e l a y s i n t h e c o n t r o l : we c a n n o t a p p l y t h e m h e r e . One way t o d e r i v e n o n - s p a r s e r e s u l t s f o r d i s c r e t e - t i m e

(6)

delay problems would be to use a direct dynamic programming argu- ment (see Arthur ( 1 9 7 7 ) ) . A second and yet more straightforward derivation is proposed in this paper. We translate the problem into equivalent non-lagged form and apply standard theory, then use careful matrix partitioning to reexpress the solution in terms of the variables and matrices of the original problem. The results are then in the non-sparse form we want: the qualitative struc- ture of the time-lag controller and estimator stands out clearly;

Riccati calculations are reduced to order N ~ and the discrete- ; time Riccati equations correspond almost term for term to those for the known continuous-time case--the connection between the two becomes clear.

The problem treated is general: distributed lags may occur in dynamics and observations in both state and control variables.

Results apply not only to design of discrete-time filters and controllers, but to numerical solution of continuous-time prob- lems which are discretized at the outset.

2. THE DISTRIBUTED-LAG PROBLEM

We study linear processes that evolve according to the dis- tributed-lag dynamics:

where a linear measurement of past states and controls is available:

The distributed-lag dynamics of this process include single lags as a special case, and the observations include pure informational delay as a special case. The usual notation applies: x is an n-dimensional vector describing the state, u an m-dimensional vector of policy instruments, z a p-dimensional vector of obser- vations. The parameter matrices are assumed known and nonrandom.

All disturbance or error vectors throughout the paper, unless

(7)

s t a t e d o t h e r w i s e , a r e d i s t r i b u t e d n o r m a l l y , a r e i n d e p e n d e n t o f e a c h o t h e r , a n d h a v e z e r o mean. E x p e c t a t i o n s E [ ] a r e t a k e n o v e r a p p r o p r i a t e s t a t e s , o b s e r v a t i o n s , a n d , w h e r e n e c e s s a r y , c o n t r o l s . I n w i l l d e n o t e a n i d e n t i t y m a t r i x o f d i m e n s i o n n . The p r o c e s s d i s t u r b a n c e wi a n d m e a s u r e m e n t e r r o r + . h a v e v a r i a n c e s R . a n d Y .

( t h e l a t t e r m a t r i x i s assumed p o s i t i v e d e f i n i t e ) . I n i t i a l v a l u e s

X ~ , . . . , X - ~ , and U - , ,

...,

u - ~ , a r e assumed t o b e d i s t r i b u t e d n o r m a l l y w i t h g i v e n means a n d v a r i a n c e s . S u b s e q u e n t e s t i m a t i o n i s c o n d i t i o n e d o n t h i s i n i t i a l ~ n f o r m a t i o n .

We w i s h t o c h o o s e c o n t r o l s ui a t t i m e s 0 t o T-1 t o m i n i m i z e

w h e r e t h e e x p e c t a t i o n E i s t a k e n o v e r a l l s t a t e s a n d o b s e r v a t i o n s ; Q O i s a s s u m e d p o s i t i v e s e m i - d e f i n i t e a n d R p o s i t i v e d e f i n i t e . Z i w i l l d e n o t e { z o ,

...,

z i } , t h e i n f o r m a t i o n a v a i l a b l e a t t i m e i .

I n m o s t a p p l i c a t i o n s t h e i m p l e m e n t a t i o n o f c o n t r o l s i s i m p e r f e c t . The a c t u a l v a l u e o f t h e c o n t r o l s ui w i l l d e v i a t e f r o m t h e i n t e n d e d v a l u e ui a s i n

w h e r e i m p l e m e n t a t i o n e r r o r v i h a s v a r i a n c e T i . U s u a l l y t h e r e i s no n e e d t o c o n s i d e r t h i s t y p e o f e r r o r s e p a r a t e l y - - i t c a n b e subsumed i n t o g e n e r a l p r o c e s s e r r o r by s u b s t i t u t i n g t h e i n t e n d e d f o r t h e a c t u a l p o l i c y v a l u e i n t h e d y n a m i c s . W i t h l a g s i n t h e c o n t r o l , h o w e v e r , t h i s p r o c e d u r e would c a u s e s e q u e n t i a l c o r r e -

l a t i o n o f p r o c e s s e r r o r s . I n s t e a d we s u b s t i t u t e t h e i n t e n d e d c o n t r o l o n l y p a r t i a l l y i n t o t h e d y n a m i c s , by w r i t i n g

w i t h

(8)

C o m p o s i t e e r r o r , X i , now h a s mean z e r o and v a r i a n c e Q ~ + c . T . c : . 1 1 1 W e t h u s r e t a i n t h e a d v a n t a g e s o f s e q u e n t i a l l y u n c o r r e l a t e d

p r o c e s s n o i s e , X i , a n d p e r f e c t l y known c o n t r o l , u i , a t t h e p r i c e o f i n c l u d i n g p a s t c o n t r o l s w h i c h a r e n o t p e r f e c t l y known. T h e s e m u s t b e e s t i m a t e d , a s m u s t t h e s t a t e , a t e a c h s t e p . ( N o t e t h a t

t h e p r o b l e m i s u n c h a n g e d by s u b s t i t u t i n g u i f o r u i i n t h e p e r f o r m a n c e c r i t e r i o n . E [

1

u

f

R ~ U ~ ]

+ 1

T r (RiTi) r e p l a c e s E [ ~ u ~ R and s i n c e t h e t r a c e t e r m ~ u ~ ] i s c o n s t a n t i t d o e s n o t a f f e c t t h e s o l u t i o n . )

3 . THE EQUIVALENT PROBLEM AND SOLUTION

To s o l v e t h e p r o b l e m , w e f i r s t t r a n s l a t e it t o a n e q u i v a l e n t n o n - l a g g e d f o r m a n d a p p l y s t a n d a r d r e s u l t s . D e f i n e y i , t h e

h i s t o r y o f t h e s y s t e m a t t i m e i , t o b e

t h e v e c t o r o b t a i n e d by c o m b i n i n g t h e s t a t e h i s t o r y ( s t a t e l a g g e d v a r i a b l e s ) w i t h t h e c o n t r o Z h i s t o r y ( c o n t r o l l a g g e d v a r i a b l e s ) . We t a k e t h e h i s t o r y a s t h e new " s t a t e " o f t h e e q u i v a l e n t s y s t e m .

The h i s t o r y e v o l v e s a c c o r d i n g t o

w i t h o b s e r v a t i o n s

(9)

Writing the history vector as y . the problem is now in

1'

the standard non-lagged form

where

ti

has variance E . .

It remains to rewrite the criterion in this form. Define Q . (positive semidefinite) to be

where the partitions are taken to correspond to

[xj

I ~ j ... -

'x! l-k

~ 1 ~ uj-l

1 . " l " i - h l '

The problem then becomes: choose u . ( Z . ) to minimize

1 1

(10)

Results for this problem are standard. They may be found for example in Meier, Larson and Tether (1971). For our later use we summarize them briefly here:

1. The optimal control policy is linear in the conditional mean of the state,

G I

( E y : the

1

" notation means

z

1

- I

conditioned on all information available at time i) :

-

1

u. = -P. D.:.

1 1 1 lli '

The control gain matrices are

-

I

pi = ( c ~ K ~ + ~ S ~ + R ~ ) >

o

(13)

D~ =

CIK

1 i + l

i

i (14)

where Ki is the solution to the Riccati difference system

- - - -

Ki = Qi

+ i i ~ ~ + ~

@i - O ; K ~ + , C ~ (C:Ki+,ci + Ri)-'c!~ $

-

1 i + l i ' KT = QT ' (1;)

2. The conditional mean evolves according to the Kalman filter equation

where gi is the measurement residual

The prediction

Gi 1

i- is extrapolated from :i by

(11)

The prediction-error covariance matrix,

S . I

=

E [ ( Y ~ - ? ~ ~ ~ - ~ ) ( Y ~ - ? ~ ~ ~ - ~ )'I, propagates according to

The optimal filter gain, F i t is given by

We now have a solution in terms of variable yi and sparse

- -

matrices 0, C, etc. In principle the problem is "solved". Note however that computation of K and Si would require sparse-matrix

i

multiplications of the form 5' K 0 at each step (order (nk

+

mh

+

n13

multiplications). In the next two sections we reduce such opera- tions significantly and reexpress the above results in terms of the original problem variables and matrices.

4 . OPTIMAL CONTROL POLICY

In terms of the original problem, the conditional mean

A l A l

Y i l i

is reexpressed as [ ~ ~ l i , . . . , ~ i - k ~ i

I

81-11it...t~ i-hl i I' where the notation

i i - O l i

is read as the estimate of given all information available at time i.

We now partition Ki and Di:

(The submatrices K O . and Vi correspond to the state history, Xi,

. . .

K2i an: W correspond to the control history,

i

We may now obtain the optimal control law in terms of the matrices of the original problem, by substituting for Di and $ i l i

(12)

in (12). This yields:

The optimal policy is a feedback law, linear in the current estimates of the state and control histories.

By substituting the original problem matrices for $ and in (13) and (14) and multiplying out, we obtain the gain matrices P i , V i l and Wi:

Finally the Riccati difference system (15) is expanded to yield a recursion for the submatrices K (,I K 1 I K2:

with end conditions K0(8,$) = Q 6 (el$); - - K2T

= 0.

T OT O

(13)

( I n t h e a b o v e r e s u l t s t h e i n d i c e s 8 , @ a r e t a k e n o v e r 0 t o k o r 1 t o h a s a p p r o p r i a t e . The symbol 6

( e l @ )

= 1 i f €I a n d @ a r e

0

z e r o ; 6 0 ( 8 , @ ) = 0 o t h e r w i s e . Where u n d e f i n e d m a t r i c e s o c c u r , e . g . , K o ( k + l , O ) , t h e y a r e t a k e n a s z e r o . )

The c o n t r o l l a w p a r a m e t e r s may b e p r e c o m p u t e d . Only t h e e s t i m a t e s o f t h e l a g g e d v a r i a b l e s n e e d t h e n b e f e d b a c k i n r e a l t i m e t o d e t e r m i n e t h e o p t i m a l c o n t r o l .

I n t h e c a s e o f s t a t e l a g s o n l y ( w h e r e B ( B ) : O ) , t h e r e s u l t s s i m p l i f y : W, K 1 , K 2 d i s a p p e a r . Where t h e r e a r e c o n t r o l l a g s o n l y ( A ( 8 ) : O ) , V , K 1 , a n d K O e x c e p t f o r K o ( O , O ) d i s a p p e a r .

5 . THE OPTIMAL FILTER-SMOOTHER

We now t r a n s l a t e t h e f i l t e r r e s u l t s o f S e c t i o n 3 t o a f o r m t h a t f i t s t h e o r i g i n a l l a g g e d p r o b l e m .

P a r t i t i o n Fi a n d Si a s

w h e r e L . i s d e f i n e d a s

( T h e s u b m a t r i x d i m e n s i o n s o f M. a n d Soi c o r r e s p o n d t o t h e s t a t e

1

h i s t o r y , t h o s e o f Ni a n d S 2 . t o t h e c o n t r o l h i s t o r y . )

1

NOW, s u b s t i t u t i n g f o r

$ t l i l

t h e Kalman f i l t e r o f ( 1 6 ) becomes a t e a c h s t a g e a n estimator f o r t h e h i s t o r y :

- A

2 .

-

1

1-8

1

i - X

i - e

11-1 + M i ( 8 ) L i g i

,

i = 0 ,

...,

k

( 2 4 ) u

1

= 6 .

1-81i-l

+ N i ( 8 ) L i

-

1 g i

,

1 1

,...

, h

.

(14)

The history estimates are updated at each stage by combining the previous-stage estimate with the new information gi--they are improved sequentially as new information comes in, where g i

(the residual) is obtained from (17) as

The prediction equation (18) reduces to

with initial conditions

I

- l -

-

E [ x - ~ ]

. G-8 1

= E [ u - ~ ]

.

The above equations (24) to (26) make up a recursion system for the estimates of the state and control histories. The filter for the equivalent non-lagged problem has now become a filter- smoother (an estimator of present and past values) for the original lagged problem.

It remains to specify the filter-smoother gain matrices.

Equation (20) and the definitions of Fi and Li yield

We now expand (19) to arrive at a recursive system for the submatrices of Si:

(15)

(again with indices e l $ taken over the appropriate range 0 to k , or 1 to h). Note that S (0+1,$+1) and So(B,@) are both the

Oi+ 1 i

estimate-error covariance matrices for x

-

X i But S

Oi+l is conditioned on Zi, while So is conditioned on Zi-l.

i

Equations (28) therefore update the covariance of the history estimates. Since the negative term is positive semidefinite, the covariances cannot increase as additional information is brought in.

The equations (28) are used with the expanded form of (19) to yield the error covariance matrices of the prediction 2 . l+l li and

G i l

with the other estimates:

(16)

Recursion of S is initialized by equating SO(O,@), S1 (0,$),

S2(0,@) at time 0 to ~ o v ( x - ~ , x - ~ ) , C ~ v ( x - ~ , u - ~ ) , C o v ( ~ - ~ , u - ~ ) . Since filter gain and covariance equations do not depend on real- time values, they may be computed in advance. Only the past- history estimates need be computed on line.

The filter-smoother derived above specializes to that of Mishra and Rajamani (1975) for the state-variable distributed- lag case they consider.

6. REMARKS AND EXTENSIONS

We have obtained an optimal controller and estimator

expressed in terms of the original problem. The resulting gain matrix expressions in (22), (23) and (27) to (29) Seem more lengthy

than those for the equivalent problem, but they require multipli- cations of order (nk

+

mh

+

n12 rather than (nk

+

mh

+

n)3 at each step.

The time-lag structure of the controller and estimator is clear from (21) and (24) to (26). In contrast to the no-lag case, the controller does not use a once-only estimate of each variable; instead it exploits the fact that lagged variables remain in the dynamics for some time, and during this time the system can "learn" by mixing in new information. For this reason, if estimation lags are shorter than dynamics lags, estimation must still proceed back to the dynamics lag-limits. The controller acts on changing but constantly improving lagged- variable estimates. Note that in cases of informational delay the estimator is constructed to "predict" those lagged variables that have not yet entered direct observation. These "predictions"

improve as time progresses.

The discrete-time matrix Riccati results above correspond almost term by term to those for the continuous-time case.

Extra terms are present however due to the discrete time interval.

It is therefore not possible to obtain the discrete results by discretization of the continuous results; it is possible, however,

(17)

to go in the other direction. The discrete results can yield the continuous ones by appropriate passage to the limit (see Arthur (1977) )

.

Some extensions of the problem are worth noting briefly.

For example the results are easily modified to the case of a time-lagged criterion. Also, varying lag-limits may be accommo- dated by replacing k and h by k(i) and h(i), provided k(i) and h(i) do not lengthen by more than one unit per unit time.

Otherwise the maximum lag duration can serve as k or h.

The above results carry over to the infinite-horizon, time- invariant regulator case as long as the properties s t r o n g

c o n t r o Z Z a b i Z i t y and s t r o n g o b s e r u a b i z i t y are met. That is, we must be able to simultaneously control and consistently estimate not just the present state x . but the entire history, x ~ , . . . , x ~ - ~ , u . 1 - ~

. - -

r"i-b,- (Cf. for example Thowsen (19;7), or Delfour and

Mitter (1972).) These properties then guarantee (a) existence of optimal controls and optimal estimator given an infinite horizon, (b) asymptotic stability of the closed estimator-

feedback controller system, (c) convergence of the gain matrices to stationary values.

7. CONCLUSIONS

Discrete-time stochastic control results were presented for LQG problems with distributed lags in dynamics and obser- vations. Optimal controls are linear in the estimates of past states and controls, and an optimal filter-smoother obtains and updates these estimates in linear fashion. Gain-matrix calculations are faster than in the usual high-dimensional

methods, and the discrete-time results show close correspondence to those for the continuous-time case.

ACKNOWLEDGEMENTS

The author would like to thank S.E. Dreyfus and M. Ferguson for helpful comments.

(18)

REFERENCES

A o k i , PI. ( 1 9 7 6 ) , O p t i m a l C o n t r o Z and S y s t e m T h e o r y i n Dynamic E c o n o m i c A n a Z y s i s , A m e r i c a n E l s e v i e r

-

N o r t h ~ o l l a n d , New Y o r k , p . 2 6 .

A r t h u r , W.B. ( 1 9 7 7 ) , T h e C o n t r o l o f L i n e a r P r o c e s s e s w i t h D i s - t r i b u t e d L a g s u s i n g Dynamic P r o g r a m m i n g f r o m F i r s t P r i n - c i p l e s , J. O p t i m . T h e o r . AppZ.,

3,

f o r t h c o m i n g .

Chow, G . ( 1 9 7 5 ) , A n a l y s i s and C o n t r o Z o f Dynamic E c o n o m i c S y s t e m s , Wiley-inter science, New Y o r k .

D e l f o u r , M.C., a n d S.K. M i t t e r ( 1 9 7 2 ) , C o n t r o l l a b i l i t y , O b s e r - v a b i l i t y a n d O p t i m a l F e e d b a c k C o n t r o l o f A f f i n e H e r e d i t a r y D i f f e r e n t i a l S y s t e m s , SIAM J . C o n t r . ,

10,

2 9 8 - 3 2 9 .

K o i v o , A. J . ( 1 9743 , O p t i m a l C o n t r o l o f L i n e a r S t o c h a s t i c S y s - t e m s D e s c r i b e d b y ~ u n c t i o n a l D i f f e r e n t i a l E q u a t i o n s , J . O p t i m . T h e o r . AppZ.,

9 ,

1 6 1 - 1 7 5 .

Kwong, R.H., a n d A.S. W i l l s k y ( 1 9 7 7 1 , O p t i m a l F i l t e r i n g a n d F i l t e r S t a b i l i t y o f L i n e a r S t o c h a s t i c D e l a y S y s t e m s , I . E . E . E . T r a n s . A u t o m a t . C o n t r . , AC-22, 1 9 6 - 2 0 2 .

P l e i e r , L . , R . E . L a r s o n , a n d A.J. T e t h e r ( 1 9 7 1 ) , Dynamic P r o g r a m - m i n g f o r t h e S t o c h a s t i c C o n t r o l o f Discrete S y s t e m s ,

I . E . E. E . T r a n s . A u t o m a t . C o n t r . , AC-16, 7 6 7 - 7 7 5 .

M i s h r a , J . , a n d V.S. R a j a m a n i ( 1 3 7 5 ) , L e a s t - S q u a r e s S t a t e E s t i - m a t i o n i n T i m e - D e l a y e d S y s t e m s w i t h C o l o r e d O b s e r v a t i o n N o i s e : a n I n n o v a t i o n s A p p r o a c h , I . E . E . E. T r a n s . A u t o m a t . C o n t r . , AC-20, 1 4 0 - 1 4 2 .

T h o w s e n , A. ( 1 9 7 7 ) , On P o i n t w i s e D e g e n e r a c y , C o n t r o l l a b i l i t y a n d Minimum T i m e C o n t r o l o f L i n e a r D y n a m i c a l S y s t e m s w i t h D e l a y s , I n t e r n a t . J . C o n t r . , - 2 5 , 3 2 9 - 3 4 5 . '

Referenzen

ÄHNLICHE DOKUMENTE

And I think – I feel really confident saying that just because our job was a little bit different from normal advisors that were on the ground in Afghanistan in that when

To this end, it will be important to separate clearly the two aspects of the relativistic challenge referring to these two claims: one should distinguish (1) the question,

He has recently embraced the idea of reforms, but his list is so far from being negotiable that it looks like a tactic to push Britain out of Europe: “If we can knock out social

An arc is called a candidate arc if it leaves the leading vertex and was either removed or ignored, or if it enters the leading vertex and is part of an ( s , t ) -path or left

He presented an iteration method for solving it He claimed that his method is finitely convergent However, in each iteration step.. a SYSTEM of nonlinear

In this paper, the author develops a dual forest iteration method for the stochastic transportation problem.. In this sense it is simple compared with the primal forest

We only have to take the existing status values from the previous evaluation, calculate the number of spare firefighters freeff and set B init to those vertices burnt at time t − 1

Mixed Integer Linear Programming Model Additionally, we introduce the following variables to model the arrival and departure times which are used later on to ensure compliance