• Keine Ergebnisse gefunden

• Air oxidation model development at PSI

N/A
N/A
Protected

Academic year: 2022

Aktie "• Air oxidation model development at PSI"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Nuclear Energy and Safety

Air Oxidation Modelling at PSI

Jon Birchley (PSI)

(2)

Nuclear Energy and Safety

Outline

• Air oxidation model development at PSI

– background

– summary description of model – comparison with test data

• OECD Spent Fuel Programme

• Current plans

(3)

Nuclear Energy and Safety

Background – effect on accident evolution

Strong exothermal reaction ( ∆∆∆∆

R

H

air

>> ∆∆∆∆

R

H

steam

)

+ Less cooling effect Temperature escalation

Enhanced cladding degradation

Oxidation of fuel

FP release and transport Detrimental effect of nitrogen on

oxide scales

Higher oxygen activity in the core

Air oxidation is important in determining boundary conditions for FP release

Technical background

(4)

Nuclear Energy and Safety

Background – air oxidation scenarios

Residual fuel elements

Breach in the primary circuit

RPV rupture Residual fuel elements

Breach in the primary circuit

RPV rupture

Late phase after RPV failure

Mid loop operation

Spent fuel pool accident

Spent fuel storage cask break

Main areas of concern

Technical background

(5)

Nuclear Energy and Safety

Background – ruthenium release

Technical background

• Air ingress into a damaged reactor core may lead to increased FP release, especially that of ruthenium, e.g.

shown by AECL HCE data

• Ru release and transport were extensively studied

experimentally and by modelling in the EU SARNET 6th FW project

• Effect of air on Ru release modelled, also persistence of volatile forms in the containment was demonstrated

• Further expts and modelling to conclude the study in the EU 7th FW SARNET2 project, starts early 2009 for 4 years

Air ingress Ru release

Test HCE3-H01 HCE3-H02

Max.

temperature (K)

2200 2160

Oxidation temperature

(K)

1770 1790

Oxidation

duration (s) 8500 8740

Gas phase

90% H2O 10 % Ar 0.2% Ar

Air

(6)

Nuclear Energy and Safety

Summary of air oxidation phenomena

• Exposure to air degrades the oxide layer and promotes transport of oxidant to the metal surface

– oxide scale has higher porosity and may be broken away

• Reaction with oxygen takes precedence over reaction with steam

– oxygen and steam kinetics similar

– nitrogen enhances oxidation by both steam and oxygen

• Kinetics are influenced by many factors

– may be dependent on temperature, previous oxidation history (fading memory effect), cladding alloy, …

• Existing correlations typically overestimated oxidation rate

– calculated oxygen starvation at the key location may be non-conservative

• A more complete treatment is required to provide essential boundary conditions for the fission product release and transport models

Technical background

(7)

Nuclear Energy and Safety

0 200 400 600 800 1000

0 5 10 15 20 25

∆ m , %

Time, s

Nitrogen

Significant nitride formation in air but not in nitrogen

Isothermal oxidation tests at 1200 °C (FZK)

Technical background

(8)

Nuclear Energy and Safety

Classical models for pre-transition air oxidation

10 4 /T (K -1 )

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

6 7 8 9 10 11 12

4

k ( m g c m -2 s -1 /2 )

Zry-4 M5 Leis tiko

w-S chan z (stea m

oxid atio n)

NURE G-1

12 00 °C

11 00 °C

10 00 °C

90 0° C

80 0° C

70 0° C

60 0° C

NU RE G-2

change at phase transition not considered in L-S correlation

Technical background

(9)

Nuclear Energy and Safety

Comparison with data test in 25% O 2 /75% Ar mixture at 1200 ºC

data

Air oxidation modelling

(10)

Nuclear Energy and Safety

Comparison with BOX test in air and steam then air at 1200 ºC

data

Air alone

1 min steam then air

5 min steam then air

Steam or O2 oxidation model

Air oxidation modelling

Data

(11)

Nuclear Energy and Safety

Outline of model concept - 1

• Define breakaway condition as an upper limit on effective oxide thickness – cladding oxidation rate/area: R = ρ Zr d(δ)/dt ~ A exp(-B/T) / δ*

– where δ* = max (δ 0 , min ( δ, δ* ) )

– δ 0 is some minimum (<< δ* )

– and δ = true oxide thickness

• Separate values of δ* are defined for air and steam – typically δ* air < δ* steam

• In general δ* is a function of temperature, material and possibly other factors

• We also define a criterion for onset of breakaway δ,crit ( ≥ δ*) and timescale τ over which the limit value δ* is applied

• Model parameters δ,crit, δ*, τ will be mostly based on results of recent and current separate-effects experiments

Air oxidation modelling

(12)

Nuclear Energy and Safety

Outline of model concept - 2 Air oxidation modelling

Outline of model concept - 2

(13)

Nuclear Energy and Safety

Comparison with thermal balance tests in O 2 and air (T = 800 ºC)

Air alone

193 s O2 then air

390 s O2 then air

O2 alone

Air oxidation modelling

(14)

Nuclear Energy and Safety

Reconstruction QUENCH-10 oxide layer growth

Air oxidation modelling

(15)

Nuclear Energy and Safety

Effect of different cladding types

M Steinbrück,

“Oxidation of diferent

cladding alloys

in steam at

temperatures

600-1200 ºC”,

14th QUENCH

Workshop,

Forschungszen-

trum, Karlsruhe,

November 2008

(16)

Nuclear Energy and Safety

Prototypic BWR and PWR Hardware

Water Rods

Bottom Tie Plate

Grid Spacers 7 Places Channel

Box Top Tie

Plate Bottom

Tie Plate

Westinghouse 17×17 PWR

- SNL/OECD

Top Nozzle Grid Spacers 8 Places

Mixing Spacers 3 Places

Bottom Nozzle

Guide Tubes

Top Nozzle

Grid Spacer

Guide Tubes

GNF 9 × × × × 9 BWR

- SNL/NRC

(17)

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

PWR and BWR Assembly Geometries

PWR 17×17

264 Fuel rods

24 Guide tubes

1 Instrument tube

11 spacers Storage cell

BWR 9×9

74 Fuel rods (8 partial length)

2 Water tubes

7 spacers Channel box Storage cell Guide tube

Water tube (W/T)

Partially populated

Fully populated Storage cell

Channel box

(18)

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

PWR testing program

• Phase 1

• Axial Ignition

– Temp profiles measurements

– Buoyancy induced flow measurements – Axial O 2 profile measurements

– Nature of fire

• Phase 2

• Radial Propagation in a 1 + 4 arrangement

– Determine nature of radial fire propagation

– Effect of fuel rod ballooning

(19)

Nuclear Energy and Safety

• Implement in MELCOR

in progress in local version of MELCOR 1.8.6

• Validation against independent data

bundle tests: QUENCH-10 and PARAMETER SF4: 2010data from Spent Fuel Pool Programme

• Further developments

implementation in MELCOR 2

requires active collaboration among SNL, NRC and PSI

possible extension to alternative cladding alloys (M5, Zirlo, E-110)

Current plans for 2009-2012

(20)

Nuclear Energy and Safety

• The authors gratefully acknowledge support by the Swiss Nuclear Safety Authority (ENSI)

• The work is being performed in the frame of Swiss participation in CSARP and European programmes

• The authors gratefully acknowledge material provided by FZK and IRSN in preparing this presentation

• Thank you for your attention

Acknowledgments

Referenzen

ÄHNLICHE DOKUMENTE

Der langsame Ausbau von Rot- weinen im Barrique (z.B. Bordeaux) mit regelmässigen Umzügen bewirkt ebenfalls eine ganz langsame Oxidation und Ausfällung von oxidierbaren

The project will provide high quality data with which to assess the capability of models to simulate the air oxidation and its potential to trigger a self-propagating fire in

Die einkristallinen NiCr-Filme wurden ebenfalls in einer Hochvakuumanlage bei unter- schiedlichen Temperaturen und Sauerstoffpartialdrücken oxidiert. Allerdings mußten hier- bei

In dem Beispiel ist Natrium das Reduktionsmittel, denn es veranlaßt das Chlor zur Elektronenaufnahme und wir dabei selbst oxidiert (es gibt ein Elektron ab).. 

Gold wird zu den Edelmetallen gezählt. Diese Zuordnung erfolgt nicht aufgrund des Aussehens oder der Verwendung für edle Gegenstände. Edelmetalle ver- ändern sich chemisch nicht,

Upon stepwise oxidation with Hg(II)-EDTA the 4-hydroxyisoquinolinium ion 14 is detected as an inter- mediate and its further oxidation with periodate gives rise to an almost

Der Rückstand wird säulenchromato- graphisch (Kieselgel, Länge 10 cm, Durchmesser 2 cm) ge- reinigt. Nach dem Abkühlen wird mit verd. HCl angesäuert und mit EtOAc extrahiert.

c) die aus der Ausgleichsrechnung ermittelten Geschwindigkeitskonstanten