• Keine Ergebnisse gefunden

-1 Not detectableNot detectable

N/A
N/A
Protected

Academic year: 2022

Aktie "-1 Not detectableNot detectable"

Copied!
19
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Chemical Ecology of

Toxic Algae

Bernd Krock, Urban Tillmann, Uwe John, Sára Beszteri,

Chishimba M. Kantu, Allan D. Cembella

(2)

Toxic Algal Blooms

(3)

Distribution of Paralytic Shellfish Poisoning events

2005

1970

(4)

Lytic Effect of Alexandriumshown withOxyrrhis marina.

Black arrows: Alexandrium

Red arrows: Remainders of Oxyrrhis

Alexandrium tamarense Oxyrrhis marina

Photos: U. Tillmann

Lytic Effect of Alexandrium

(5)

Lytic Effect of A. ostenfeldii

Allelochemical potency is not related to spirolide production

Oxyrrhismarina% intactcells

10 100 1000 10000

A. ostenfeldiicell concentration (ml-1)

10 100 1000 10000

0 20 40 60 80 100 120

A

K-0287

10 100 1000 10000

0 20 40 60 80 100 120

B

BAHME136

0 20 40 60 80 100 120

C

AOSH2

A. ostenfeldii strain

0 2 4 6 8 10

AOSH2 BAHME136 K-0287

spirolides (pgcell-1 ) Not detectable Not detectable

(6)

Chemical Interaction Ecological Function Organism

Alexandrium tamarense Alexandrium minutum Alexandrium ostenfeldii

PSP-Toxins

N

N N

H H N

NH2

OH OH O

H2N R1

R2

R3

R4

?

Alexandrium tamarense Prymnesium parvum

Defense against Predators, Elimination of Competitors

?

O O

N

O

O O OH

HO

2 3

31

13

Spirolides

(7)

Towards Inter-disciplinary Science

Biological, Chemical &

Geological Oceanography

Natural Products &

Bioanalytical Chemistry

Biodiagnostics

& Ecotoxicology

Marine Biology,

Chemistry & Ecology Molecular Ecology

Marine Chemical

Ecology

Genomics, Proteomics &

Metabolomics

(8)

Strategies to answer these questions:

Can toxic strains be detectected genetically?

=> Genomic characterization (microsatellites, AFLP, rDNA sequence analysis)

What effects do toxins have?

=> Toxicological assays

What are the allelochemicals?

=> Chemical experiments & bioassays What toxins are present?

=> Bioanalytics (LC-FD, LC-MS/MS)

Which genes are responsable for growth and toxicity?

=> Gene expession analysis (EST, Data bases, microarrays)

(9)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alexan drium os

tenfe ldii

Chryso chromuli

na polylepis

Fragil ariaops

iscylind rus

Phaeod

actylumtricornutu m

Laminar iadigitata

Arab idops

istha liana

Popu lus sp.

Coleopte

Proportion of homologousprotein Sequencesamongdifferent species ra

known unknown Algae Higher plants and animals

Genomic Characterization

John et al. 2004

(10)

10

Pseudomonas fluorescens

Desulfovibrio desulfuricans

Cryptosporidium parvum Pfiesteria shumwayae Alexandrium ostenfeldii

Microcystis aeruginosa

Anabaena sp.

Nostoc sp.

PKS EST Analysis

Genomic Characterization

16 1

4 1

18

4 3 7 7

5 11 7

2 4

6 2 3 3

Metabolism

Cellular processes

Stress, defence and toxicity

Information storing and processing

General function (prediction only) Cell structure

(11)

5 psu

0 20 40 60 80 100 120

1000 10000 100000 1000000

Prymnesium/ml

Rhodomonas viability %

control (26 psu)

0 20 40 60 80 100 120

1000 10000 100000 1000000

Rhodomonas viability%

Gene Expression Analysis

=> ESTs, Microarrays

Early exponential growth phase Late exponential growth phase

Stationary phase

Toxicity of Prymnesium parvum is high at low salinity

(12)

Bioanalytics

10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0

Time, min 0,0

2,0e5 4,0e5 6,0e5 8,0e5 1,0e6 1,2e6 1,4e6 1,6e6 1,8e6 2,0e6 2,2e6 2,4e6 2,6e6 2,8e6 3,0e6 3,2e6 3,4e6 3,6e6 3,8e6 4,0e6 4,2e6 4,4e6

12,38

12,00

12,85

O O

N

O

O O

HO

2 3

32

13 HO

17

20

20-Me Spirolide G

O O

N

O

O O OH

HO

2 3

31

13

Spirolide C

604.5 > 356.3 640.5 > 164.1 650.5 > 164.1 692.5 > 150.1 692.5 > 164.1 694.5 > 164.1 706.5 > 164.1 708.5 > 164.1 720.5 > 164.1

Alexandrium ostenfeldii strain AOSH2

?

?

? ?

? ?

?

(13)

0 20 40 60 80 100 120

Control After Evaporation

undiluted 1:10 dilution

Rhodomonasmortality

Chemical Exeriments – Evaporation

Alexandrium tamarense supernatant – Lytic Effect on Rhodomonas

(14)

Chemical Exeriments – Lyophilization

0 20 40 60 80 100 120

0,0 0,1 1,0 10,0 100,0

% sample in bioassay

Rhodomonas(% of control)

original supernatant supernatant lyophilized and resuspended

EC50 original: 0.31 % EC50 „instant“: 0.44 %

Alexandrium tamarense supernatant – Lytic Effect on Rhodomonas

(15)

0 20 40 60 80 100 120

0,1 1,0 10,0 100,0

0 20 40 60 80 100 120

0,1 1,0 10,0 100,0

15°C; light (150 µE m-2 s-1)

15°C; dark

t = 0 t = 1d

t = 4d t = 7d

t = 12d t = 20d

t = 49d

Chemical Exeriments – Stability

% sample in bioassay

% sample in bioassay

Rhodomonas(% of control) Rhodomonas(% of control)

Alexandrium tamarense supernatant – Lytic Effect on Rhodomonas

(16)

0 2000 4000 6000 8000 10000

0,1 1,0 10,0 100,0

% sample in bioassay Rhodomonas(ml-1 )

A. tamarense culture 8.0 µm filter

5.0 µm filter 3.0 µm filter 1.2 µm filter 0.4 µm filter 0.2 µm filter 0.1 µm filter GF/C filter

Chemical Exeriments – Filterability

Alexandrium tamarense supernatant – Lytic Effect on Rhodomonas

(17)

Toxicological assays

Viability curve of N2a exposed to Ethanol

0.25 0.50 0.75 1.00 1.25 1.50 0

10 20 30 40 50 60 70 80 90 100

EC50= 6.5 % Ethanol

Log [% Ethanol]

Viability % control

Alexandrium ostenfeldii extract – Toxic Effect on Neoblastoma cells

Control A. ostenfeldii cell extracts

(18)

Toxicological assays

Control DesMe C A. ostenfeldii

Intermediate Cytotoxicity

A. ostenfeldii High

Cytotoxicity

Alexandrium ostenfeldii extract – Expression of stress and toxicity related genes (GEArray Q Series Mouse Stress & Toxicity Pathway Finder)

(19)

Thank You for

Your Attention!

AWI

Allan D. Cembella Uwe John

Urban Tillmann Bernd Krock

Tilman Alpermann Sascha Klöpper Ines Jung

Sára Beszteri Nina Jaeckisch Ines Marschallek Chishimba M. Kantu Chibo Chikwililwa Annegret Müller Wolfgang Drebing

GKSS

Andreas Prange Jürgen Gandraß Sandra Schäfer Beritt Schwalger

Referenzen

ÄHNLICHE DOKUMENTE

A last aim was to further connect mitochondrial quality control to mitochondrial function in neuronal-like cells and to better understand the role of

To provide further evidence for this hypothesis, we studied the overall toxicity of different concentrations of simvastatin and benzbromarone on dermal fibroblasts obtained

Besides morphological defects, also functional im- pairments of the mitochondria were observed upon loss of function of CATP-6, with deletion mutants exhibiting a reduced

Der vorliegende Leitfaden gibt Anregungen Anregungen Anregungen Anregungen, was Sie als Bauleiter, aber auch Anregungen was Ihre Vorgesetzten und Kollegen tun können,

Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forth- with distributed under the terms of the Creative Commons Attribution

Alternatives methods for developmental toxicology testing can roughly be subdivided into three types of systems with increasing complexity: cell cultures (e.g. Embryonic Stem

8.7.2. Pre-natal developmental toxicity 8.7.2. The study shall be initially performed on one species. A decision on the need study, one species, most appropriate to perform a

The resulting dissocia- tion between the physiological stress response and the emotional experience of stress raises important questions about reliability and validity of our