• Keine Ergebnisse gefunden

M. Oelgemöller and A. G. Griesbeck

N/A
N/A
Protected

Academic year: 2022

Aktie "M. Oelgemöller and A. G. Griesbeck "

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ζ . Kristallogr. NCS 213 (1998) 757-758 7 5 7

© by R. Oldenbourg Verlag, München

Crystal structure of 4b-hydroxy-4b,6,8>9-tetrahydro-5H-7-thia-9a-aza- benzo[a]azulen-10-one, C12H13NO2S

K. Peters, E.-M. Peters

Max-Planck-lnstitut für Festkörperforschung, Heisenbergstraße 1. D-70506 Stuttgart. Germany

M. Oelgemöller and A. G. Griesbeck

Universität zu Köln. Institut für Organische Chemie, Greinstraße 4, D-50939 Köln, Germany Received April 7, 1998, CSD-No. 409289

Table 1. Parameters used for the X-ray data collection

Source of material: The title compound was prepared from potassium 3-(2-phthalimidoethylsulfanyl)propionate by irradiation (300 nm, 24 h) in an acetone / water mixture (7:3). Extraction and recrystallization from acetone yielded 25% of colorless crystals (see ref. 1). This reaction was studied in context with regioselectivity problems (see ref. 2) and state-selectivity effects (see ref. 3) in ^-phthaloyl cysteine photochemistry. Photodecarboxylation is the dominant process for product formation in the case of potassium carboxylates (see ref. 4) even in the presence of thioethers as competing electron donors. The intermolecular hydrogen bridge 0 7 - H 7 · · 0 1 0 leads to a zigzag chain parallel [100].

C 1 2 H 1 3 N O 2 S , monoclinic. Ce (No. 9), a =6.612(1) A, b =17.600(2) Â, с =9.759(1) Â, β =96.76(1)°, V=1127.8 Â ^ Ζ =4, R(F) =0.041, ÄwCF; =0.041.

Table 3. Final atomic coordinates and displacement parameters (in Â^)

Crystal: colorless lath, size 0.4 χ 0.9 χ 0.1 mm Wavelength: Mo Ka radiation (0.71073 A)

μ: 2.70 cm"'

Diffi^tometer: Siemens P4

Scan mode: ω

^measurement' 293 К

2θηωχ: 55°

S(hkl)unique: 1406 Criterion for Fo". Fo>3a(F„) Ы(рагсап),фа1Г. 147

Program: SHELXTL-plus

Table 2. Final atomic coordinates and displacement parameters (in A^)

Atom Site X У ζ l/iso

H(2A) 4a 0.0997(6) 0.1820(2) -0.1342(4) 0.08 H(2B) 4a 0.0092(6) 0.1085(2) -0.0741(4) 0.08 H(3A) 4a 0.0864(6) 0.1854(2) 0.1087(4) 0.08 H(3B) 4a 0.2550(6) 0.1224(2) 0.1225(4) 0.08 H(5A) 4a 0.6185(6) 0.1474(2) 0.0213(4) 0.08 H(5B) 4a 0.7130(6) 0.2283(2) 0.0081(4) 0.08 H(6A) 4a 0.4434(6) 0.2377(2) -0.1914(4) 0.08 H(6B) 4a 0.6559(6) 0.2020(2) -0.2095(4) 0.08 H(7) 4a 0.31(1) 0.104(3) -0.406(6) 0.09(2) H(ll) 4a 0.5627(7) -0.1157(2) -0.0939(4) 0.08 H(12) 4a 0.8554(8) -0.1270(2) -0.2074(5) 0.08 H(13) 4a 0.9647(7) -0.0260(2) -0.3375(5) 0.08 H(14) 4a 0.7848(6) 0.0904(2) -0.3533(4) 0.08

Atom Site X У ζ Uu {/22 1/33 Un ί/13 t/23

S(4) 4a 0.39823 0.23848(6) 0.08405 0.0528(5) 0.0460(5) 0.0529(5) -0.0078(5) 0.0167(4) -0.0213(5) N(l) 4a 0.2837(5) 0.0927(2) -0.1329(3) 0.034(1) 0.028(1) 0.036(1) 0.001(1) 0.005(1) -0.001(1) C(2) 4a 0.1301(6) 0.1385(2) -0.0761(4) 0.031(2) 0.044(2) 0.047(2) 0.003(1) 0.006(2) -0.006(2) C(3) 4a 0.2022(6) 0.1656(2) 0.0698(4) 0.041(2) 0.053(2) 0.048(2) -0.003(2) 0.015(2) -0.014(2) C(5) 4a 0.5916(6) 0.1984(2) -0.0107(4) 0.039(2) 0.036(2) 0.047(2) -0.005(2) 0.009(2) -0.008(2) C(6) 4a 0.5335(6) 0.1959(2) -0.1666(4) 0.050(2) 0.026(2) 0.041(2) -0.002(2) 0.014(2) 0.001(1) C(7) 4a 0.4273(6) 0.1228(2) -0.2247(3) 0.039(2) 0.029(2) 0.033(2) 0.005(1) 0.008(1) 0.001(1) 0(7) 4a 0.3287(5) 0.1429(2) -0.3557(3) 0.062(2) 0.036(1) 0.032(1) 0.014(1) -0.001(1) 0.002(1) C(8) 4a 0.5699(6) 0.0552(2) -0.2306(4) 0.040(2) 0.027(1) 0.028(1) 0.003(1) 0.001(1) -0.001(1) C(9) 4a 0.5060(6) -«.0048(2) -0.1545(4) 0.042(2) 0.032(2) 0.030(1) 0.001(1) -0.000(1) 0.000(1) C(10) 4a 0.3253(6) 0.0199(2) -0.0899(4) 0.035(2) 0.032(2) 0.034(2) -0.005(1) -0.000(1) 0.002(1)

(2)

758

C12H13NO2S ТаЫе 3. (Continued)

Atom Site X У ζ t/ll U22 f/33 Í/12 Un t/23

CK 10) 4a 0.2284(5) -0.0149(2) -0.0095(3) 0.050(2) 0.044(1) 0.049(1) -0.004(1) 0.011(1) 0.010(1) C ( l l ) 4a 0.6089(7) -0.0740(2) -0.1454(4) 0.059(2) 0.029(2) 0.042(2) 0.003(2) 0.001(2) 0.001(1) C(12) 4a 0.7799(8) -0.0803(2) -0.2133(5) 0.062(3) 0.038(2) 0.051(2) 0.017(2) 0.000(2) -0.008(2) C(I3) 4a 0.8459(7) -0.0199(2) -0.2907(5) 0.047(2) 0.052(2) 0.048(2) 0.010(2) 0.007(2) -0.012(2) C(14) 4a 0.7408(6) 0.0488(2) -0.3004(4) 0.044(2) 0.039(2) 0.035(2) 0.000(2) 0.007(2) -0.005(1)

References

1. Oelgemöller, M.: Dissertation planned for 1998. University of Cologne, Geimany.

2. Giiesbeck, A. G. ; Hirt, J.; Kramer, W.; Dallakian, P.: Photochemistry of

^-phthaloyl cysteine, its methyl ester, and C-unprotected S-alkyl deriva- tes. Tetrahedron 54 ( 1998) 3169-3180.

4.

5.

Griesbeck. A. G.; Hirt, J.; Peters, K.; Peters, E.-M.; von Schnering, H. G.;

Photo electron transfer induced cyclization of A'-phthaloyI cysteine derí- vales: multiplicity-controlled regioselective CH-activation. Chem. Eur. J.

2 ( 1 9 % ) 1388-1394.

Griesbeck, A. G.; Henz, Α.; Kramer, W.; Nerowski, F.; Oelgemöller, M.:

Peters, К.; Peters, E.-M.: Synthesis of medium- and large-ring compounds initiated by photochemical decarboxylation of (o-phthalimido alkylcar- boxylates. Helvetica Chim. Acta 80 (1997) 912-933.

Sheldrick, G. M.: Program Package SHELXTL-plus. Release 4.1.

Siemens Analytical X-Ray Instruments Inc., Madison (Wl 53719), US A 1990.

Abbildung

Table 1. Parameters used for the X-ray data collection

Referenzen

ÄHNLICHE DOKUMENTE

The incidence of dynamic recrystallization increases at increased strain rates and higher elongations ( ~10% [3, 9]. According to these values, it would be difficult for

(2013) recently reported Gonatodes vitta- tus from Guyana, northern South America, on the basis of six museum specimens from two localities: Georgetown (capital city),

In the current study, a comprehensive radionuclide mass balance through the entire Bayer process was performed to (1) establish relations between input and output

Methoxyphenylmagnesium bromide (0.5 M solution in THF, 363 µL, 181.5 µmol, 1.50 equiv.) was added dropwise to the brown suspension, and the reaction mixture was allowed to warm

Table 1: Measured transitions [MHz] of allylcyanide syn- periplanar, v FX : unresolved or calculated unsplit line fre- quencies by MWFT spectroscopy, v Stark : frequencies by MW

Technological developments include the biasing of specimens to reduce the primary electron landing energy, originally used in the high vacuum SEM [7, 8], to enable high

At this point, the main expense is created by the interface-adequate variance generation of modules, which is mainly to be regulated by the newly created

The point of this is that when the light penetrates the layer of acrylic glass the light refraction on the surface of the photopaper is completely different from the effect when