• Keine Ergebnisse gefunden

Algorithms for Automated Floor Planning

N/A
N/A
Protected

Academic year: 2022

Aktie "Algorithms for Automated Floor Planning"

Copied!
63
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Algorithms for Automated Floor Planning

Felix Klesen

(2)
(3)
(4)
(5)
(6)
(7)
(8)

v1 v2 v5

v6

e1

e2 e4

e5 e6

(9)

v1 v2 v5

v6

e1

e2 e4

e5 e6

w(e1) l(e2)

(10)

v1 v2 v5

v6

e1

e2 e4

e5 e6

w(e1) l(e2)

g

(

r, e

) =

(1 α

s(r)

w(e)2

1

α

0 otherwise

(11)

v1 v2 v5

v6

e1

e2 e4

e5 e6

w(e1) l(e2)

v1 e1

e2 g

(

r, e

) =

(1 α

s(r)

w(e)2

1

α

0 otherwise

(12)

v1 v2 v5

v6

e1

e2 e4

e5 e6

w(e1) l(e2)

v1 e1

e2

d g

(

r, e

) =

(1 α

s(r)

w(e)2

1

α

0 otherwise

(13)

v1 v2 v5

v6

e1

e2 e4

e5 e6

w(e1) l(e2)

v1 e1

e2

d g

(

r, e

) =

(1 α

s(r)

w(e)2

1

α

0 otherwise q

(

r, e, v

) =

(1 s

(

r

) ≥

s

(

v

) +

w

(

e

) ·

d 0 otherwise

(14)

Floor-planning is NP-hard.

(15)

S

= {

6, 5, 4, 2, 1

}

Floor-planning is NP-hard.

(16)

S

= {

6, 5, 4, 2, 1

}

|

S

|

:

=

sS s

Floor-planning is NP-hard.

(17)

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

|S|/2

|S|/2

S

= {

6, 5, 4, 2, 1

}

|

S

|

:

=

sS s

Floor-planning is NP-hard.

(18)

S

= {

6, 5, 4, 2, 1

}

|

S

|

:

=

sS s

5 4

1 2 6

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

Floor-planning is NP-hard.

(19)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

(20)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

(21)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

eE

xr,e

+

vN(e) yr,e,v

=

1

r

R

(22)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

eE

xr,e

+

vN(e) yr,e,v

=

1

r

R

xr,e

+

vN(e) yr,e,v

g

(

r, e

) ∀

r

R, e

E

(23)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

eE

xr,e

+

vN(e) yr,e,v

=

1

r

R

xr,e

+

vN(e) yr,e,v

g

(

r, e

) ∀

r

R, e

E

rReN(v) yr,e,v

1

v

V

(24)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

eE

xr,e

+

vN(e) yr,e,v

=

1

r

R

xr,e

+

vN(e) yr,e,v

g

(

r, e

) ∀

r

R, e

E

rReN(v) yr,e,v

1

v

V

yr,e,v

q

(

r, e, v

) ∀

r

R, e

E, v

N

(

e

)

(25)

xr,e

∈ {

0, 1

} ∀

r

R, e

E

yr,e,v

∈ {

0, 1

} ∀

r

R, e

E, v

N

(

e

)

eE

xr,e

+

vN(e) yr,e,v

=

1

r

R

xr,e

+

vN(e) yr,e,v

g

(

r, e

) ∀

r

R, e

E

rReN(v) yr,e,v

1

v

V

yr,e,v

q

(

r, e, v

) ∀

r

R, e

E, v

N

(

e

)

rR

xr,e

·

s

(

r

) +

vN(e) yr,e,v

·

s

(

r

) −

s

(

v

)

s

(

e

) ∀

e

E

(26)
(27)

xr,e

+

vN(e) yr,e,v

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

(28)

xr,e

+

vN(e) yr,e,v

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C minimize ∑cCeE ze,c

(29)

xr,e

+

vN(e) yr,e,v

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C minimize ∑cCeE ze,c

(30)
(31)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

(32)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

(33)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

yr,e,v

·

γ

(

r, c

) ≤

zv,c

r

R, v

V, e

N

(

v

)

, c

C

(34)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

yr,e,v

·

γ

(

r, c

) ≤

zv,c

r

R, v

V, e

N

(

v

)

, c

C minimize ∑cCe1E

e2E ze1,c

·

ze2,c

·

δ

(

e1, e2

) +

vV ze1,c

·

zv,c

·

δ

(

e1, v

)

(35)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

yr,e,v

·

γ

(

r, c

) ≤

zv,c

r

R, v

V, e

N

(

v

)

, c

C minimize ∑cCe1E

e2E ze1,c

·

ze2,c

·

δ

(

e1, e2

) +

vV ze1,c

·

zv,c

·

δ

(

e1, v

)

(36)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

yr,e,v

·

γ

(

r, c

) ≤

zv,c

r

R, v

V, e

N

(

v

)

, c

C minimize ∑cCe1E

e2E ze1,c

·

ze2,c

·

δ

(

e1, e2

) +

vV ze1,c

·

zv,c

·

δ

(

e1, v

)

ue1,e2,c

∈ {

0, 1

} ∀

e1

E, e2

E, c

C

(37)

zv,c

∈ {

0, 1

} ∀

v

V, c

C

xr,e

·

γ

(

r, c

) ≤

ze,c

r

R, e

E, c

C

yr,e,v

·

γ

(

r, c

) ≤

zv,c

r

R, v

V, e

N

(

v

)

, c

C minimize ∑cCe1E

e2E ze1,c

·

ze2,c

·

δ

(

e1, e2

) +

vV ze1,c

·

zv,c

·

δ

(

e1, v

)

ue1,e2,c

∈ {

0, 1

} ∀

e1

E, e2

E, c

C ue1,e2,c

+

1

ze1,c

+

ze2,c

e1

E, e2

E, c

C

(38)
(39)
(40)
(41)
(42)

minimize cost

(

a, γ

) =

cC fF xc,f

(43)

minimize cost

(

a, γ

) =

cC fF xc,f

xc,f

=

1 WrR

a

(

r

) =

f

γ

(

r

) =

c

0 otherwise

(44)

minimize cost

(

a, γ

) =

cC fF xc,f

xc,f

=

1 WrR

a

(

r

) =

f

γ

(

r

) =

c

0 otherwise

Room-assignment is NP-hard to approximate.

(45)
(46)

minimize cost

(

a, γ

) =

cC fF xc,f

(47)

minimize cost

(

a, γ

) =

cC fF xc,f

xc,f

=

(1 a

(

c, f

) ≥

1 0 otherwise

(48)

minimize cost

(

a, γ

) =

cC fF xc,f

xc,f

=

(1 a

(

c, f

) ≥

1 0 otherwise

Solving area-distribution is NP-hard.

(49)
(50)
(51)
(52)

For any instance of area-distribution there is an optimal solution admitting a nice sequence.

(53)

For any instance of area-distribution there is an optimal solution admitting a nice sequence.

For any instance of area-distribution we can compute a nice sequence in O

(|

C

| + |

F

|)

time.

(54)

For any instance of area-distribution there is an optimal solution admitting a nice sequence.

For any instance of area-distribution we can compute a nice sequence in O

(|

C

| + |

F

|)

time.

For any instance of area-distribution the solution represented by any nice sequence is a 2-approximation.

(55)

For any instance of area-distribution there is an optimal solution admitting a nice sequence.

For any instance of area-distribution we can compute a nice sequence in O

(|

C

| + |

F

|)

time.

For any instance of area-distribution the solution represented by any nice sequence is a 2-approximation.

(56)
(57)

minimize cost

(

a, δ

) =

cC 1

+

maxf1,f2F xc,f1

·

xc,f2

·

δ

(

f1, f2

)

(58)

minimize cost

(

a, δ

) =

cC 1

+

maxf1,f2F xc,f1

·

xc,f2

·

δ

(

f1, f2

)

xc,f

=

(1 a

(

c, f

) ≥

1 0 otherwise

(59)

minimize cost

(

a, δ

) =

cC 1

+

maxf1,f2F xc,f1

·

xc,f2

·

δ

(

f1, f2

)

xc,f

=

(1 a

(

c, f

) ≥

1 0 otherwise

Any optimal solution for an instance of area-distribution in single building can be represented by a nice sequence.

(60)

0 1 2 3 4 5 6

(61)

0 1 2 3 4 5 6

(62)

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

(63)

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

Referenzen

ÄHNLICHE DOKUMENTE

If you can influence intensity, then you have a choice of strategies: whether to try to build intensive mass support for a distributive outcome, or to exploit the running room of

Of course, the overall goal in practice is to not only find solutions for the single planning stages, but to find a good overall system, i.e., a public transport plan ( L , π, V )

For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an

В рамках этого подхода основная задача состоит в нахождении эллип- соида (или семейства эллипсоидов) в фазовом пространстве, оцениваю- щего сверху

The paper extends the previous results of the authors on quantitative stability for chance constrained programming in two directions: it gives verifiable

Afterwards, two new approaches are introduced: a probabilistic approximation method for Wasserstein distances using subsampling and a clustering method, which aims to

problem, in an organized structure; 2) a data manipulation lan- guage which provides the means for manipulating data in the data base; 3) a set of application programs for

[r]