• Keine Ergebnisse gefunden

YIU: Euclidean Geometry !"

N/A
N/A
Protected

Academic year: 2021

Aktie "YIU: Euclidean Geometry !""

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

YIU: Euclidean Geometry !"

Proof. #$%%&'( !

1

)*+ !

2

),( &* -.( ')/( '0+( &1 !

3

!

4

2 3.( 1&$, %&0*-' ),(

4&*454604 01 -.( 4&$*-(, 46&4780'( )*96(' &1 ,&-)-0&* 1,&/ !

1

!

3

-& !

1

!

4

)*+

1,&/ !

2

!

3

-& !

2

!

4

),( (:$)62 ;* -.0' 4)'(< -.( ,)-0&

!

4

 !

1

!

3

 !

1

" !

4

 !

2

!

3

 !

2

&1 -.( 4&/%6(= *$/>(,' 0' ,()6< ?)*+ 0*+((+ %&'0-0@(A2

B* -.( &-.(, .)*+< 01 !

1

< !

2

),( &* &%%&'0-( '0+(' &1 !

3

!

4

< -.( -8& )*96(' +0(, >5 < )*+ -.( 4,&'' ,)-0& 0' ) *(9)-0@( ,()6 *$/>(,2

!"! #$%&'()*'+$% $, '-. (./)01( 234/$%

!"!"2 51)&&6 1%107&+&

#$%%&'( ) ,(9$6), CD  9&* .)' 4(*-(, E  C )*+ &*( @(,-(= ,(%,('(*-(+ >5 -.( 4&/%6(= *$/>(, C2 3.(* -.( ,(/)0*0*9 CF @(,-04(' ),( -.( ,&&-' &1 -.(

(:$)-0&*

#

17

 C

#  C G #

16

H #

15

H · · · H # H C G E$

;1  0' &*( &1 -.('( CF ,&&-'< -.(* -.('( CF ,&&-' ),( %,(40'(65 % 

2

% $ $ $ % 

15

% 

16

2

?I&-( -.)- 

17

G C2A J(&/(-,04)665< 01 &

0

% &

1

),( -8& +0'-0*4- @(,-04(' &1 ) ,(9$6), CD  9&*< -.(* '$44(''0@(65 /),70*9 @(,-04(' &

2

% &

3

% $ $ $ % &

16

80-.

&

0

&

1

G &

1

&

2

G $ $ $ G &

14

&

15

G &

15

&

16

%

8( &>-)0* )66 CD @(,-04('2 ;1 8( 8,0-(  G 4&'  H ' '0* < -.(*  H 

16

G K 4&' 2 ;- 1&66&8' -.)- -.( ,(9$6), CD  9&* 4)* >( 4&*'-,$4-(+ 01 &*( 4)*

4&*'-,$4- -.( *$/>(, H 

16

2 J)$'' &>'(,@(+ -.)- -.( CF 4&/%6(= *$/>(,'

k

% ( G C% K% $ $ $ % CF< 4)* >( '(%),)-(+ 0*-& -8& L9,&$%'M &1 (09.-< ()4. 80-.

) '$/ 4&*'-,$4-0>6( $'0*9 &*65 ,$6(, )*+ 4&/%)''2 3.0' 0' +(40'0@(65 -.(

.),+('- '-(%2 N$- &*4( -.0' 0' +&*(< -8& /&,( )%%604)-0&*' &1 -.( ')/( 0+() (@(*-$)665 0'&6)-(  H 

16

)' ) 4&*'-,$4-0>6( *$/>(,< -.(,(>5 4&/%6(-0*9 -.(

-)'7 &1 4&*'-,$4-0&*2 3.( 7(5 0+() 0*@&6@(' -.( @(,5 '0/%6( 1)4- -.)- 01 -.(

4&(40(*-' ) )*+ * &1 ) :$)+,)-04 (:$)-0&* #

2

 )#H * G E ),( 4&*'-,$4-0>6(<

-.(* '& ),( 0-' ,&&-' #

1

)*+ #

2

2 I&-( -.)- #

1

H #

2

G ) )*+ #

1

#

2

G *2 J)$'' &>'(,@(+ -.)-< /&+$6& CD< -.( ,'- CF %&8(,' &1 " 1&,/ ) %(,/$O -)-0&* &1 -.( *$/>(,' C< K< 2 2 2 < CFP

( E C K " Q R F D ! S CE CC CK C" CQ CR

"

k

C " S CE C" R CR CC CF CQ ! D Q CK K F

(2)

YIU: Euclidean Geometry !Q

T(-

+

1

G  H 

9

H 

13

H 

15

H 

16

H 

8

H 

4

H 

2

% +

2

G 

3

H 

10

H 

5

H 

11

H 

14

H 

7

H 

12

H 

6

$ I&-( -.)-

+

1

H +

2

G  H 

2

H · · · H 

16

G  C$

U&'- 4,$40)6< .&8(@(,< 0' -.( 1)4- -.)- -.( %,&+$4- +

1

+

2

+&(' not +(%(*+

&* -.( 4.&04( &1 2 V( /$6-0%65 -.('( +0,(4-65< >$- )+&%- ) 4&*@(*0(*-

>&&77((%0*9 >(6&82 N(6&8 ()4. %&8(, 

k

< 8( (*-(, ) *$/>(, , ?1,&/ C -&

! /()*0*9 -.)- 

k

4)* >( &>-)0*(+ >5 /$6-0%650*9 -.( ,-. -(,/ &1 +

1

>5 )*

)%%,&%,0)-( -(,/ &1 +

2

?$*'%(40(+ 0* -.( -)>6( >$- ()'5 -& +(-(,/0*(AP

 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

" K K C Q C C C Q " C C C K C K

Q " " K R K " " R Q R K R F K "

F R Q Q F " D Q D R F Q F D F D

D F F R ! R ! ! ! D D ! ! ! D !

W,&/ -.0' 0- 0' 46(), -.)-

+

1

+

2

G Q? H 

2

H · · · H 

16

A G  Q$

;- 1&66&8' -.)- +

1

)*+ +

2

),( -.( ,&&-' &1 -.( :$)+,)-04 (:$)-0&*

+

2

H +  Q G E%

)*+ ),( 4&*'-,$4-0>6(2 V( /)5 -)7(

+

1

G  C H  CD

K % +

2

G  C  

CD

K $

I&8 '(%),)-( -.( -(,/' &1 +

1

0*-& -8& L9,&$%'M &1 1&$,< *)/(65<

!

1

G  H 

13

H 

16

H 

4

% !

2

G 

9

H 

15

H 

8

H 

2

$ X6(),65< !

1

H !

2

G +

1

2 Y6'&<

!

1

!

2

G ? H 

13

H 

16

H 

4

A?

9

H 

15

H 

8

H 

2

A G  H 

2

H · · · H 

16

G  C$

;- 1&66&8' -.)- !

1

)*+ !

2

),( -.( ,&&-' &1 -.( :$)+,)-04 (:$)-0&*

!

2

 +

1

!  C G E%

(3)

YIU: Euclidean Geometry !R

)*+ ),( 4&*'-,$4-0>6(< '0*4( +

1

0' 4&*'-,$4-0>6(2 #0/06),65< 01 8( 8,0-(

!

3

G 

3

H 

5

H 

14

H 

12

% !

4

G 

10

H 

11

H 

7

H 

6

%

8( *+ -.)- !

3

H !

4

G +

2

< )*+ !

3

!

4

G  H 

2

H · · · H 

16

G  C< '& -.)- !

3

)*+ !

4

),( -.( ,&&-' &1 -.( :$)+,)-04 (:$)-0&*

!

2

 +

2

!  C G E )*+ ),( )6'& 4&*'-,$4-0>6(2

W0*)665< 1$,-.(, '(%),)-0*9 -.( -(,/' &1 !

1

0*-& -8& %)0,'< >5 %$--0*9 -

1

G  H 

16

% -

2

G 

13

H 

4

%

8( &>-)0*

-

1

H -

2

G !

1

%

-

1

-

2

G ? H 

16

A?

13

H 

4

A G 

14

H 

5

H 

12

H 

3

G !

3

$

;- 1&66&8' -.)- -

1

)*+ -

2

),( -.( ,&&-' &1 -.( :$)+,)-04 (:$)-0&*

-

2

 !

1

- H !

3

G E%

)*+ ),( 4&*'-,$4-0>6(< '0*4( !

1

)*+ !

3

),( 4&*'-,$4-0>6(2

!"!"8 9:;0+*+' *$%&'()*'+$% $, 1 (./)01( 234/$%

4

3& 4&*'-,$4- -8& @(,-04(' &1 -.( ,(9$6), CDO9&* 0*'4,0>(+ 0* ) 90@(* 40,46(

.?&A2

C2 B* -.( ,)+0$' ./ %(,%(*+04$6), -& .&< /),7 ) %&0*- 0 '$4. -.)- .0 G

14

.&2

K2 U),7 ) %&0*- 1 &* -.( '(9/(*- .& '$4. -.)-

6

.0 1 G

146

.0 &2

"2 U),7 ) %&0*- 2 &* -.( +0)/(-(, -.,&$9. & '$4. -.)- . 0' >(-8((* 1 )*+ 2 )*+

6

10 2 G QR

2

Q2 V0-. &2 )' +0)/(-(,< 4&*'-,$4- ) 40,46( 0*-(,'(4-0*9 -.( ,)+0$' ./

)- 32

4

H.S.M.Coxeter,

Introduction to Geometry, 2nd ed. p.27.

(4)

YIU: Euclidean Geometry !F

R2 U),7 -.( 0*-(,'(4-0&*' &1 -.( 40,46( 1?3A 80-. -.( +0)/(-(, &1 .?&A -.,&$9. &2 T)>(6 -.( &*( >(-8((* . )*+ & %&0*-' 4

4

< )*+ -.( &-.(, )*+ 4

6

2

F2 X&*'-,$4- -.( %(,%(*+04$6), -.,&$9. 4

4

)*+ 4

6

-& 0*-(,'(4- -.( 40,46(

.?&A )- &

4

)*+ &

6

2

5

A6

A4

P4 P6

K

F E

J B

O A

3.(* &

4

< &

6

),( -8& @(,-04(' &1 ) ,(9$6), CDO9&* 0*'4,0>(+ 0* .?&A2 3.(

%&659&* 4)* >( 4&/%6(-(+ >5 '$44(''0@(65 6)50*9 & ),4' (:$)6 -& &

4

&

6

<

6()+0*9 -& &

8

< &

10

< 2 2 2 &

16

< &

1

G &< &

3

< &

5

< 2 2 2 < &

15

< &

17

< &

2

2

5

Note that

P4

is not the midpoint of

AF.

Referenzen

ÄHNLICHE DOKUMENTE

Theorem 1 implies that the polyhedral homotopy is optimal for computing ED- critical points in the following sense: If we assume that the continuation of zeroes has unit cost, then

In the future, I want to extend this dictionary, in particular to terms of intersection theory and of the theory of derived categories of coherent sheaves; to study the properties

Computer Vision I: Robust Two-View Geometry 69 Red Newton’s method;. green

The linear version of Weinstein’s theorem says that, given two Lagrangian subsapces of a given symplectic vector space, there exists an automorphism of the symplectic vectorspace

Theorem 1.7. It is called a local chart or local coordinate map. It is the inverse of a local parametrization.. This is independent of the chosen chart κ. This definition

It is now fantastic to see, how the above problem and its solution, which had haunted the greatest minds for centuries, became absolutely natural with the invention of

We will now show that four problems usually stated within Euclidean geometry, involv- ing metric notions (such as orthogonality and segment-congruence), can be rephrased as

Modification und Erläuterung bedürfen, wenn der Punkt (3) innerhalb des Dreiecks fällt. The proof will require some modification and explanation, when the point (3) is interior to