• Keine Ergebnisse gefunden

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect

N/A
N/A
Protected

Academic year: 2022

Aktie "Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect"

Copied!
73
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mapping Hot Gas in the Universe using the

Sunyaev-Zeldovich Effect

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Cosmology Group Seminar, ETH Zürich

June 7, 2018

(2)

Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

2

(3)

Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

3

(4)

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

Subaru

4

(5)

Hubble image of RXJ1347-1145 (Bradac et al. 2008)

Hubble

5

(6)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

Chandra

6

(7)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

ALMA Band-3 Image of the

Sunyaev-Zel’dovich effect at 92 GHz (Kitayama et al. 2016)

ALMA!

5” resolution

7

1σ=17 μJy/beam

=120 μKCMB

T. Kitayama

(8)

A clear displacement between

the X-ray and SZ images. What is going on?

8

(9)

9

(10)

Multi-wavelength Data

Optical:

•102–3 galaxies

•velocity dispersion

•gravitational lensing

X-ray:

•hot gas (107–8 K)

•spectroscopic TX

•Intensity ~ ne2L

IX = Z

dl n2e⇤(TX)

SZ [microwave]:

•hot gas (107-8 K)

•electron pressure

•Intensity ~ neTeL

ISZ = g T kB mec2

Z

dl neTe

(11)

A Story about RXJ1347–1145

Let me tell you a little story about this particular

cluster, which highlights the unique power of the SZ data to study cluster astrophysics

A massive cluster with 1015 Msun at z=0.45

The most X-ray luminous galaxy cluster found in the ROSAT All Sky Survey

Very compact, “cool core” cluster

11

(12)

1997

ROSAT/HRI image [Schindler et al.]

5” resolution

0.1–2.4 keV

Looked pretty

“spherical”

Thought to be a typical, relaxed,

cooling-flow cluster

12

(13)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

2001

SZ w/ Nobeyama [Komatsu et al.]

12” resolution

The highest

angular resolution SZ mapping at

that time

(The record holder for a decade)

A surprise!

(14)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

2001

SZ w/ Nobeyama [Komatsu et al.]

12” resolution

The highest

angular resolution SZ mapping at

that time

(The record holder for a decade)

A surprise!

(15)

2002

X-ray w/ Chandra [Allen et al.]

0.5–7 keV

An excess X-ray emission found at the location of the SZ excess

A hot gas, missed by ROSAT due to the lack of

sensitivity at high energies!

(16)

A lesson learned

X-ray observations are band-limited

They are not usually not sensitive to very hot gas with temperature >10(1+z) keV

SZ observations are not band-limited

They are in principle sensitive to arbitrarily high temperatures (more precisely, pressure)

SZ data probe electron pressure: a good probe of shock-heated gas due to mergers

RXJ1347–1145 was thought to be a relaxed cluster.

Our Nobeyama data challenged it, and now it is

accepted that this cluster is a merging system! 16

(17)

We have ALMA. Now what?

What is a new science we can do with such high resolution, high sensitivity measurements?

Finding shocks and hot clumps is fun, but can we do something new and more quantitative?

One example: Pressure fluctuations

17

(18)

SZ X-ray

Let’s subtract a smooth component

(19)

Let’s subtract a smooth component

SZ X-ray

Ueda et al., submitted

(20)

Let’s subtract a smooth component

SZ X-ray

Gas density is stirred

(“sloshed”), but no change in pressure! Not sound waves

=> Unique measurements of the effective equation of state of

density fluctuations

Ueda et al., submitted

(21)

Overlaid with strong lensing…

Ueda et al., submitted

SZ X-ray

(22)

Overlaid with strong lensing…

Ueda et al., submitted

SZ X-ray

Gas stripping?

(23)

Full-sky Thermal Pressure Map

North Galactic Pole South Galactic Pole

Planck Collaboration 23

(24)

We can simulate this

arXiv:1509.05134

Volume: (896 Mpc/h)3

Cosmological hydro (P-GADGET3) with star formation and AGN feed back

2 x 15263 particles (mDM=7.5x108 Msun/h)

[MNRAS, 463, 1797 (2016)]

24

Klaus Dolag (MPA/LMU)

(25)

…like Alex has done it before!

(26)

…like Alex has done it before!

(27)

Dolag, EK, Sunyaev (2016)

27

(28)

“The local universe simulation” reproduces the observed structures pretty well 28

(29)

1-point PDF fits!!

Dolag, EK, Sunyaev (2016)

29

(30)

Power spectrum fits!!

provided that we use:

m

= 0.308

8

= 0.8149

Dolag, EK, Sunyaev (2016)

30

(31)

Simple Interpretation

Randomly-distributed point sources

= Poisson spectrum = ∑i(fluxi)2 / 4π

multipole Cl [not “l2 Cl”]

31

(32)

Simple Interpretation

Extended sources = the power

spectrum reflects intensity profiles

multipole Cl [not “l2 Cl”]

32

(33)

Multipole l(l+1)C l /2 π [ μ K 2 ]

>2x1015 Msun

>1015 Msun

>5x1014 Msun

>5x1013 Msun

Adding smaller clusters

33

(34)

Simple Formula

yl with small l just gives the total thermal pressure, MT ~ M5/3

Heavily weighted by massive clusters

The mass function, dn/dM, is sensitive to the amplitude of fluctuations, σ8

C ` =

Z

dz dV dz

Z

dM dn

dM | y ` (M, z ) | 2

2d Fourier transform of pressure

34

(35)

Komatsu & Kitayama (1999)

Degree-scale SZ power spectrum

is less sensitive to astrophysics in cluster cores

1999

35

(36)

McCarthy et al. (2014)

2014

confirmed by simulations with

varying AGN feedback

36

(37)

It is very sensitive to the amplitude of fluctuations

Komatsu & Kitayama (1999) Komatsu & Seljak (2002)

1999

37

(38)

McCarthy et al. (2014)

tension?

Planck13 parameters

2014

38

(39)

McCarthy et al. (2014)

Planck13 parameters

similar to planck15

2014

39

(40)

C ` / ⌦ 3 m 8 8

m

= 0.308

8

= 0.8149

m

= 0.315

8

= 0.829

vs Dolag, EK, Sunyaev (2016)

40

(41)

C ` / ⌦ 3 m 8 8

m

= 0.308

8

= 0.8149

m

= 0.315

8

= 0.829

vs Dolag, EK, Sunyaev (2016)

~20% too large

41

(42)

Closer look at the measurements

The compton-Y power spectrum of Planck contains various

foreground sources

What you saw as the data points were the raw data minus the best- fitting foreground components

When fitting, the Planck team used Gaussian covariance

ignoring the non-Gaussian term

How does this affect the results?

Bolliet, Comis, EK, Macias-Perez (2017)

with non-Gaussian error without

42

B. Bolliet

(43)

tSZ power slightly lower

Bolliet, Comis, EK, Macias-Perez (2017)

with

non-Gaussian error

without

43

(44)

Closer look at the

parameter dependence

Bolliet, Comis, EK, Macias-Perez (2017)

Mass Bias

Hubble σ8

Ωm w ns

44

(45)

Closer look at the

parameter dependence

Bolliet, Comis, EK, Macias-Perez (2017)

2.6% measurement!

Essentially cosmological

model-independent

45

(46)

Closer look at the

parameter dependence

Bolliet, Comis, EK, Macias-Perez (2017)

2.6% measurement!

Essentially cosmological

model-independent

46

(47)

Planck Mass Bias

The key ingredient of the power spectrum is a profile of thermal pressure of electrons

C ` =

Z

dz dV dz

Z

dM dn

dM | y ` (M, z ) | 2

M ˜ 500c = M 500c,true /B

<latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit>

47

(48)

Mass Bias in ΛCDM

Constraining the ΛCDM parameters by the Planck (TT+lowP+lensing) chain, we find

B = 1.54 ± 0.098 (68%CL; Makiya, Ando & EK, arXiv:1804.05008)

or, 1–b = 0.649 ± 0.041

Cf: Simulation by Dolag, EK & Sunyaev: B ~ 1.2.

Manifestation that the new Compton-Y power spectrum is lower

48

(49)

Towards “Tomography”

Cross-correlating the Compton-Y map with galaxies with known redshifts!

49

(50)

2MASS Redshift Survey

~40K galaxies with the median redshift of 0.02

Huchra et al. (2012)

50

(51)

2MASS Redshift Survey

~40K galaxies with the median redshift of 0.02

Huchra et al. (2012)

51

(52)

2MRS Auto Power

Dominated by 1-halo term in most of the angular scales => Good for cross-correlation with Compton-Y

Ando, Benoit-Levy & EK (2018)

52

(53)

2MRS Auto Power

Ando, Benoit-Levy & EK (2018)

53

(54)

Cross-power!

Makiya, Ando & EK (2018)

54

R. Makiya

(55)

Mass-bias Consistency

We get consistent mass bias from Compton-Y and 2MRS cross. Neat.

[for Planck TT+lowP+lensing]

55

Makiya, Ando & EK (2018)

(56)

Mass Dependence

56

Makiya, Ando & EK (2018)

(57)

Mass Dependence

Cross is sensitive to less massive halos: We can use this to explore the mass bias as a function of mass!

57

Makiya, Ando & EK (2018)

(58)

Planck Mass Bias

The key ingredient of the power spectrum is a profile of thermal pressure of electrons

C ` =

Z

dz dV dz

Z

dM dn

dM | y ` (M, z ) | 2

M ˜ 500c = M 500c,true /B

<latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit>

——

α

p

58

(59)

Mass Dependence Nailed

Makiya, Ando & EK (2018)

59

(60)

Redshift Dependence

60

Makiya, Ando & EK (2018)

(61)

Redshift Dependence

High-ell data of Compton-Y auto is the key.

But…

foreground contamination

61

Makiya, Ando & EK (2018)

(62)

Z-dependence Poorly Constrained

62

Makiya, Ando & EK (2018)

(63)

Summary

New results on the SZ effect, from small to large:

1. The first SZ image by ALMA - opening up a new study of cluster astrophysics via pressure

fluctuations

2. The SZ power spectrum at l<1000 has been determined finally! And we can simulate it

3. Detailed look at mass bias from the SZ power spectrum and cross-correlation tomography

• B = 1.5 ± 0.1 (68%CL) for Planck

TT+lowP+lensing. Expect B ~ 1.2 for hydrostatic mass bias in the simulation. Origin?

B. Bolliet T. Kitayama

K. Dolag

R. Makiya 63

(64)

Near Future?

CCAT-p!

(65)

Frank’s slide from the Florence meeting

Cornell U. + German consortium + Canadian consortium + …

(66)

Frank’s slide from the Florence meeting

(67)

A Game Changer

CCAT-p

: 6-m, Cross-dragone design, on Cerro Chajnantor (5600 m)

Germany makes great telescopes!

Initial design study completed, and the contract has been signed by “VERTEX Antennentechnik GmbH”

CCAT-p is a great opportunity for Germany to make

significant contributions towards the CMB S-4 landscape (both US and Europe) by providing telescope designs and the “lessons learned” with prototypes.

(68)

CCAT-p Collaboration

(69)

CCAT-p Collaboration

(70)

Simons Observatory (USA)

in collaboration

South Pole?

(71)

Simons Observatory (USA)

in collaboration

South Pole?

This could be

“CMB-S4”

(72)

Compton Y Map of RXJ1347–1145

ALMA

on-source integration times 5.6 hours with 7-m array 2.6 hours with 12-m array

Thank you TAC!

(73)

Referenzen

ÄHNLICHE DOKUMENTE

22 Even if a cluster belonged to just one department – which is not often the case – this type of conflict can arise because, for example, the above-mentioned tension between teaching

• The sky-averaged fluctuating component of the Compton Y measures the total thermal energy content of the universe. • Seems like a fundamental quantity that we

• The high-resolution (~10”) mapping observation of SZ is a powerful (and proven!) probe of hot, low-density gas resulting from cluster mergers. • ALMA is capable of doing this

Highest angular resolution images of the SZ effect by ALMA - opening up a new study of cluster astrophysics via pressure fluctuations and “thermometer”. Computer simulations are

cluster, which highlights the unique power of the SZ data to study cluster astrophysics?. • A massive cluster with 10 15 M sun

show that the non-thermal pressure [by bulk motion of gas] divided by the total pressure increases toward large radii.. • …increases for

show that the non-thermal pressure [by bulk motion of gas] divided by the total pressure increases toward large radii.. • …increases for

The large-scale production and commercialization of nanotechnologies require an understanding of their environmental, health and safety impacts, and must develop strategies for