• Keine Ergebnisse gefunden

Probabilistic MorphableModelsThomas Vetter

N/A
N/A
Protected

Academic year: 2022

Aktie "Probabilistic MorphableModelsThomas Vetter"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Probabilistic Morphable Models

Thomas Vetter

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Photo by Pete Souza/The White House via Getty Images.

Male 60-70 Blue eyes Wide nose Mouth closed

……

β€œRobert Gates”

(2)

Analysis by Synthesis

3D

World Image

Analysis

Synthesis

Image Model Image Description

model parameter

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Example based image modeling of faces

2D Image 2D Face Examples 2D Image 3D Face Scans

= w

1 * +

w

2 * +

w

3 * +

w

4 * +. . .

(3)

Morphable Models for Image Registration

Output R = Rendering Function

ρ = Parameters for Pose, Illumination, ...

Optimization Problem: Find optimal α , β, ρ !

R



 

ο€½ 

 



οƒΆ οƒ·

οƒ· οƒ·

οƒ·οƒ· οƒΈ

Ξ² 1 + Ξ² 2 + Ξ² 3 + β‹― Ξ± 1 + Ξ± 2 + Ξ± 3 + β‹―

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Probabilistic Morphable Models

1. Model-based image registration using Gaussian Processes for shape deformations

2. β€œProbabilistic registration”: Find the distribution of possible transformations h(πœƒ) that transforms 𝐼 𝑅 to 𝐼 𝑇 .

?

𝑃( πœƒ |𝐼 𝑇 , 𝐼 𝑅 )

(4)

Gaussian Process Morphable Models:

 A Gaussian process β„Ž ~ 𝐺𝑃 πœ‡, π‘˜ on 𝑋 is completely defined by its mean function

πœ‡ ∢ 𝑋 β†’ ℝ 3 and covariance function

π‘˜ ∢ 𝑋 Γ— 𝑋 β†’ ℝ 3Γ—3

 A low rank approximation can by computed using the NystrΓΆm approximation.

β„Ž πœƒ β‰ˆ πœ‡ + Οƒ 𝑖 𝑑 πœƒ 𝑖 πœ† 𝑖 Ξ¦ 𝑖 with πœƒ ~ 𝑁(0, 𝐼 𝑑 )

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Advantage of Gaussian Process Morphable Models

 Probabilistic formalism !

 Extremely flexible concept. By varying the covariance function k a variety of β€˜different’ algorithms of deformation modelling are included.

ο€­ Thin Plate Splines

ο€­ Free Form deformations

ο€­ …

ο€­ Standard PCA-Model

β€œScalismo” an open source library by Marcel LΓΌthi see also our MOOC on FutureLearn β€œStatistical Shape Modlling”

(5)

Surface Data Prediction as Gaussian Process Regression

3D Surface Data Base

Analysis

3D Input Statistical

Prediction Original

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Surface Data Prediction

as Gaussian Process Regression

(6)

Application

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Disclocation of the patella

(7)

Femur Patella MRI-Slice

Example use-case: Trochlea dysplasia

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Trochlea-Dysplasia

(8)

Surgical intervention: Increase goove

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Surgical intervention: Augment bony structure

(9)

Posterior Shape Models

T. Albrecht, M. LΓΌthi, T. Gerig, T. Vetter, Medical Image Analysis, 2013

Automatic inference of pathology

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Probabilistic Inference for Image Registration

 Generative image explanation: How to find πœƒ explaining I ?

𝑝 πœƒ 𝐼 = β„“(πœƒ; 𝐼) 𝑝(πœƒ)

𝑁(𝐼) 𝑁 𝐼 = ΰΆ± β„“(πœƒ; 𝐼)𝑝(πœƒ)dπœƒ ---> Normalization intractable in our setting

 What can be done:

1. Accept MAP as the only option

2. Approximate posterior distribution (e.g. use sampling methods)

(10)

The Metropolis-Hastings Algorithm

 Need a distribution which can generate samples: 𝑄 πœƒ β€² πœƒ)

 Algorithm transforms samples from 𝑄 into samples from 𝑃:

1. Draw a sample πœƒ

β€²

from 𝑄 πœƒ

β€²

πœƒ)

2. Accept πœƒ

β€²

as new state πœƒ with probability 𝑝

π‘Žπ‘π‘π‘’π‘π‘‘

= min

𝑃 πœƒβ€²

𝑃 πœƒ 𝑄 πœƒ|πœƒβ€² 𝑄 πœƒβ€²|πœƒ

, 1 3. State πœƒ is current sample, repeat for next sample

---> Generates unbiased but correlated samples from 𝑃

 Markov Chain Monte Carlo Sampling: Result: πœƒ 1 , πœƒ 2 , πœƒ 3 , … …

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MH Inference of the 3DMM

 Target distribution is our β€œposterior”:

 𝑃: ΰ·¨ 𝑃 πœƒ 𝐼

𝑇

= β„“ πœƒ|𝐼

𝑇

, 𝐼

𝑅

𝑝 πœƒ

 Unnormalized

 Point-wise evaluation only

 Parameters

 Shape: 50 – 200, low-rank parameterized GP shape model

 Color: 50 – 200, low-rank parameterized GP color model

 Pose/Camera: 9 parameters, pin-hole camera model

 Illumination: 9*3 Spherical Harmonics for illumination/reflectance

 β‰ˆ 300 dimensions (!!)

(11)

Metropolis Filtering

ΞΈ

β€²

MH-Filter:

Q ΞΈ β€² |ΞΈ

π‘π‘Žπ‘π‘π‘’π‘π‘‘

reject ΞΈπ‘œπ‘™π‘‘β†’ ΞΈβ€²

ΞΈ

β€²

ΞΈ

β€²

update

ΞΈ

β€²

β†’ ΞΈ

 Markov Chain Monte Carlo Sampling: Result: πœƒ 1 , πœƒ 2 , πœƒ 3 , … …

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Results: 2D Landmarks

 Landmarks posterior:

Manual labelling: 𝜎

LM

= 4pix Image: 512x512

 Certainty of pose fit?

 Influence of ear points?

 Frontal better than side-view?

Yaw, Οƒ

π‹πŒ

= 4pix with ears w/o ears

Frontal 1.4

∘

Β± 𝟎. πŸ—

∘

βˆ’0.8

∘

Β± 𝟐. πŸ•

∘

Side view 24.8

∘

Β± 𝟐. πŸ“

∘

25.2

∘

Β± πŸ’. 𝟎

∘

(12)

Integration of Bottom-Up

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Metropolis Filtering

ΞΈ

β€²

MH-Filter: Prior

Q ΞΈ β€² |ΞΈ

π‘π‘Žπ‘π‘π‘’π‘π‘‘

reject ΞΈπ‘œπ‘™π‘‘β†’ ΞΈβ€²

update

ΞΈ

β€²

β†’ ΞΈ

MH-Filter: Face Box

π‘π‘Žπ‘π‘π‘’π‘π‘‘

reject ΞΈπ‘œπ‘™π‘‘β†’ ΞΈβ€²

MH-Filter: Image

π‘π‘Žπ‘π‘π‘’π‘π‘‘

reject ΞΈπ‘œπ‘™π‘‘β†’ ΞΈβ€²

ΞΈ

β€²

𝑃

0

πœƒ

𝑙 πœƒ,𝐹𝐡

𝑃 πœƒ|𝐹𝐡

𝑙 πœƒ,𝐼

𝑃 πœƒ|𝐹𝐡, 𝐼

(13)

35

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Face analysis

Roger F.

asian caucasian blue eyes brown eyes wide nose male mustache gaze Hor yaw pitch roll

0.34 0.52 0.19 0.69 0.70 0.52 0.13 20Β°

34Β°

-8Β°

4Β°

(14)

Occlusion-aware 3D Morphable Face Models

Bernhard Egger, Sandro SchΓΆnborn, Andreas Schneider, Adam

Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter International Journal of Computer Vision, 2018

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Face Image Analysis under Occlusion

41

Source: AFLW Database Source: AR Face Database

(15)

β„“ πœƒ; 𝐼 = ΰ·‘

𝑝𝑖π‘₯𝑒𝑙

β„“ πœƒ; 𝐼 π‘₯

There is nothing like: no background model

β€œBackground Modeling for Generative Image Models”

Sandro SchΓΆnborn, Bernhard Egger, Andreas Forster, and Thomas Vetter Computer Vision and Image Understanding, Vol 113, 2015.

= ΰ·‘

π‘₯βˆˆπΉπ‘”

β„“ πœƒ; 𝐼 π‘₯ Γ— ΰ·‘

π‘₯βˆˆπ΅π‘”

β„“ πœƒ; 𝐼 π‘₯ β„“ πœƒ; 𝐼 = ΰ·‘

π‘₯ ∈ 𝐼

β„“ πœƒ; 𝐼 π‘₯

Maximum Likelihood Formulation:

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Occlusion-aware Model

𝑙 πœƒ; ሚ𝐼, 𝑧 = ΰ·‘

𝑖

𝑙 π‘“π‘Žπ‘π‘’ πœƒ; ΰ·© 𝐼 𝑖 𝑧 βˆ™ 𝑙 π‘›π‘œπ‘›βˆ’π‘“π‘Žπ‘π‘’ πœƒ; ΰ·© 𝐼 𝑖 1βˆ’π‘§

(16)

Inference

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Initialisation: Robust Illumination Estimation

Initπœƒπ‘™π‘–π‘”β„Žπ‘‘ Init𝑧

Initπœƒπ‘π‘Žπ‘šπ‘’π‘Ÿπ‘Ž

(17)

Results: Qualitative

Source: AR Face Database

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Results: Qualitative

49

Source: AFLW Database

(18)

Results: Applications

Source: LFW Database

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Acknowledgement

Sandro SchΓΆnborn Bernhard Egger Andreas Schneider

Andreas Forster Marcel LΓΌthi Jean Pierrard Mirella Walker

https://gravis.unibas.ch

Referenzen

Γ„HNLICHE DOKUMENTE

Pattern (d) and (e) in Figure 18 indicate the ow of information between the core entities of news media and Facebook channels with the article to article diusion and Facebook post

Computation Β of Β the Β β€œCornerness”... Β colors, Β homogenous Β regions

der Deskriptor (numerisch) wird wehrend der Erkennung durch Clusternummer ersetzt – Klassifikation (Interpretation des Wertes) – eine β€žetwas semantischereβ€œ Bedeutung. β‡’ Output:

Scene type Scene geometry Object classes Object position Object orientation Object shape Depth/occlusions Object appearance Illumination Shadows Motion blur Camera effects.. The

At first, we decided to divide the experimental arena into 4 blocks and apply classification algorithms to predict in which particular block the rat was in a given time based on

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019... > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS|

Trustworthiness Social Skills Risk Seeking Likeability Extroversion Aggressiveness. %

Igor Friedensplatz 2/A/1 Andrej Friedensplatz 3 Francesco Untervigil 1 Johann Cimitero 6/B.. Igor Friedensplatz 2/A/2 Nikolaus