• Keine Ergebnisse gefunden

Appendix A Concrete Properties of Test Beams

N/A
N/A
Protected

Academic year: 2022

Aktie "Appendix A Concrete Properties of Test Beams"

Copied!
59
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Appendix A

Concrete Properties of Test Beams

(2)
(3)

A1. Compressive strength

3 cubic samples 150 mm preserved in water conditions were tested after 28 days (06/04/2009)

Sample Dimension (mm) Weight (kg)

Density (kg/m³)

Force (kN)

fc,cube

(MPa) a B h

1 151,8 150,1 150,1 8,161 2.386 1.392 61,1 2 151,2 150,1 150,0 8,158 2.396 1.450 63,9 3 151,5 150,0 150,0 8,129 2.385 1.442 63,5

Mean value 2.389 62,8

Table A.1−Tests of cubic samples for compressive strength after 28 days

fc,cube is the mean value of compressive strength of cubic samples tested in the laboratory.

The characteristic compressive strength of cylinder at 28 days fck is determined as follows:

,

0, 75 0,95 4

ck c cubic

f = fMPa

where : 0,75/0,95: conversion factors from cubic sample to cylindrical sample.

4 MPa : conversion value from mean value to characteristic value in laboratory.

3 cubic samples 150 mm preserved in normal conditions as the test beams was tested after 52 days (30/04/2009)

Sample Dimension (mm) Weight (kg)

Density (kg/m³)

Force (kN)

fc,cube

(MPa) a b h

1 150,9 150,0 150,1 8,015 2.359 1.466 64,8 2 151,2 149,9 149,9 8,008 2.357 1.500 66,2 3 151,8 150,0 149,9 8,122 2.380 1.528 67,1

Mean value 2.365 66,0

Table A.2− Tests of cubic samples for compressive strength after 52 days

3 cubic samples 150 mm preserved in normal conditions as the test beams was tested after 101 days (18/06/2009)

(4)

Sample Dimension (mm) Weight (kg)

Density (kg/m³)

Force (kN)

fc,cube

(MPa) a b h

1 152,2 150,0 150,0 8,039 2.347 1.669 73,1 2 152,1 150,0 150,0 8,024 2.345 1.637 71,8 3 151,3 149,9 150,0 8,001 2.352 1.699 74,9

Mean value 2.348 73,3

Table A.3− Tests of cubic samples for compressive strength after 101 days A2. Modulus of elasticity and compressive strength

4 Cylinder samples φ150/300 mm preserved in normal conditions as the test beams were tested after 52 days (30/04/2009).

Sample

Dimension

(mm) Weight (kg)

Density (kg/m³)

σo

(MPa) σu

(MPa) εo

mm/m εu

mm/m Ec

(MPa)

Force (kN)

fc,cyl

(MPa) (dry) φ h

1 150,0 299,0 12,46 2.358 - - - - - 958 54,2

2 149,9 300,0 12,490 2.359 17,8 0,5 0,574 0,033 32.071 957 54,2 3 150,0 299,3 12,478 2.359 17,8 0,5 0,592 0,035 31.098 953 53,9 4 150,0 300,0 12,521 2.362 17,8 0,5 0,603 0,039 30.712 946 53,5

Mean value 2.360 31.294 54,0

Table A.4− Tests of cylinder samples for modulus of elasticity and compressive strength after 52 days

A3. Tensile strength

3 cylinder samples φ150/300mm preserved in normal conditions as the test beams were tested after 101 days (18/06/2009).

Sample Dimension (mm) Weight (kg)

Density (kg/m³)

Force (kN)

fct,sp

(MPa)

Ø h (dry)

1 150,0 299,8 12,447 2.349 253,2 3,58 2 150,0 299,9 12,462 2.351 244,6 3,46 3 150,0 299,8 12,405 2.341 264,2 3,74

(5)

Appendix B

Test Results

(6)

TEST SAMPLE: 1L1 60 60 30

49 60 60 49

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

4 6 8 10 12

9x10 20

84 9x10 84

368 4

6 8

10 12

Figure B.1L1.1- The detailed arrangement of the data acquisition system

0 30 60 90

40 80 120 160

Time [min]

F [kN]

F F [kN]

0 1 2 3 4 5 6 7 8 9 10 11 40

80 120 160

wm wl

wr

Displacement [mm]

wl wm wr

Figure B.1L1.2- The Time – Load graph Figure B.1L1.3−The Load – Displacement

graph

(7)

F

l1 l2

l3

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Strain [mm/m]

0 40 80 120 160 F [kN]

ε

l1

ε

l2

ε

l3

ε ε ε

F

F [kN]

r1

r2 r3

ε

r1

ε

r2

ε

r3

ε ε ε

0 40 80 120 160

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

Strain [mm/m]

Figure B.1L1.4− The Load – Strains graph at top surface of beam

F F [kN]

64 108 12

Strain [mm/m]

4 6 8

9 11 12

0 0 40 80 120

160 S E

0.1 0.3 0.5 0.7

F F [kN]

0 0 40 80 120 160

Strain [mm/m]

46 810

12

4 5

6 8

9 12 10

0.1 0.3 0.5 0.7

S E

Figure B.1L1.5− The Load – Strains graph at mid-depth of beam

(8)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150.9kN

Figure B.1L1.6− Crack propagation of beam 1L1 after each load step.

(9)

TEST SAMPLE: 1L2

rm 60 60 30

49 60 60 49

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

4 6 8 10 12

9x10 20

84 9x10 84

368 4

6 8

10 12

Figure B.1L2.1− The detailed arrangement of the data acquisition system F [kN]

30 60 90 120

0 40 80 120 160

Time [min]

F

0 1 2 3 4 5 6 7 8 9 10 11 40

80 120 160

wl wm wr

Displacement [mm]

F [kN]

wm wr

wl

Figure B.1L2.2− The Time – Load graph Figure B.1L2.3− The Load – Displacement graph

F

0 40 80 120 160 F [kN]

0.05 0.1 0.15 0.2 0.25 0.3 rm

Crack width [mm]

rm

Figure B.1L2.4− The load – crack width graph

(10)

F

40 80 120 160 F [kN]

-1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1

ε

l1

ε

l2

ε

l3

Strain [mm/m]

0

ε ε

l1

ε

l2 l3

F

0 40 80 120 160 F [kN]

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Strain [mm/m]

ε

r1

ε

r2

ε

r3

ε

r1

ε

r2

ε

r3

Figure B.1L2.5− The Load –Strains graph at top surface of beam

45

6 7

8 10

64 108 12

Strain [mm/m]

F

0 40 80 120 160 F [kN]

0.1 0.3 0.5 0.7 0.9 1.1 1.3 S

E

0.1 0.5 0.9 1.3 1.7 2.1 S

E 8 7 4

46 810

12

Strain [mm/m]

F

0 40 80 120 160 F [kN]

Figure B.1L2.6− The Load –Strains graph at mid-depth of beam

(11)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150kN

F=158.4kN

Figure B.1L2.7− Crack propagation of beam 1L2 after each load step.

(12)

TEST SAMPLE: 2L1 61.5

63.5 49

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

61.5 63.5 30 49

60 90

34 90 60 34

rm

6 4 108 12

9x10 20

84 9x10 84

368 4 6

810 12

Figure B.2L1.1− The detailed arrangement of the data acquisition system

0 30 60 90 120

40 80 120 160

Time [min]

F [kN]

wl wm wr

Displacement [mm]

F [kN]

F

wm wr

wl

0 2 4 6 8 10 12

40 80 120 160

Figure B.2L1.2− The Time – Load graph Figure B.2L1.3−The Load – Displacement graph

rm F F [kN]

80 120

160 rm

(13)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 Strain [mm/m]

F [kN]

F

0 40 80 120

ε

l3

ε

l2

ε

l1

ε

l1

ε

l2

ε

l3

160

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Strain [mm/m]

F [kN]

F

0 40 80 120 160

ε

r1

ε

r2

ε

r3

ε

r1

ε

r2

ε

r3

Figure B.2L1.5− The Load –Strains graph at top surface of beam

4 5 78

9 1112

4 6 8 10 12 F [kN]

0 40 80 120 160

Strain [mm/m]

0 0.2 0.4 0.6 0.8

F

S E

0 0.2 0.4 0.6 0.8 1

S E 10 118 69 5 4

4 6

8 10

12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

Figure B.2L1.6− The Load –Strains graph at mid-depth of beam

(14)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150.4kN

Figure B.2L1.7− Crack propagation of beam 2L1 after each load step.

(15)

TEST SAMPLE: 2L2 61.5

63.5 49

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

61.5 63.5 30 49

60 90

34 90 60 34

rm

6 4 108 12

9x10 20

84 9x10 84

368 4 6

810 12

Figure B.2L2.1− The detailed arrangement of the data acquisition system

0 30 60 90 120

40 80 120 160

Time [min]

F [kN]

wm wr

Displacement [mm]

F [kN]

F

wm wl

wr

0 2 4 6 8 10 12

40 80 120

160 wl

Figure B.2L2.2−The Time – Load graph Figure B.2L2.3−The Load – Displacement graph

rm

Crack width [mm]

F F [kN]

0 40 80 120 160

rm

0.05 0.1 0.15 0.2 0.25 0.3

Figure B.2L2.4−-The load – crack width graph

(16)

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Strain [mm/m]

F [kN]

F

0 40 80 120

ε

l3

ε

l2

ε

l1

160

ε

l1

ε

l2

ε

l3

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

ε

r1

ε

r2

ε

r3

Strain [mm/m]

F [kN]

F

0 40 80 120 160

ε

r1

ε

r2

ε

r3

Figure B. 2L2.5− The Load –Strains graph at top surface of beam

4 6 8 10 12 F [kN]

0 40 80 120 160

Strain [mm/m]

4 5 6 8

9 10

F

0 0.2 0.4 0.6

S E

0 0.2 0.4 0.6

S E

4 6

8 10

12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

4 5 6

711 9 8 10

Figure B.2L2.6− The Load –Strains graph at mid-depth of beam

(17)

F=140kN

F=150kN

F=149.2kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

Figure B.2L2.7− Crack propagation of beam 2L2 after each load step.

(18)

TEST SAMPLE: 3L1 52

75.5 41.5

ε

r1

ε

r2

ε

r3

wl wm wr

52 75.5 30 41.5

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

rm

4 6

8 10

12 4

6

8 10

12

9x10 20

84 9x10 84

368

Figure B.3L1.1− The detailed arrangement of the data acquisition system

0 30 60 90 120

40 80 120 160

Time [min]

F [kN]

wm wl

wr

wl wm wr F

0 2 4 6 8 10 12

Displacement [mm]

F [kN]

40 80 120 160

Figure B.3L1.2− The Time – Load graph Figure B.3L1.3−The Load – Displacement graph

rm

F F [kN]

40 80 120 160

(19)

F

0 40 80 120

ε

l3

ε

l2

ε

l1

160

ε

l1

ε

l2

ε

l3

Strain [mm/m]

F [kN]

-1.2 -1 -0.8 -0.6 -0.4 -0.2

ε

r1

ε

r2

ε

r3

ε

r1

ε

r2

ε

r3

Strain [mm/m]

F [kN]

F

0 40 80 120 160

-1.2 -1 -0.8 -0.6 -0.4 -0.2

Figure B.3L1.5− The Load –Strains graph at top surface of beam

4 5 6 97 8

4 6 8 10 12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

S E

0 0.2 0.4 0.6 0.8

4 5

6 8 7

109 12 11

0

4 6

8 10

12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

0.2 0.4 0.6 0.8

S E

Figure B.3L1.6− The Load –Strains graph at mid-depth of beam

(20)

F=133kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

Figure B.3L1.7− Crack propagation of beam 3L1 after each load step.

(21)

TEST SAMPLE: 3L2 52

75.5 41.5

ε

r1

ε

r2

ε

r3

wl wm wr

52 75.5 30 41.5

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

rm

4 6

8 10

12 4

6

8 10

12

9x10 20

84 9x10 84

368

Figure B.3L2.1- The detailed arrangement of the data acquisition system

30 60 90 120

0 40 80 120 160 F [kN]

Time [min]

wl wm wr F

0 2 4 6 8 10 12

Displacement [mm]

F [kN]

wm wl

wr

40 80 120 160

Figure B.3L2.2-The Time – Load graph Figure B.3L2.3-The Load – Displacement graph

rm

Crack width [mm]

F F [kN]

0 40 80 120 160

0.05 0.1 0.15 0.2 0.25 0.3

Figure B.3L2.4-The load – crack width graph

(22)

ε

l1

ε

l2

ε

l3

Strain [mm/m]

F [kN]

F

0 40 80 120

ε

l3

ε

l2

ε

l1

160

-1.0 -0.8 -0.6 -0.4 -0.2

ε

r1

ε

r2

ε

r3

Strain [mm/m]

F [kN]

F

0 40 80 120 160

ε

r1

ε

r2

ε

r3

-1.0 -0.8 -0.6 -0.4 -0.2

Figure B.3L2.5-The Load –Strains graph at top surface of beam

4 6 8 10 12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

4 5

6 97 10

0 0.2 0.4

S E

4 5

6 7 8

9 4

6 8

10 12 F [kN]

0 40 80 120 160

Strain [mm/m]

F

S E

0 0.2

Figure B.3L2.6- The Load –Strains graph at mid-depth of beam

(23)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=138.6kN

Figure B.3L2.7- Crack propagation of beam 3L2 after each load step.

(24)

TEST SAMPLE: 4L1

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

32 33 30 104

60 90

34 90 60 34

rm

32

33 104

4 6

8 10

11

9x10 20

84 9x10 84

368 4

6

8 10

11

Figure B.4L1.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 160 180 40

80 120 160 200 F [kN]

0

Time [min]

0 4 8 12 16 20 24 28 32 36 40 40

80 120 160 200

wl wm wr F

F [kN]

Displacement [mm]

wr

wm

wl

Figure B.4L1.2-The Time – Load graph Figure B.4L1.3-The Load – Displacement graph

80 120 160 200 F [kN]

rm F

(25)

-2.0 -1.6 -1.2 -0.8 -0.4 Strain [mm/m]

F [kN]

ε

l3

ε

l2

ε

l1 F

0 40 80 120 160 200

ε

l1

ε

l3

ε

l2

-2.0 -1.6 -1.2 -0.8 -0.4 Strain [mm/m]

F [kN]

F

0 40 80 120 160 200

ε

r1

ε

r2

ε

r3

ε

r1

ε

r3

ε

r2

Figure B.4L1.5-The Load –Strains graph at top surface of beam

0 0.2 0.4 0.6 0.8 1 1.2 1.4

SE9 6 85 10 4

F

0 40 80 120 160 200 F [kN]

Strain [mm/m]

4 6 8 10 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 S

E 9 8 67105 11 4

F

0 40 80 120 160 200 F [kN]

Strain [mm/m]

4 6

8 10

11

Figure B.4L1.6- The Load –Strains graph at mid-depth of beam

(26)

F=160kN

F=170kN

F=180kN

F=190kN

F=200kN

F=206.7kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

(27)

TEST SAMPLE: 4L2

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

wl wm wr

32 33 30 104

60 90

34 90 60 34

rm

32

33 104

4 6

8 10

11

9x10 20

84 9x10 84

368 4

6

8 10

11

Figure B.4L2.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 160 180 40

80 120 160 200 F [kN]

0

Time [min]

4 8 12 16 20 24 28 32 0

40 80 120 160 200

wl wm wr F

F [kN]

Displacement [mm]

wm wr

wl

Figure B.4L2.2-The Time – Load graph Figure B.4L2.3-The Load – Displacement graph

0 40 80 120 160 200 F [kN]

Crack width [mm]

rm F

rm

0.5 1 1.5 2 2.5 3

Figure B.4L2.4-The load – crack width graph

(28)

ε

l3

ε

l2

ε

l1 F

0 40 80 120 160 200

ε

l1

ε

l2

ε

l3

Strain [mm/m]

F [kN]

-3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4

Strain [mm/m]

F [kN]

F

0 40 80 120 160 200

ε

r1

ε

r2

ε

r3

ε

r1

ε

r3

ε

r2

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4

Figure B.4L2.5-The Load –Strains graph at top surface of beam

0.2 0.4 0.6 0.8 1 1.2 4

6 8 10 11

4 5

6

711 8 10

0

F

0 40 80 120 160 200 F [kN]

Strain [mm/m]

S E

4 6

7 8 9 1110

0

F

0 40 80 120 160 200 F [kN]

Strain [mm/m]

4 6

8 10

11 S

E

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure B.4L2.6- The Load –Strains graph at mid-depth of beam

(29)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN F=206.9kN

F=140kN

F=150kN

F=160kN

F=170kN

F=180kN

F=190kN

F=200kN

Figure B.4L2.7- Crack propagation of beam 4L2 after each load step.

(30)

TEST SAMPLE: 5L1 27.5

40 101.5

rm

ε

r1

ε

r2

ε

r3

wl wm wr

27.5 40 30 101.5

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

4 6

8 10

12

9x10 74

368 4 6

8 10

12

9x10 40 74

Figure B.5L1.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 160 180 40

80 120 160 200 F [kN]

0

Time [min]

wm wr wl

4 8 12 16 20 24 28 32 36 40 0

40 80 120 160 200

wl wm wr F

F [kN]

Displacement [mm]

44 Figure B.5L1.2-The Time – Load graph Figure B.5L1.3-The Load – Displacement graph

rm

F

40 r 80 120 160 200 F [kN]

(31)

-4 -3.2 -2.4 -1.6 -0.8 0

ε

l3

ε

l2

ε

l1 F

F [kN]

40 80 120 160 200

Strain [mm/m]

ε

l1

ε

l3

ε

l2

-4.4 -3.6 -2.8 -2 -1.2 -0.4 F

F [kN]

40 80 120 160 200

Strain [mm/m]

ε

r1

ε

r2

ε

r3

0

ε

r1

ε

r3

ε

r2

Figure B.5L1.5-The Load –Strains graph at top surface of beam

S E

0 0.2 0.4 0.6 0.8

12

0 40 80 120 160 200

Strain [mm/m]

4 5 6

7 9 11 8 10 12

F F [kN]

4 6 8 10

4

5 8 7 109 6 11

12

0 40 80 120 160 200 F [kN]

F 4

6 8

10 12

Strain [mm/m]

S E

0 0.2 0.4 0.6 0.8 1.0

Figure B.5L1.6- The Load –Strains graph at mid-depth of beam

(32)

F=206.4kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=160kN

F=170kN

F=180kN

F=190kN

F=200kN

(33)

TEST SAMPLE: 5L2 27.5

40 101.5

rm

ε

r1

ε

r2

ε

r3

wl wm wr

27.5 40 30 101.5

60 90

34 90 60 34

ε

l1

ε

l2

ε

l3

4 6

8 10

12

9x10 74

368 4 6

8 10

12

9x10 40 74

Figure B.5L2.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 160 180 40

80 120 160 200 F [kN]

0

Time [min]

wm wl wr

4 8 12 16 20 24 28 32 36 40 0

40 80 120 160 200

wl wm wr F

F [kN]

Displacement [mm]

44 Figure B.5L2.2-The Time – Load graph Figure B.5L2.3-The Load – Displacement graph

0.5 1 1.5 2

0 40 80 120 160 200 F [kN]

Crack width [mm]

rm F

rm Figure B.5L2.4-The load – crack width graph

(34)

ε

l3

ε

l2

-4 -3.2 -2.4 -1.6 -0.8 0

ε

l3

ε

l2

ε

l1 F

F [kN]

40 80 120 160 200

Strain [mm/m]

ε

l1

-4 -3.2 -2.4 -1.6 -0.8 0 F

F [kN]

40 80 120 160 200

Strain [mm/m]

ε

r1

ε

r2

ε

r3

ε

r1

ε

r3

ε

r2

Figure B.5L2.5-The Load –Strains graph at top surface of beam

0 0.2 0.4 0.6 0.8 1 1.2 1.4 S

E 910 78 12 6 11 4

F F [kN]

4 6 8 10 12

0 40 80 120 160 200

Strain [mm/m]

0 0.2 0.4 0.6 0.8

S

E 10 9 6 7 4 58 1112

0 40 80 120 160 200 F [kN]

Strain [mm/m]

F 4

6 8

10 12

Figure B.5L2.6- The Load –Strains graph at mid-depth of beam

(35)

F=207kN

F=140kN

F=150kN

F=160kN

F=170kN

F=180kN

F=190kN

F=200kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

Figure B.5L2.7- Crack propagation of beam 5L2 after each load step.

(36)

TEST SAMPLE: 1K1 30 30 30

49

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

30

30 49

40

50 34

4 6 8 10 11

8x10 20 34

248 4

6 8

10 11

8x10 34

Figure B.1K1.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 0

40 80 120 160 F [kN]

Time [Min]

0.5 1 1.5 2 2.5 3 3.5

0 40 80 120

160 wl wm wr

F F [kN]

Displacement [mm]

wm wr wl

Figure B.1K1.2-The Time – Load graph Figure B.1K1.3-The Load – Displacement graph

40 80 120 160 F [kN]

rm F

rm

(37)

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 Strain [mm/m]

F [kN]

ε

l3

ε

l2

ε

l1 F

40 80 120 160

ε

l1

ε

l2

ε

l3

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 Strain [mm/m]

F [kN]

F

40 80 120 160

εr1 εr2 εr3

εr1 εr2 εr3

Figure B.1K1.5-The Load –Strains graph at top surface of beam

4

5 6

7 F [kN]

F 4 6 8 10 11

Strain [mm/m]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0

40 80 120 160 ES

0 0.1 0.2 0.3 0.4 0.5

S E65 7 4

0 40 80 120 160 F [kN]

Strain [mm/m]

F 4

6 8

10 11

Figure B.1K1.6- The Load –Strains graph at mid-depth of beam

(38)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150kN

F=151.3kN

Figure B.1K1.7- Crack propagation of beam 1K1 after each load step.

(39)

TEST SAMPLE: 1K2 30 30 30

49

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

30

30 49

40

50 34

4 6 8 10 11

8x10 20 34

248 4

6 8

10 11

8x10 34

Figure B.1K2.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120

0 40 80 120 160 F [kN]

Time [Min]

0.5 1 1.5 2 2.5 3

0 40 80 120

160 wl wm wr

F F [kN]

Displacement [mm]

wm wr wl

Figure B.1K2.2-The Time – Load graph Figure B.1K2.3-The Load – Displacement graph

0.025 0.05 0.075 0.1 0.125 0.15 0

40 80 120 160 F [kN]

rm

Crack width [mm]

F

Figure B.1K2.4-The load – crack width graph

(40)

ε

l1

ε

l2

ε

l3

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 Strain [mm/m]

F [kN]

ε

l3

ε

l2

ε

l1 F

40 80 120 160

0 Strain [mm/m]

F [kN]

F

40 80 120 160

ε

r1

ε

r2

ε

r3

-0.8

ε

r1

ε

r2

ε

r3

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Figure B.1K2.5-The Load –Strains graph at top surface of beam

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 S

E 7 6 4

0 40 80 120 160 F [kN]

F 4 6 8 10 11

-0.1

Strain [mm/m]

0 0.2 0.4 0.6 0.8 1

S E

47 5 6

0 40 80 120 160 F [kN]

F 4

6 8

10 11

Strain [mm/m]

Figure B.1K2.6- The Load –Strains graph at mid-depth of beam

(41)

F=140kN

F=134.1kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

Figure B.1K2.7- Crack propagation of beam 1K2 after each load step.

(42)

TEST SAMPLE: 2K1

31.5 30

46

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

31.5 31.5 31.5 46

4 6 8 10 11

8x10 20 34

248 4

6 8

10 11

8x10 34

Figure B.2K1.1- The detailed arrangement of the data acquisition system

0 20 40 60 80 100 120 140 40

80 120 160 F [kN]

Time [Min]

0 0.5 1 1.5 2 2.5 3 3.5 4 40

80 120 160

wl wm wr

F F [kN]

Displacement [mm]

wm wr wl

Figure B.2K1.2-The Time – Load graph Figure B.2K1.3-The Load – Displacement graph

rm F

80 120 160 F [kN]

(43)

-1 -0.8 -0.6 -0.4 -0.2 0 Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

40 80 120 160

εl1

εl2 εl3

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 Strain [mm/m]

F [kN]

F

40 80 120 160

εr1 εr2 εr3

εr1 εr2 εr3

Figure B.2K1.5-The Load –Strains graph at top surface of beam

5

6 7

8

0 40 80 120 160 F [kN]

F

4 6

8 10

11

Strain [mm/m]

-0.2 0 0.2 0.4

S E

0 0.2 0.4 0.6 0.8

S E 6 7 5 4

0 40 80 120 160 F [kN]

F

4 6

8 10

11

Strain [mm/m]

Figure B.2K1.6- The Load –Strains graph at mid-depth of beam

(44)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150kN

F=160kN

F=167.1kN

Figure B.2K1.7- Crack propagation of beam 2K1 after each load step.

(45)

TEST SAMPLE: 2K2

31.5 30

46

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

31.5 31.5 31.5 46

4 6 8 10 11

8x10 20 34

248 4

6 8

10 11

8x10 34

Figure B.2K2.1- The detailed arrangement of the data acquisition system

0 20 40 60 80 100 120 140 40

80 120 160 F [kN]

Time [Min]

0 0.5 1 1.5 2 2.5 3 3.5 4 40

80 120 160

wl wm wr

F F [kN]

Displacement [mm]

wm wr wl

Figure B.2K2.2-The Time – Load graph Figure B.2K2.3-The Load – Displacement graph

0.05 0.1 0.15 0.2

rm

Crack width [mm]

F

0 40 80 120 160 F [kN]

Figure B.2K2.4-The load – crack width graph

(46)

-1 -0.8 -0.6 -0.4 -0.2 0 Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

40 80 120 160

εl1 εl2 εl3

-1 -0.8 -0.6 -0.4 -0.2 0

Strain [mm/m]

F [kN]

F

40 80 120 160

εr1 εr2 εr3

εr1 εr2 εr3

Figure B.2K2.5-The Load –Strains graph at top surface of beam

4

5 7 8 6

0 40 80 120 160 F [kN]

F

4 6

8 10

11

Strain [mm/m]

S E

0 0.2 0.4 0.6

S

E 4

5 7 6

0 40 80 120 160 F [kN]

F

4 6

8 10

11

Strain [mm/m]

0 0.2 0.4 0.6 0.8

Figure B.2K2.6- The Load –Strains graph at mid-depth of beam

(47)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=160kN

F=170kN F=140kN

F=150kN

Figure B.2K2.7- Crack propagation of beam 2K2 after each load step.

(48)

TEST SAMPLE: 3K1 32 33 30

44

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

32

33 44

4 6 8 10 11

8x10 20 34

248

6 10

8x10 34

4 8 11

Figure B.3K1.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 0

40 80 120 160 F [kN]

Time [Min]

0.5 1 1.5 2 2.5 3 3.5

0 40 80 120 160

wm

wr

wl

wl wm wr F

F [kN]

Displacement [mm]

Figure B.3K1.2-The Time – Load graph Figure B.3K1.3-The Load – Displacement graph

80 120 160 F [kN]

rm

F

(49)

Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

-1 -0.8 -0.6 -0.4 -0.2 0

40 80 120 160

-0.8 -0.6 -0.4 -0.2

Strain [mm/m]

F [kN]

F εr1 εr2 εr3

0 40 80 120 160 F [kN]

εr1 εr2 εr3

Figure B.3K1.5-The Load –Strains graph at top surface of beam

S

E 8 6 4

F

4 6

8 10

11

Strain [mm/m]

40 80 120 160 F [kN]

0 0 0.2 0.4 0.6

S E

-0.20

4

5 6

8

0 0.2 0.4 0.6

F

4 6

8 10

11

Strain [mm/m]

40 80 120 160 F [kN]

Figure B.3K1.6- The Load –Strains graph at mid-depth of beam

(50)

F=140kN

F=150kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=158.7kN

Figure B.3K1.7- Crack propagation of beam 3K1 after each load step.

(51)

TEST SAMPLE: 3K2 32 33 30

44

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

32

33 44

4 6 8 10 11

8x10 20 34

248

6 10

8x10 34

4 8 11

Figure B.3K2.1- The detailed arrangement of the data acquisition system

80 100 120 140 0

40 80 120 160 F [kN]

Time [Min]

20 40 60

0 0.5 1 1.5 2 2.5 3 3.5

0 40 80 120 160

wl wm wr F

F [kN]

Displacement [mm]

wm wl

wr

Figure B.3K2.2-The Time – Load graph Figure B.3K2.3-The Load – Displacement graph

0.05 0.1 0.15 0.2 0.25 0

40 80 120 160 F [kN]

rm

Crack width [mm]

F

Figure B.3K2.4-The load – crack width graph

(52)

-1 -0.8 -0.6 -0.4 -0.2 0 40 80 120 160

Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

εl1 εl2 εl3

εr1

εr2 εr3

Strain [mm/m]

F [kN]

F εr1 εr2 εr3

0 40 80 120 160 F [kN]

-1 -0.8 -0.6 -0.4 -0.2

Figure B.3K2.5-The Load –Strains graph at top surface of beam

0 0.2 0.4

S E

4 6

8 10

11

Strain [mm/m]

40 80 120 160 F [kN]

0

4 5 7

9 F

4 6

7 9

F

4 6

8 10

11

Strain [mm/m]

40 80 120 160 F [kN]

0 S E

0 0.2 0.4 0.6 0.8

Figure B.3K2.6- The Load –Strains graph at mid-depth of beam

(53)

F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=140kN

F=150kN

F=159.9kN

Figure B.3K2.7- Crack propagation of beam 3K2 after each load step.

(54)

TEST SAMPLE: 4K1 27.5

40 41.5

27.5 40 30 41.5

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

4 8 11

4 6 8 10 11

8x10 20 34

248

6 10

8x10 34

Figure B.4K1.1- The detailed arrangement of the data acquisition system

20 40 60 80 100 120 140 0

40 80 120 160 F [kN]

Time [Min]

0 0.5 1 1.5 2 2.5 3 3.5 4 40

80 120 160

wl wm wr F

F [kN]

Displacement [mm]

wm wr

wl

Figure B.4K1.2-The Time – Load graph Figure B.4K1.3-The Load – Displacement graph F [kN]

rm

80 120 160

F

(55)

εl1

εl2 εl3

Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

-1 -0.8 -0.6 -0.4 -0.2 0

40 80 120 160

-1 -0.8 -0.6 -0.4 -0.2 0

40 80 120 160

Strain [mm/m]

F [kN]

F

εr1

εr2 εr3

εr1 εr2 εr3

Figure B.4K1.5-The Load –Strains graph at top surface of beam

4

5 8 6

10 11

0 40 80 120 160 F [kN]

-0.1 0.3 0.5

F

4 6

8 10 11

0.1

Strain [mm/m]

0 0.2 0.4

S E

S E

0 0.1 0.2 0.3 0.4 4 569 87 1011

0 40 80 120 160 F [kN]

F

4 6

8 10

11

-0.1 -0.2

Strain [mm/m]

Figure B.4K1.6- The Load –Strains graph at mid-depth of beam

(56)

F=169.5kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=160kN F=140kN

F=150kN

Figure B.4K1.7- Crack propagation of beam 4K1 after each load step.

(57)

TEST SAMPLE: 4K2 27.5

40 41.5

27.5 40 30 41.5

40 50

34

wm rm

wl wr

ε

l1

ε

l2

ε

l3

ε

r1

ε

r2

ε

r3

40

50 34

4 8 11

4 6 8 10 11

8x10 20 34

248

6 10

8x10 34

Figure B.4K2.1- The detailed arrangement of the data acquisition system F [kN]

Time [Min]

20 40 60 80 100 120 140 0

40 80 120 160

0 0.5 1 1.5 2 2.5 3 3.5 4 40

80 120 160

wl wm wr F

F [kN]

Displacement [mm]

wm

wl

wr

Figure B.4K2.2-The Time – Load graph Figure B.4K2.3-The Load – Displacement graph

0.05 0.1 0.15 0.2 0.25 0

40 80 120 160

F F [kN]

Crack width [mm]

rm

Figure B.4K2.4-The load – crack width graph

(58)

εl1

εl2 εl3

-1 -0.8 -0.6 -0.4 -0.2 0

40 80 120 160

Strain [mm/m]

F [kN]

εl3 εl2 εl1 F

εr2 εr3

-1 -0.8 -0.6 -0.4 -0.2 0

40 80 120 160

Strain [mm/m]

F [kN]

F εr1 εr2 εr3

εr1

Figure B.4K2.5-The Load –Strains graph at top surface of beam

0 40 80 120 160 F [kN]

F

4 6

8 10 11

Strain [mm/m]

-0.2

4 5

6 7 9

10 S E

0 0.2 0.4 0.6

4 5

6

7 8 9

10 11

0 40 80 120 160 F [kN]

F

4 6

8 10

11

Strain [mm/m]

-0.1

-0.2 0 0.1 0.2 0.3 0.4 0.5 S

E

Figure B.4K2.6- The Load –Strains graph at mid-depth of beam

(59)

F=167.8kN F=140kN

F=150kN F=0kN

F=10kN

F=20kN

F=30kN

F=40kN

F=50kN

F=60kN

F=70kN

F=80kN

F=90kN

F=100kN

F=110kN

F=120kN

F=130kN

F=160kN

Figure B.4K2.7- Crack propagation of beam 4K2 after each load step.

Referenzen

ÄHNLICHE DOKUMENTE

Since it was first announced in late 2011, the US rebalance to Asia has become the great foreign policy ‘Rorschach test’ — what one sees in the rebalance says more about the

Therefore, shear resistance mechanisms on the uncracked concrete parts at critical section will be investigated to develop suitable shear strength models for both straight depth

Fracture Mechanics Model Applied to Shear Failure of Reinforced Concrete Beams Without Stirrups.. ACI Structural

MAMI is a suitable facility for beam tests with high electron rates and high energy photons. The narrow high quality electron beam can be extracted at 855 MeV Tagged photon beam up

This paper presents the development of a finite element model for predicting the flexural behavior of cold-formed steel beams subjected to fire and with restrained thermal

Using high yield steel fixtures and rollers ( y  2000 MPa) and testing high strength ceramics, these contact stresses limit the outer span length to about 12 mm... If

The failure modes occurred either as a bending failure of the timber, compression failure of the concrete or as a bond failure in near-surface concrete layers.. Because the bond

neutral surface нейтральный слой равновесие, баланс balance prove, proven доказывать распределенная нагрузка distributed load shear force