• Keine Ergebnisse gefunden

and m are cycles per meter and meter per cycle, respectively. For the first radiation constant the full description of m

N/A
N/A
Protected

Academic year: 2022

Aktie "and m are cycles per meter and meter per cycle, respectively. For the first radiation constant the full description of m"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2018

NIST SP 961 (May 2019)

An extensive list of constants is available on the NIST Physics Laboratory Web site physics.nist.gov/constants. For numerical values a number in parentheses, if present, is the one-standard- deviation uncertainty in the last two digits. For units with square brackets the full descriptions of m

−1

and m are cycles per meter and meter per cycle, respectively. For the first radiation constant the full description of m

2

is m

−2

(m/cycle)

4

.

Quantity Symbol Numerical value Unit Quantity Symbol Numerical value Unit

speed of light in vacuum c 299 792 458 (exact) m s−1 muong-factor−2(1 +aµ) gµ −2.002 331 8418(13)

Newtonian constant of gravitation G 6.674 30(15)×10−11 m3kg−1s−2 muon-proton magnetic moment ratio µµp −3.183 345 142(71)

Planck constant h 6.626 070 15×10−34(exact) J Hz−1 proton mass mp 1.672 621 923 69(51)×10−27kg

in eV s 4.135 667 696. . .×1015 eV Hz1 in u 1.007 276 466 621(53) u

¯

h 1.054 571 817. . .×1034 J s energy equivalent in MeV mpc2 938.272 088 16(29) MeV

in eV s 6.582 119 569. . .×1016 eV s proton-electron mass ratio mp/me 1836.152 673 43(11)

elementary charge e 1.602 176 634×1019(exact) C proton magnetic moment µp 1.410 606 797 36(60)×1026J T1

vacuum magnetic permeability 4πα¯h/e2c µ0 1.256 637 062 12(19)×106 N A2 to nuclear magneton ratio µpN 2.792 847 344 63(82) µ0/(4π×107) 1.000 000 000 55(15) N A2 proton magnetic shielding correction 1−µppσp 2.5689(11)×105 vacuum electric permittivity 1/µ0c2 ǫ0 8.854 187 8128(13)×1012 F m1 (H2O, sphere, 25C)

Josephson constant 2e/h KJ 483 597.848 4. . .×109 Hz V1 proton gyromagnetic ratio 2µp/¯h γp 2.675 221 8744(11)×108 s1T1

von Klitzing constantµ0c/2α= 2π¯h/e2 RK 25 812.807 45. . . Ω 42.577 478 518(18) MHz T1

magnetic flux quantum 2π¯h/(2e) Φ0 2.067 833 848. . .×1015 Wb shielded proton gyromagnetic ratio 2µp/¯h γp 2.675 153 151(29)×108 s1T1 Bohr magnetone¯h/2me µB 9.274 010 0783(28)×1024 J T1 (H2O, sphere, 25C)

in eV T1 5.788 381 8060(17)×105 eV T1 42.576 384 74(46) MHz T1

nuclear magnetone¯h/2mp µN 5.050 783 7461(15)×1027 J T1 neutron mass in u mn 1.008 664 915 95(49) u

in eV T−1 3.152 451 258 44(96)×10−8 eV T−1 energy equivalent in MeV mnc2 939.565 420 52(54) MeV

fine-structure constante2/4πǫ0¯hc α 7.297 352 5693(11)×103 neutron-proton mass ratio mn/mp 1.001 378 419 31(49)

inverse fine-structure constant α−1 137.035 999 084(21) neutron magnetic moment µn −9.662 3651(23)×10−27 J T−1

Rydberg frequencyα2mec2/2h=Eh/2h cR 3.289 841 960 2508(64)×1015 Hz to nuclear magneton ratio µnN −1.913 042 73(45)

energy equivalent in eV 13.605 693 122 994(26) eV deuteron mass in u md 2.013 553 212 745(40) u

Rydberg constant R 10 973 731.568 160(21) [m−1] energy equivalent in MeV mdc2 1875.612 942 57(57) MeV

Bohr radius ¯h/αmec= 4πǫ02/mee2 a0 5.291 772 109 03(80)×10−11 m deuteron-proton mass ratio md/mp 1.999 007 501 39(11)

Hartree energyα2mec2=e2/4πǫ0a0= 2(cR)h Eh 4.359 744 722 2071(85)×1018 J deuteron magnetic moment µd 4.330 735 094(11)×1027 J T1

in eV 27.211 386 245 988(53) eV to nuclear magneton ratio µdN 0.857 438 2338(22)

electron mass me 9.109 383 7015(28)×1031 kg helion (3He nucleus) mass in u mh 3.014 932 247 175(97) u

in u 5.485 799 090 65(16)×104 u energy equivalent in MeV mhc2 2808.391 607 43(85) MeV

energy equivalent in MeV mec2 0.510 998 950 00(15) MeV shielded helion magnetic moment µh −1.074 553 090(13)×1026 J T1 electron-muon mass ratio me/mµ 4.836 331 69(11)×103 (gas, sphere, 25C)

electron-proton mass ratio me/mp 5.446 170 214 87(33)×104 to Bohr magneton ratio µhB −1.158 671 471(14)×103 electron charge to mass quotient −e/me −1.758 820 010 76(53)×1011 C kg1 to nuclear magneton ratio µhN −2.127 497 719(25)

reduced Compton wavelength ¯h/mec=αa0 λC 3.861 592 6796(12)×1013 m alpha particle mass in u mα 4.001 506 179 127(63) u

Compton wavelength λC 2.426 310 238 67(73)×1012 [m] energy equivalent in MeV mαc2 3727.379 4066(11) MeV

classical electron radiusα2a0 re 2.817 940 3262(13)×1015 m Boltzmann constant k 1.380 649×1023(exact) J K1 Thomson cross section (8π/3)r2e σe 6.652 458 7321(60)×1029 m2 Avogadro constant NA 6.022 140 76×1023(exact) mol1 electron magnetic moment µe −9.284 764 7043(28)×10−24 J T−1 atomic mass constant121m(12C) = 1 u mu 1.660 539 066 60(50)×10−27kg

to Bohr magneton ratio µeB −1.001 159 652 181 28(18) energy equivalent in MeV muc2 931.494 102 42(28) MeV

to nuclear magneton ratio µeN −1838.281 971 88(11) Faraday constantNAe F 96 485.332 12. . . C mol1

electron magnetic moment anomaly|µe|/µB−1 ae 1.159 652 181 28(18)×10−3 molar gas constantNAk R 8.314 462 618. . . J mol−1K−1

electrong-factor−2(1 +ae) ge −2.002 319 304 362 56(35) in eV K1 8.617 333 262. . .×105 eV K1

electron-proton magnetic moment ratio µep −658.210 687 89(20) molar volume of ideal gasRT /p Vm 22.413 969 54. . .×103 m3mol1

muon mass in u mµ 0.113 428 9259(25) u (T = 273.15 K, p= 101.325 kPa)

energy equivalent in MeV mµc2 105.658 3755(23) MeV Stefan-Boltzmann constantπ2k4/60¯h3c2 σ 5.670 374 419. . .×108 W m2K4

muon-electron mass ratio mµ/me 206.768 2830(46) first radiation constant 2πhc2 c1 3.741 771 852. . .×1016 [W m2]

muon magnetic moment µµ −4.490 448 30(10)×1026 J T1 second radiation constanthc/k c2 1.438 776 877. . .×102 [m K]

to Bohr magneton ratio µµB −4.841 970 47(11)×103 Wien displacement law constant

to nuclear magneton ratio µµN −8.890 597 03(20) b=λmaxT=c2/4.965 114 231... b 2.897 771 955. . .×103 [m K]

muon magnetic moment anomaly Cu x unit:λ(Cu Kα1)/1 537.400 xu(Cu Kα1) 1.002 076 97(28)×1013 m

µ|/(e¯h/2mµ)−1 aµ 1.165 920 89(63)×103 Mo x unit:λ(Mo Kα1)/707.831 xu(Mo Kα1) 1.002 099 52(53)×1013 m Energy equivalents

[1 m1]c = 299 792 458 Hz (1 Hz)h/k= 4.799 243 073. . .×1011K (1 J) = 6.241 509 074. . .×1018eV (1 eV)/c2= 1.073 544 102 33(32)×109u [1 m1]hc/k= 1.438 776 877. . .×102K (1 Hz)h = 4.135 667 696. . .×1015eV (1 eV) = 1.602 176 634×1019J (1 kg) = 6.022 140 7621(18)×1026u [1 m1]hc = 1.239 841 984. . .×106eV (1 K)k/hc= 69.503 480 04. . .[m1] (1 eV)/hc= 8.065 543 937. . .×105[m1] (1 u) = 1.660 539 066 60(50)×1027kg [1 m1]h/c = 1.331 025 050 10(40)×1015u (1 K)k/h = 2.083 661 912. . .×1010Hz (1 eV)/h = 2.417 989 242. . .×1014Hz (1 u)c/h = 7.513 006 6104(23)×1014[m1] (1 Hz)/c = 3.335 640 951. . .×109[m1] (1 K)k = 8.617 333 262. . .×105eV (1 eV)/k = 1.160 451 812. . .×104K (1 u)c2 = 9.314 941 0242(28)×108eV

Referenzen

ÄHNLICHE DOKUMENTE

Klaft0r (untere Zeile) Klzlt"ter („mare Zelle) Klaftcr

[r]

[r]

Dazu sollte möglichst wenig Strom "abgezweigt" werden, das V-Meter sollte einen möglichst (unendlich) großen Widerstand haben.. Das -Meter darf niemals in Verbindung

Dank dem Smart Meter können zum Beispiel Boiler nicht nur in der Nacht eingeschaltet werden, sondern immer dann, wenn es Strom im Überfluss gibt.. Dies macht längerfristig das

Elles servent à établir la facture d’électricité et les prévisions nécessaires pour gérer le réseau. De par la loi, les données sont protégées contre toute

Le spese per lo smart meter vengono anticipate dal gestore di rete e addebitate al cliente finale solo in un secondo momento attraverso la bolletta elettri- ca, come avviene già

With the amplifier unpumped and the attenuating filter removed photodiode P 2 is used to measure the maximum input power, otherwise photodiode P 2 is used to measure the