• Keine Ergebnisse gefunden

Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zone?

N/A
N/A
Protected

Academic year: 2022

Aktie "Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zone?"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zone?

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 2Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Corresponding author: K. Burmeister (kburmeister@geomar.de)

Key Points

Atlantic Meridional Mode (AMM) associated with

meridional shift and anomalous intensity of NEUC Atlantic Zonal Mode (AZM) associated with anomalous intensity of NEUC

focus on variability of North Equatorial Undercurrent (NEUC)

Kristin Burmeister1 and Joke F. Lübbecke1,2

Fig. 1: Mean zonal velocity (a,b) and dissolved oxygen (c,d) along 23°W for 1972-85 (a,c),

1999-2008 (b,d).

Note stronger zonal currents, generally higher oxygen

levels; more

pronounced oxygen maxima associated with eastward

currents during 1972-85. From

Brandt et al. (2010).

Variability of the ETNA OMZ

Oxygen levels in the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ) vary on daily to multi-decadal time scales. The long-term trend mainly consists of a deoxygenation (Stramma et al., 2008: Brandt et al., 2015).

One important question is how much of the deoxygenation is due to the natural variability of the ETNA zonal current field.

Here we focus on the potential impact of the Atlantic climate modes onto the NEUC.

The AMM and AZM dominate tropical Atlantic variability (Fig.

2). Hormann et al. (2012) observed a relationship between NECC variability and the Atlantic climate modes. Our model data confirm their results.

The Atlantic climate modes

Impact of Atlantic Climate Modes on the NEUC

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

−1

−0.5 0 0.5 1

+0.7⋅σ

−0.7⋅σ

Fig. 2: First (b) and second (a) empirical orthogonal function of reanalysis (NOAA) Sea Surface Temperature (SST). March to May mean of AMM index (c; Servain 1991) and June to August mean of AZM index (d; Zebiak 1993) estimated from TRATL01 SST. Black boxes mark region for index calculation.

AMM

AZM

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

−2

−1 0 1 2

+0.7⋅σ

−0.7⋅σ

(a)

(b)

(c)

(d)

Estimation of NEUC central location YCM & intensity INT

Equ. 1 & 2: Central location Y CM and intensity INT calculated according to Hsin (2016). Where x is longitude, t is time, z is depth, y is latitude, and u is zonal velocity (only positive values for NEUC).

Integration limits for NEUC are the sigma-level of top (bottom) of flow Z t = 24.5 kg m -3 ( Z b = 24.5 kg m -3 ), the southern (northern) limit of flow Y S = 3.6°N ( Y N = 5°N), and the half-mean-width of flow W = 2°.

Model data

high-resolution (0.1º) tropical Atlantic nest (TRATL01) within global ocean model NEMO-ORCA05

coupled with biogeochemical model

CORE forcing for time period 1958 to 2007 (Duteil et al., 2014)

comparison to observational and reanalysis data

repeat analysis for nNECC and NEC

correlation of variability of the water mass distributions in and the ventilation of the ETNA OMZ

correlation with Sverdrup relation

Outlook

Fig. 3: (a-e) JJA mean of TRATL01 horizontal velocities (arrows)

within 100m to 400m depth and NEUC Y CM (green line) from 1958 to 2007. Shading marks (a) JJA mean of TRATL01 zonal velocities from 1958 to 2007 and JJA mean of TRATL01 zonal velocity anomalies within 100m to 400m depth during years of (b) positive AMM events, (c) negative AMM events, (d) positive AZM events, (e) negative AZM events. All zonal velocity anomalies are calculated with respect to the JJA mean from 1958 to 2007.

1 m/s

TRATL01 ucur 100−400m JJA neg AMM 1958−2007

60°W 40°W 20°W 0°

4°N 8°N

≤ −0.5 −0.3 −0.1 0.1 0.3 ≥ 0.5

velocity in m/s

19−Apr−2017 13:54:04

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/plot_map_NEUC_JJA_TRATL01.m

data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur(vcur)/TRATL01_interannual_clim_1958_2007_grid_U(V).nc

TRATL01 ucur 100−400m JJA s AMM 1958−2007

60°W 40°W 20°W 0°

4°N 8°N

≤ −0.1 −0.06 −0.02 0.02 0.06 ≥ 0.1 velocity in m/s

12−Apr−2017 16:42:06

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/AMM/plot_map_neg_AMM_NEUC_MAM_TRATL01.m data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur(vcur)/TRATL01_interannual_clim_1958_2007_grid_U(V).nc data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/AMM/TRATL01_neg_AMM_MAM_mean_1958_2007_grid_U.nc

AMM+

TRATL01 ucur 100−400m JJA neg AMM 1958−2007

60°W 40°W 20°W 0°

4°N 8°N

≤ −0.1 −0.06 −0.02 0.02 0.06 ≥ 0.1 velocity in m/s

12−Apr−2017 17:04:31

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/AMM/plot_map_neg_AMM_NEUC_MAM_TRATL01.m data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur(vcur)/TRATL01_interannual_clim_1958_2007_grid_U(V).nc data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/AMM/TRATL01_neg_AMM_MAM_mean_1958_2007_grid_U.nc

AMM-

TRATL01 ucur 100−400m JJA pos AZM 1958−2007

60°W 40°W 20°W 0°

4°N 8°N

≤ −0.1 −0.06 −0.02 0.02 0.06 ≥ 0.1 velocity in m/s

18−Apr−2017 12:02:36

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/AZM/plot_map_neg_AZM_NEUC_JJA_TRATL01.m data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur(vcur)/TRATL01_interannual_clim_1958_2007_grid_U(V).nc data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/AZM/TRATL01_neg_AZM_jja_mean_1958_2007_grid_U.nc

AZM+

TRATL01 ucur 100−400m JJA neg AZM 1958−2007

60°W 40°W 20°W 0°

4°N 8°N

≤ −0.1 −0.06 −0.02 0.02 0.06 ≥ 0.1 velocity in m/s

18−Apr−2017 12:03:40

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/AZM/plot_map_neg_AZM_NEUC_JJA_TRATL01.m data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur(vcur)/TRATL01_interannual_clim_1958_2007_grid_U(V).nc data: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/AZM/TRATL01_neg_AZM_jja_mean_1958_2007_grid_U.nc

AZM- JJA

JJA

JJA JJA JJA

(a)

(e) (d) (c) (b)

Fig. 4: JJA mean of NEUC Y CM (a, e) and INT (c, g) (bold lines) ± corresponding standard deviations (thin lines) for all years from 1958 to 2007 (black), for years of only positive (red) and negative (blue) AMM (a,c) and AZM (e,g) events.

JJA anomalies of NEUC Y CM (b,f) and INT (d,h) with respect to the JJA mean from 1958 to 2007 for positive (red) and

negative (blue) AMM (b,d) and AZM (f,h) events.

AMM

NEUC Y CM

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

4 4.5 5 5.5

4 4.5 5 5.5

19−Apr−2017 11:49:15

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_N

NEUC Y CM anomaly

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

−0.2 0 0.2 0.4

−0.2 0 0.2 0.4

19−Apr−2017 11:49:16

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_N data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_N

AZM

degre e latitude

NEUC INT

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

19−Apr−2017 11:49:16

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_N data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_N

NEUC Y CM

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

19−Apr−2017 11:49:21

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_NEUC_INT_LOC_seasons_amm.m

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_NEUC_loc_int_mm_24p5_27_3n6p5n_42w15w.mat

NEUC INT

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

40°W 30°W 20°W

2 4 6 8 10

19−Apr−2017 11:49:22

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_NEUC_INT_LOC_seasons_amm.m

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_NEUC_loc_int_mm_24p5_27_3n6p5n_42w15w.mat

NEUC INT anomaly

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

19−Apr−2017 12:04:13

script: /home/kburmeister/Projekte/S B754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_NEUC_INT_LOC_seasons_amm.m

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_NEUC_loc_int_mm_24p5_27_3n6p5n_42w15w.mat

NEUC Y CM

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

19−Apr−2017 11:49:21

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_NEUC_INT_LOC_seasons_amm.m

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_NEUC_loc_int_mm_24p5_27_3n6p5n_42w15w.mat

NEUC Y CM

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

40°W 30°W 20°W

4 4.5 5 5.5

4 4.5 5 5.5

4 4.5 5 5.5

19−Apr−2017 11:49:21

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_N

NEUC INT anomaly

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

40°W 30°W 20°W

−1 0 1

−1 0 1

−1 0 1

19−Apr−2017 12:04:00

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_N data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_N

Sv

NEUC Y CM anomaly

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

40°W 30°W 20°W

−0.2 0 0.2 0.4

19−Apr−2017 11:49:22

script: /home/kburmeister/Projekte/SFB754/Skripte/Matlab/TRATL01/ucur/current/NEUC/plot_NEUC_INT_LOC_seasons_amm.m

data 1: /home/kburmeister/Projekte/SFB754/Data/TRATL01/ucur/Ycm_INT/NEUC/TRATL01_NEUC_loc_int_mm_24p5_27_3n6p5n_42w15w.mat

(a)

(h) (g) (f) (e)

(d) (c) (b)

the Atlantic NEUC is an eastward zonal undercurrent within 100m to 500m depth - during June to August (JJA) it is centered around 4.8°N and has a averaged intensity of 5.6Sv

positive AMM events: NEUC is shifted southward (Fig. 3b and 4 a,b) and weakens up to -1.5Sv (Fig. 4 c,d)

negative AMM events: NEUC is shifted northward (Fig. 3b and 4 a,b) and slightly intensifies (Fig. 4 c,d)

intensity anomalies during negative AMM events are weaker compared to positive AMM events (Fig. 4d)

no anomalous meridional shift of NEUC during AZM events (Fig.

3d,e and 4 e,f)

NEUC intensity strengthens (weakens) up to 1Sv (-1Sv) during positive (negative) AZM events

Brandt, Hormann, Körtzinger, Visbeck, Krahmann, Stramma, Lumpkin, and Schmid (2010), Changes in the Ventilation of the Oxygen Minimum Zone of the Tropical North Atlantic. J. Phys. Oceanogr., 40, 1784-1801. Brandt, Bange, Banyte, Dengler, Didwischus, Fischer, Greatbatch, Hahn, Kanzow, Karstensen, Körtzinger, Krahmann, Schmidtko, Stramma, Tanhua, and Visbeck (2015) On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic.

Biogeosciences, 12, 489-512. Duteil, Schwarzkopf, Böning, and Oschlies (2014), Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: A high-resolution model study, Geophys. Res. Lett., 41, 2033–2040. Hormann, Lumpkin, & Foltz (2012), Interannual North Equatorial Countercurrent variability and its relation to tropical Atlantic climate modes. J. Geophys. Res., 117(C4). Hsin (2016), Trends of the Pathways and Intensities of Surface Equatorial Current System in the North Pacific

Ocean. J. Clim., 29(18), 6693-6710. Servain (1991), Simple climatic indices for the tropical Atlantic Ocean and some applications, J. Geophys. Res., 96(C8), 15137–15146. Stramma, Johnson, Sprintall, and Mohrholz (2008) Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655–658. Zebiak (1993), Air-sea interaction in the equatorial Atlantic region, J. Clim., 6(8), 1567–1586.

Changes in oxygen levels are associated with changes in the

eastward zonal current bands like the NECC, nNECC, or

NEUC (Fig. 1; Brandt et al. (2010)).

Referenzen

ÄHNLICHE DOKUMENTE

→ Link between oxygen and zonal current variability partly modulated by the Atlantic zonal and.

The aim of the zooplankton and micronekton research during the MSM49 expedition was to investigate the distribution, composition and size structure of the pelagic community in

On the one hand stratification isolates the core and prevents oxygen supply, on the other hand submesoscale upwelling at the eddy rim supports the vertical nutrient flux into the

Diapycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ).. Studies by Fischer et

They are understood to mostly originate from sul- fide production in sediments (Fig. To date sulfidic events have been reported from the eastern tropical South Pacific, the Arabian

In accordance with our study, mesocosm experiments from the ETNA and eastern tropical south Pacific (ETSP) open ocean (Franz et al., 2012) and measurements from shelf regions of

A combination of multiple ocean observing system elements (moorings, Argo floats, satellites, ships, gliders) is used to assess the mesoscale eddy activity in the tropical Atlantic

Note that due to the lower oxygen values within the eddies compared to the surrounding waters in the SOMZ, the re- lease of negative oxygen anomalies to the surrounding waters