• Keine Ergebnisse gefunden

A Simple Proof and Refinement of Wielandt’s Eigenvalue Inequality

N/A
N/A
Protected

Academic year: 2022

Aktie "A Simple Proof and Refinement of Wielandt’s Eigenvalue Inequality"

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A Simple Proof and Refinement of Wielandt’s Eigenvalue Inequality

Lutz D¨umbgen

published 1995 inStatist. Prob. Letters 25, 113-115

Abstract: Wielandt (1967) proved an eigenvalue inequality for partitioned sym- metric matrices, which turned out to be very useful in statistical applications. A simple proof yielding sharp bounds is given.

Keywords and phrases: eigenvalue inequality, partitioned matrix

Correspondence to: Lutz Duembgen, Institute of Mathematical Statistics and Actuarial Science, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland;

e-mail: duembgen@stat.unibe.ch

1

(2)

Let A∈Rp×p be a symmetric matrix of the form

A = B C

C0 D

!

withB ∈Rr×r,C ∈Rr×s and D∈Rs×s such that λr(B) > λ1(D);

generally λ1(E) ≥ λ2(E) ≥ · · · ≥ λq(E) denote the ordered eigenvalues of a sym- metric matrixE∈Rq×q. Wielandt (1967) showed that the eigenvalues ofAcan be approximated by the eigenvalues of B and D in the following sense:

0 ≤ λi(A)−λi(B) ≤ λ1(CC0)

λi(B)−λ1(D) for 1≤i≤r and (1) 0 ≤ λj(D)−λr+j(A) ≤ λ1(CC0)

λr(B)−λj(D) for 1≤j≤s.

These inequalities can be used to compute derivatives and pseudo-derivatives of eigenvalues. They are also very useful in statistical problems involving eigenvalues of random symmetric matrices; see Eaton and Tyler (1991, 1994). In my opinion the original proof, described in Eaton and Tyler (1991), is somewhat complicated.

The main ingredient seems to be the Courant-Fischer minimax representation λk(E) = max

V:dim(V)=k min

v∈V:v0v=1 v0Ev for 1≤k≤q, (2)

where V stands for a linear subspace of Rq; see section 1f.2 of Rao (1973). In this note (2) is used directly to derive the following refinement of (1):

Theorem. For1≤i≤r, 0 ≤ λi(A)−λi(B) ≤

s

i(B)−λ1(D))2

4 +λ1(CC0) − λi(B)−λ1(D)

2 ,

and for 1≤j≤s,

0 ≤ λj(D)−λr+j(A) ≤ s

r(B)−λj(D))2

4 +λ1(CC0) − λr(B)−λj(D)

2 .

2

(3)

Remark 1: Since q

α2/4 +β2 − α/2 ≤ minnβ, β2o ∀α, β >0, this result implies Wielandt’s bounds (1).

Remark 2: The upper bounds are sharp. For if p = 2 one can compute the eigenvalues ofA explicitly and obtains

λ1(A)−λ1(B) = λ1(D)−λ2(A) = s

(B−D)2

4 +C2 − B−D 2 .

For general p one has to consider diagonal matrices B, D and suitable matrices C with only one nonzero coefficient.

Proof of the Theorem: One easily verifies that the asserted inequalities are invariant under the transformationA7→A−λ1(D)I, whereI is the identity matrix inRp×p. Therefore one may assume without loss of generality thatλ1(D) = 0.

For 1≤i≤r it follows from (2) that λi(A) ≥ max

V⊂Rr×{0}:dim(V)=i min

v∈V:v0v=1 v0Av = λi(B). (3) On the other hand, letW be ani-dimensional subspace of Rp such that

λi(A) = min

v∈W:v0v=1 v0Av.

Ifv∈Rp is written as v= (v(1)0 , v(2)0 )0 withv(1) ∈Rr and v(2) ∈Rs, then W(1) = {v(1):v∈W}

is an i-dimensional subspace of Rr. For if dim(W(1)) < i, then w(1) = 0 for some unit vector w∈W, and

λi(A) ≤ w0Aw = w0(2)Dw(2) ≤ 0,

which would contradict (3). Any unit vector v∈W can be written as v =

q

(1 +ρ)/2u(1)+ q

(1−ρ)/2u(2) 3

(4)

for unit vectorsu(1) ∈W(1), u(2) ∈Rs and someρ∈[−1,1]. Then v0Av = (1 +ρ)u0(1)Bu(1)/2 +

q

1−ρ2u0(1)Cu(2)+ (1−ρ)u0(2)Du(2)/2

≤ (1 +ρ)u0(1)Bu(1)/2 + q

1−ρ2qλ1(CC0)

= u0(1)Bu(1)/2 +ρ, q

1−ρ2 u0(1)Bu(1)/2 pλ1(CC0)

!

≤ u0(1)Bu(1)/2 +q(u0(1)Bu(1))2/4 +λ1(CC0).

Consequently, since H(x) :=x/2 +px2/4 +λ1(CC0) is nondecreasing inx≥0, λi(A) ≤ min

u(1)∈W(1):u0(1)u(1)=1 H(u0(1)Bu(1))

= H min

u(1)∈W(1):u0(1)u(1)=1u0(1)Bu(1)

!

≤ H(λi(B))

= λi(B) +qi(B)−λ1(D))2/4 +λ1(CC0)−(λi(B)−λ1(D))/2.

Thus the first part of the theorem is true, and the second half follows by replacing A with−A 2

References

Eaton, M.L. and D.E. Tyler (1991): On Wielandt’s inequality and its application to the asymptotic distribution of the eigenvalues of a random symmetric matrix.

Ann. Statist.19, 260-271

Eaton, M.L. and D.E. Tyler (1994): The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis. J.

Multivariate Anal. 50, 238-264

Rao, C.R. (1973): Linear Statistical Inference and Its Applications (2nd edition).

Wiley, New York

Wielandt, H. (1967): Topics in the Analytic Theory of Matrices. (Lecture notes prepared by R. R. Meyer) Univ. Wisconsin Press, Madison

4

Referenzen

ÄHNLICHE DOKUMENTE

Sehr häufi g: Kopfschmerzen, Geschmacksstörung, Schluckauf, Übelkeit, Dyspepsie, Schmerzen und Parästhesien des oralen Weichteilgewebes, Stomatitis, vermehrter Speichelfl

Viele dieser Beweise sind jedoch nach der pers¨onlichen Meinung des Autors nicht leicht verst¨andlich, insbesondere f¨ur Studienanf¨anger.. In diesem Auf- satz gibt der Autor

Peter Schuster ist Privatdozent an der Universit¨at M¨unchen, Oberassistent am dorti- gen Lehrstuhl f¨ur Mathematische Logik und arbeitet unter anderem auf dem Gebiet der

If we write v, k, and t instead of N, 3, and 2, respectively, then we arrive at the following contemporary definition: A Steiner system S ( t , k , v ) is a finite set ᐂ of

The aim of this paper is to prove the following theorem and to sketch some of its applications (for similar results cf.. positive) if all of its elements are non-negative (resp.

Let C 0 be an arbitrary small cube in + j and consider the 2 n rays from the above family which contain the centre of C 0.. We claim that at least one of these rays intersects

We generalize the Guyan condensation of large symmetric eigenvalue problems to allow general degrees of freedom to be master variables.. On one hand useful in- formation from

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under