• Keine Ergebnisse gefunden

Exploring the N –N coupled system with high precision correlation techniques at the LHC

N/A
N/A
Protected

Academic year: 2023

Aktie "Exploring the N –N coupled system with high precision correlation techniques at the LHC"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Exploring the N –N coupled system with high precision correlation techniques at the LHC

.ALICE Collaboration

a rt i c l e i n f o a b s t r a c t

Articlehistory:

Received21February2022

Receivedinrevisedform27May2022 Accepted27June2022

Availableonline4July2022 Editor: M.Doser

Theinteractionofandhyperons(Y)withnucleons(N)isstronglyinfluencedbythecoupled-channel dynamics.DuetothesmallmassdifferenceoftheNandNsystems,thesizable couplingstrengthof the NNprocessesconstitutesacrucial elementinthe determinationof theNinteraction.In thisletterwepresentthemostprecisemeasurementsontheinteractionofppairs,fromzerorelative momentumuptothe openingoftheNchannel.The correlationfunctioninthe relativemomentum spaceforpppairsmeasuredinhigh-multiplicitytriggeredppcollisions at√

s = 13 TeVatthe LHCisreported.TheopeningoftheinelasticNchannelsisvisibleintheextractedcorrelationfunction asacusp-likestructureoccurringatrelativemomentumk=289 MeV/c.Thisrepresentsthefirstdirect experimentalobservationoftheNNcoupledchannelinthepsystem.Thecorrelationfunction is comparedwithrecent chiral effective fieldtheorycalculations, basedondifferent strengths ofthe NNtransitionpotential.Aweakercoupling,as possiblysupportedbythepresentmeasurement, wouldrequireamorerepulsivethree-bodyNNinteractionforaproperdescriptionofthein-medium properties,whichhasimplicationsonthe nuclearequationofstateand forthe presenceofhyperons insideneutronstars.

©2022EuropeanOrganizationforNuclearResearch,ALICE.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The proton–Lambda (p) system is one of the best-known examples in hadron physics where the role of coupled-channel dynamics is crucial for the understanding of the two-body and three-body interaction,bothinvacuumandatfinitenuclearden- sities [1–4]. The couplingbetween the nucleon–Sigma (N) and Nsystems arisesfromthesepairs havingthe samestrangeness content and a small mass difference, and it is responsible for thedominantattractivepinteractioninthespin-tripletstateof coupled-channelpotentials [3,5,6].

The attractive natureof theinteraction betweena protonand a was established from measurements of binding energies of light -hypernuclei [7,8] and scattering experiments at low en- ergies [9–11]. However,the availablescatteringcross sectionsare characterisedbylargeuncertainties.Moreover, theyarelimitedto hyperon momenta above plab100 MeV/c. Thus, a reliable de- termination of standard quantities like scattering lengths, which provide a simple quantitative measure for the strength of an interaction, is practically impossible. Furthermore, in the region plab640 MeV/c, where the n+ and p0 channels open, the momentum resolutionofthe existingdatais poor [12,13].Calcu- lations based on N-N coupled-channel potentials [2,3,6] pre-

E-mailaddress:alice-publications@cern.ch.

dict a narrow but sizable enhancement of the p cross section in that region which reflects the strength of the channel cou- plingandalsothatoftheNinteraction.However,becauseofthe poorresolutionofthementionedscatteringdata,thepresence of such a structure could not be confirmed. New p data that be- came available recently [14] cover only energies well above the N threshold.Experimental observations ofa cusp-like structure at the N threshold stem only from studies of the p invari- ant mass (IM) spectrum in strangeness exchange processes such asKd→πp[15,16] andmorerecentlyfrommeasurementsof thereactionpp→K+p[17,18].

It is known that the strength of the NN conversion is relevantforthebehaviourofhyperonsininfinitenuclear mat- ter [19–21].ThishasbeenemphasisedinarecentstudyoftheYN interactionbasedonchiraleffectivefieldtheory(

χ

EFT) [3].Specif- ically, this work discussed the interplay between the NN conversion,thein-mediumpropertiesoftheandtheroleplayed by three-body forces.The abundant data onhypernuclei allowed the determination of the average attraction (−30 MeV) experi- encedbyahyperonwithinsymmetricnuclearmatteratthenu- clearsaturationdensity [22].However,theinteractionofhyperons withthesurroundingnucleons atlarger baryonicdensitiesis not knownempirically.Theoutcomeofpertinentcalculationsdepends ontheemployedNandNNinteractionsinvacuum.Thesecon- tributions are directlycorrelated to the NNconversion, as the parameters driving the coupling strength in the theory can

https://doi.org/10.1016/j.physletb.2022.137272

0370-2693/©2022EuropeanOrganizationforNuclearResearch,ALICE.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

be tuned differently while still reproducing the existing experi- ments [3]. For example, compared to the original version of the next-to-leading order(NLO)

χ

EFT (NLO13) [2], the revisitedver- sion(NLO19) [3] involvesaweakerNNtransitionpotential.

However, itleads topracticallyidenticalresultsforNtwo-body scattering,buttoanenhancedattractivebehaviourinthemedium.

Thispointstoastrongerrepulsivethree-bodyforceneededwithin thelatterrealisation.TheinterplaybetweentheNandNNin- teractionisrelevanttothedebatedpresenceofhyperonsinside thecoreofneutronstars(NS) [22–24].Thehyperonpuzzle origi- nates fromthecontraposition betweentheenergeticallyfavoured production ofhyperonsin theinteriorof NS [25] and the subse- quentsoftening ofthecorresponding equation ofstate (EoS).The latterdoesnotsupporttheexistence oftheheaviestobserved NS ofupto2.2 solarmasses [26–28].ApplicationsoftheNLO19

χ

EFT potentials in calculationsof the EoS [4] demonstrated that a re- pulsive genuineNNinteractionsuppressesthe appearanceof hyperons inside NS, giving a more quantitative referencefor the solution of the hyperon puzzle. Thus new experimental data of high precision providing constraints on the NN dynamics areneeded.

Recentstudiesoftwo-particlecorrelationsinpp,p–PbandPb–

Pb collisions havebeen successful in studying the final-state in- teraction (FSI) and in delivering high precision data on particle pairs of limited accessibility using traditional experimental tech- niques [29–39]. Performingsuch measurements insmallcollision systems resultsin a stronger sensitivityof theexperimental cor- relation to the coupled-channel dynamics, asrecently proven by meansofpKcorrelations [35,40,41].Inthisletterwepresentthe combinedmeasurementofpandppairsinppcollisionswith ahigh-multiplicity(HM)triggerat√

s=13 TeV [42,43].

2. Dataanalysis

Therelevantobservableinthisanalysisisthetwo-particlecor- relationfunctionC(k).Thisisrelatedtoaneffectiveparticleemis- sionsourceS(r)andtothewavefunction(k,r)oftheparticle pair,bymeansoftherelationC(k)=

S(r)|(k,r)|2d3r [44], where the relative distancer and relative momentum q=2k are evaluatedinthepairrestframe.Theexperimentalcorrelation isdefinedas

C

(

k

) =

N

·

N

(

k

)/

M

(

k

),

(1) where N(k)isthedistributionofpairswherebothreconstructed particles aremeasured inthe sameevent, M(k) isthereference distribution ofuncorrelatedpairs sampledfromdifferent(mixed) eventsandN isanormalisationfactor.Theuncorrelatedsamplein the denominator, M(k), isobtainedby combiningparticles from oneeventwithparticlesfromasetofotherevents.Thetwoevents are requiredto have comparable number of charged particles at midrapidityandasimilarprimary vertexcoordinateVz along the beamaxis(z).

TheALICEexperimentexcelsincorrelationstudiesthankstoits good tracking andparticle identification (PID) [42,43]. These ca- pabilitiesarerelatedto thethreesubdetectors,theinner tracking system(ITS) [45],thetimeprojection chamber(TPC) [46] andthe time-of-flight detector (TOF) [47]. The event trigger is based on the measured amplitudeinthe V0detector system, consistingof twoarraysofplasticscintillatorslocatedatforward(2.8<

η

<5.1) and backward (−3.7<

η

<1.7) pseudorapidities [48]. The se- lected HM eventscorrespond to 0.17% ofall eventswithat least onemeasuredchargedparticlewithin|

η

|<1 (INEL>0).Thiscon- dition results in an average of 30charged particles in the range

|

η

|<0.5 [34]. Compared to a minimum-bias trigger, HM events provide not only a larger number of particles per event, but an

overallhigherproductionrateofparticles containing strangeness, such a hyperons [49]. Consequently, the HM sample offers a tenfold increase in the amount of p pairs reconstructed below k of 200 MeV/c, leading to a total of 1.3 million pairs within thesameeventsample.The reconstructedprimary vertex(PV)of the event is required to have a maximal displacement with re- spectto the nominalinteraction point of 10 cm along the beam axis,inordertoensureauniformacceptance.Pile-upeventswith multipleprimaryverticesareremovedfollowingtheprocedurede- scribedin [29,30,33,34]. Thefinal number ofselected HMevents reachesapproximately109.Chargedparticles,suchasprotonsand pions, are directly measured, while the candidates are recon- structed based on the IM of the decayproducts. The correlation functionsobtained for particles (p) andanti-particles (p) are identicalwithinuncertainties, thusthefinal resultispresentedas theirweightedsumpp.

Boththeprotonsandthecandidatesarereconstructedusing theproceduredescribed in [30], whiletherelatedsystematicun- certaintiesareevaluatedbyvaryingthekinematicandtopological observablesusedinthereconstruction.Forthepurposeofcorrela- tionstudiesit isessential todifferentiatebetweenprimary parti- cles,whichparticipateintheFSI,andsecondary(feed-down)parti- cles,whichstemfromweakorelectromagneticdecays.Experimen- tally,theformercanbeselectedbydemandingtheparticlecandi- datestobeclosetothePVoftheevent,whilethelatterhavetobe associatedwithasecondaryvertexwithintheevent.Inthefollow- ingtext,thesystematicvariationsareenclosedinparentheses.The primary proton candidates are selected in the momentum inter- val0.5(0.4, 0.6)<pT<4.05 GeV/cand|

η

|<0.8(0.77, 0.85).To improvethequalityofthetracksaminimumof80(70,90)outof the159possible spatialpoints (hits) inside theTPCare required.

The candidates are selected by comparing the measurements in theTPCandTOFdetectorstotheexpecteddistributionsforapro- toncandidate.Theagreementisexpressedintermsofthedetector resolution

σ

(nPIDσ ). Forprotonswith pT<0.75 GeV/c the nPIDσ is evaluatedonlybased ontheenergylossandtrackmeasurements inthe TPC, while for pT>0.75 GeV/c a combined TPCand TOF PIDselectionis applied(nPIDσ =

n2σ,TPC+n2σ,TOF).The nPIDσ ofthe accepted candidates is required to be within 3 (2.5, 3.5). To re- jectnon-primaryparticles thedistanceof closestapproach (DCA) tothe PVof thetracks isrequired tobe lessthan 0.1 cm inthe transverseplane andlessthan0.2 cm along thebeamaxis.Nev- ertheless, duetothe limitedresolutionofthe reconstruction,the selectedprimaryprotoncandidateswillcontaincertainamountof secondaries,stemming from weak decays, andmisidentifications.

ThesecontributionsareextractedusingMonteCarlo(MC)template fitsto themeasured distributionsofthe DCAtothePV [29].The resultingprotonpurityis99.4% witha82.3% fractionofprimaries.

The candidates are reconstructed viathe weak decay → pπ.Thesecondarydaughtertracksaresubjecttosimilarselection criteriaasfortheprimaryprotons.Inaddition,thedaughtertracks are requiredto havea DCAto the PVof atleast0.05 (0.06) cm.

The DCAofthe corresponding candidates to thePV hasto be below 1.5 (1.2) cm. The cosine of the pointing angle (CPA) be- tween thevector connecting the PVto thedecay vertexandthe three-momentumofthecandidateisrequiredtobelargerthan 0.99 (0.995).Torejectunphysicalsecondaryvertices,reconstructed with tracks stemming from collisions corresponding to different crossings of the beam, the decay tracks are required to possess a hit in one ofthe SPD orSSD detectors or a matched TOF sig- nal [31]. Thefinal candidatesare selectedina 4 MeV/c2 mass window around the nominal mass [50], where the widthof the IMpeakisc.a.1.6 MeV/c2.Thenumberofprimaryandsecondary contributions for are extracted similarly as for protons, using

(3)

Table 1

Weightparametersoftheindividualcomponentsofthepcorrelation function.Thetwolastrowscorrespondtothevaluesoftheλparame- terswithinthesystematicvariations.

Pair p p(0) p() Flat feed-down p˜

λPair(%) 47.1 15.7 19.0 17.6 0.6

min{λPair} (%) 42.7 12.6

max{λPair} (%) 49.6 18.0 22.1

the CPA asan observable forthe template fits. Theaverage frac- tion of primary hyperons is 57.6 (52.1, 60.6)% and19.2 (15.4, 21.9)%originatefromtheelectromagneticdecaysof0.Thenum- ber of 0 particles is related to their ratio to the hyperons, which is fixed to 0.33 (0.27, 0.40). These values are based on predictionsfromtheisospinsymmetry,thermalmodelcalculations usingtheThermal-FISTpackage [51] andmeasurementsofthecor- responding production ratios [52–54]. Further, each of the weak decays of and 0 contributes with11.6 (13.5)% to the yield of hyperons.The purityof and was extracted by fitting, as a function ofk,the IM spectra ofcandidates selected in the mixed-event sample. Thefits were performedin theIM rangeof 1088to1144MeV/c2 usingadoubleGaussianforthesignalanda third-ordersplineforthebackground.Theresultwasaveragedfor k<480 MeV/c, leading to a purity P=95.3%. The systematic variationsincludeamodellingofthesignalusingthesumofthree Gaussians,leadingtoapurityof96.3%.Theeffectofmisidentified candidates(˜)canbeaccountedforbytherelations

Cexp

(

k

) =

PCcorrected

(

k

) + (

1

P

)

Cp˜

,

(2) Ccorrected

(

k

) =

B

(

k

)

λ

pCp

(

k

) + λ

p(0)Cp(0)

(

k

)

p()Cp()

(

k

) + λ

ff

+ λ

p˜

,

(3)

where the signal is decomposed into its ingredients, weighted by thecorresponding λ parametersandcorrectedforthe non-FSI baseline B(k).

Suchadecompositionisrequired [29],astheexperimentalsig- nal contains correlations complementing the genuine p signal Cp(k). In the present analysis the contribution Cp˜ related to misidentified candidates (˜) is explicitly measured and sub- tracted from the total correlation Cexp(k). This is achieved by performing asidebandanalysis [32], whichreliesonpurposefully selectingcandidatesincompatiblewiththetruemassbymore than5

σ

.

ThecorrectedcorrelationCcorrected(k)hasaneffectivepurity of 100%, and the remaining contributions (Eq. (3)) are the gen- uine signal of interest Cp, the residual (feed-down) correlation Cp(0)ofparticlesoriginatingfromthedecayofa0,theresid- ual signal Cp() related to (0) decaying into , other sub-dominant(flat)sourcesoffeed-downcorrelationsCff1,and contamination Cp˜ stemmingfrommisidentified protons.Eachof thesecontributionsisweightedbya statisticalfactorλ,evaluated astheproductofthepuritiesandfractions(primaryorsecondary) of theset particles [29]. Theseweight factorsare summarised in Table1.ThecontributionCp˜cannotbemodelled,howevertheas- sociatedλp˜isonly0.6%,justifyingtheassumptionλp˜Cp˜λp˜ within theuncertainties ofCcorrected(k). Bycontrast,theresidual correlations Cp(0) and Cp() are significant, but in these cases their interactions with protons can be described by theory. Re- cent correlation studies of the p0 system showed that this in- teraction is ratherweak [32]. Thischannel is modelledassuming either a flat function or employing the same

χ

EFT calculations used for the genuine p interaction [3]. The contribution from the p (pp0) channel is modelled employing the lattice

potentialsfromtheHALQCDcollaboration [55].Theywereexperi- mentallyvalidatedbycomparisonwithprecisionmeasurementsof pcorrelations [33,34].TheresidualcontributionsCp(0)(k)and Cp()(k)areobtainedbytransformingthecorrespondinggenuine correlationfunctionstothebasisofthepinteraction,usingthe formalismdescribedin [29] and [56] appliedtothephasespaceof themeasuredpairs.

Thenon-FSIbackground(baseline)isparameterisedbyathird- orderpolynomial B(k) constrainedto be flat atk0 and fit- ted to the data (Eq. (3)). By default, the fit is performed for k∈ [0,456] MeV/c,withsystematicvariations oftheupperlimit to 432 and480 MeV/c. Further, dueto the expectationof a flat baseline atlow k,a systematic cross-check hasbeen performed byassumingthehypothesisofaconstantB(k)andfittingthecor- relationfunctionfork below336 MeV/c.

Thecorrelation function (Eq. (3)) isgivenasafunction ofthe measured k, which isnot identical tothe true relative momen- tumofthepairduetotheeffectsofmomentumresolution.Thus, to compare the experimental results with theoretical predictions an unfoldingof thedata isrequired.Both thesame- and mixed- eventsamples(N(k),M(k)) are biasedbythe resolutionofthe detector.Theyrelatetotheirtrueunderlyingdistributionsby

N

(

k

) =

0

T

(

k

,

ktrue

)

Ntrue

(

ktrue

)

dktrue (4)

and M

(

k

) =

0

T

(

k

,

ktrue

)

Mtrue

(

ktrue

)

dktrue

,

(5)

where T(k,ktrue) isthedetectorresponse matrix.The latterisa two-dimensional matrixcorresponding to the probability of hav- ing a true value ktrue given a measured k. Byusing a full scale simulation of the detector, involving Pythia 8 [57] as an event generatorandGeant3 [58] tomodelthedetectorresponse,thema- trixT(k,ktrue)hasbeen determined.The resultingspreadinthe distribution ofk for a fixed ktrue is,on average, 4.2 MeV/c.Us- ing Ntrue(ktrue)=Mtrue(ktrue)C(ktrue) and defining W(k,ktrue)= T(k,ktrue)Mtrue(ktrue)/M(k),Eq. (1) becomesequivalentto

Cexp

(

k

) =

N

0

W

(

k

,

ktrue

)

Ctrue

(

ktrue

)

dktrue

.

(6)

Inthe presentanalysis theunfolding is performedasa two-step process,firstobtainingMtrue(k)fromEq. (5),secondusingEq. (6) toobtain Ctrue(k).Eachstepisperformedbyusingacubicspline toparameterise thetruefunctions, whicharefittedtotheir mea- suredcounterparts. Thesplines are definedfork<1000 MeV/c, usingatotalof32knots.Thequalityoftheprocedureisvalidated by transforming the unfolded functions backwards using Eq. (5) and Eq. (6), which ideally should restore the input distributions (

χ

2=0). In case the resulting

χ

2 per data point is larger than 0.2,thevalueofeach Ctrue(k)binisperturbed usingabootstrap procedure [59],untilabetter

χ

2 isachieved.Thisisiterativelyre- peated until obtaining the desired precision, and until no single bindeviatesbymorethanhalfoftheiruncertainty.

3. Resultsanddiscussion

The corrected and unfolded experimental correlation function for pp is shown in Figs. 1 and 2. The correlation func- tion is measured with high-precision in the low momentum re- gion down to k =6 MeV/c, in contrast to existing p scat-

(4)

Fig. 1.Upperpanels:pcorrelationfunction(circles)withstatistical(verticalbars)andsystematic(greyboxes)uncertainties.Middlepanels:zoomonthecusp-likesignal atk=289 MeV/c.Lowerpanels:Thedeviationbetweendataandpredictions,expressedintermsofnσ.ThefitisperformedusingNLO13(red)χEFT potentialswith cut-off=600 MeV [2,3] andusingacubicbaseline(darkgrey).Theresidualpp0(pink)andp0(royalblue)correlationsaremodelledusing,respectively,alattice potentialfromtheHALQCDcollaboration [33,55] andaχEFTpotential [2].Bothcontributionsareplottedrelativetothebaseline,whileinpanelb)thestronginteractionof p0isneglected.Thereducedχ2,fork<300 MeV/c,amountsto2.2incasea)andto1.9incaseb).

Fig. 2.SimilarrepresentationasinFig.1,wherethepinteractionismodelledusingNLO19(cyan)χEFT potentialswithcut-off=600 MeV [2,3].Thisleadstoanimproved descriptionofthelowmomentumregion.Thereducedχ2,fork<300 MeV/c,equals2.0incasethep0ismodelledbyχEFT (panela)and1.8incasethep0finalstate interactionisignored(panelb).

tering data which cover the region k >60 MeV/c. The preci- sion achieved for k<110 MeV/c is better than 1%, which cor- responds to an improvement of factor up to 25 compared to previous scatteringdata [9–11]. The theoretical correlation func- tions in Eq. (3) were evaluated using the CATS framework [60].

The size of the emitting source employed inthe calculation was fixedfromindependentstudiesofprotonpairs [30],whichdemon- strateacommonprimordial(core)Gaussiansourceforppandp pairswhenthecontributionofstronglydecayingresonancesisex- plicitly accountedfor [30]. Thissource exhibitsa pronouncedmT dependence andconsidering the average transversemass mT = 1.55 GeV ofthe measured ppairs a corresponding coresource radiusofrcore(mT)=1.02±0.04 fmisobtained.Thetotalsource function can be approximated by an effective Gaussian emission source of size 1.23 fm. The genuine p correlation function is modelled by

χ

EFT hyperon-nucleon potentials, considering the leading-order(LO)interaction [1] andtwoNLOversions(NLO13 [2]

andNLO19 [3]). Forthe NLO interactions the variation withthe underlying cut-off parameter (cf. Ref. [2]) is explored, while =600 MeV is chosen as a default value. Both NLO versions provide an excellent description of the available scattering data, havinga

χ

216 fortheconsidered36datapoints [3].

Figs.1and2showthetotalfitfunctions(redandcyan)tothe presentdata.Thenon-FSIbaseline B(k)isdepictedasadarkgrey line,whiletheindividualcontributionsrelatedtofeed-downfrom F= {0,}aredrawnasroyalblueandpinklines,corresponding to B(k)

λp(F)Cp(F)(k)+1λp(F)

. The latter relation is derived by setting all Ci terms within Eq. (3), apart fromCp(F),equal to unity. The upper panels in Figs. 1 and 2 present the correlation functioninthewholek range,whilethemiddlepanelsshowthe regionwheretheNchannelsopen,clearlyvisibleasacuspstruc- tureoccurringatk=289 MeV/c.Thedeviationbetweendataand prediction,expressed interms of number of standard deviations ,isshowninthebottompanels.Thediscrepancybetweenthe-

(5)

Table 2

Thedeviation,expressedintermsofnσ,betweendataandpredic- tionforthedifferentinteractionhypothesesofpandp0,evaluated fork∈ [0,110]MeV/c (firsttwocolumns)andk∈ [0,300]MeV/c (lasttwocolumns).Thedefaultvaluescorrespondtothefitwith a cubicbaselineandthevaluesinparenthesesrepresenttheresultsus- ingaconstantbaseline.Thedefaultinteraction(inbold)istheχEFT NLO19potentialwithcut-off=600 MeV [3].Eachrowcorresponds toadifferentvariantoftheχEFTinteractionusedforevaluatingthe pcorrelation.Thefirstandthirdcolumncorrespondtothecaseof modellingthep0usingχEFT,whilethesecondandfourth column representthecaseofnegligiblep0finalstateinteraction.

Standard deviation (nσ) k∈ [0,110]MeV/c k∈ [0,300]MeV/c p0() χEFT Negligible χEFT Negligible

p() p0FSI p0FSI

LO-600 4.7 (4.9) 6.1 (7.0) 7.2 (8.7) 10.3 (10.3) NLO13-500 5.9 (8.0) 4.3 (5.1) 6.6 (10.3) 4.9 (7.6) NLO13-550 4.5 (5.8) 3.1 (3.1) 4.1 (7.2) 2.8 (3.4) NLO13-600 4.5 (5.3) 3.2 (3.1) 3.9 (5.1) 2.9 (3.0) NLO13-650 4.2 (4.7) 2.8 (2.7) 3.6 (4.1) 2.8 (3.3) NLO19-500 4.2 (5.0) 2.7 (3.0) 4.4 (7.6) 3.4 (4.3) NLO19-550 3.6 (4.2) 2.4 (2.7) 3.0 (4.4) 2.2 (2.7) NLO19-600 3.2 (3.2) 2.2 (2.3) 3.1 (3.8) 2.6 (3.3) NLO19-650 3.2 (3.6) 2.3 (2.0) 2.8 (3.2) 2.7 (3.5)

ory anddataislargest inthemomentum regionk<110 MeV/c, while, due to the presence of the N cusp, the sensitivity of thecorrelationfunctiontothepropertiesofthestronginteraction extends up to 300 MeV/c. The deviations forthe interaction hy- pothesesare summarisedinTable 2,wheretheleft two columns showthe onlyinthelowmomentumregion,andtherighttwo columnsrepresentthedeviationevaluatedfork∈ [0,300]MeV/c.

Thepresentedresultsarethefirstdirectexperimentalevidence oftheNNcouplinginatwo-bodyfinalstate.Thesignal of the cusp isdetermined by the properties ofthe interaction, and furthermodifiedbytherelativeamountofNandpinitialstate pairs leading tothe final state (measured)ppairs.The amount of initial state pairs was fixed by the above-mentioned : ra- tio,enabling a directtest of thestronginteraction. The LOchiral potential [1] predicts a too small N cusp with respect to the measurement, the green line in Fig. 1, while both NLO interac- tions provide a satisfactory description of the cusp structure. On theother hand,inthemomentumregionbelow110 MeV/c there is a tension betweenthe data and thetheory predictions forall considered interactions.In particular,theresultsforthe twoNLO potentials are not that well in line with the measured correla- tionfunction,despiteofthefactthattheseinteractions reproduce thelow-energypscatteringdataperfectly [3].Thebestresultis provided bythe NLO19 potentialwith=600–650 MeV,though the deviationof=3.2 from theexperimentis substantial.For NLO13thisdeviationisevenlargerandamountsto=4.2.Fur- ther,itisobservedthatforNLO13andNLO19thebestagreement with the data is achievedwithin the same range of cut-off val- ues(550–650 MeV)whichalsoprovidethebestdescriptionofthe availablescatteringandhypertritondata [2,3].

The discrepancybetweenthedataand

χ

EFT atlow momenta couldbeanindicationforaweakergenuinepinteraction,butit couldalsosignalthatthep0 correlationisverysmall.Asvisible intherightpanelsofFigs.1,2andTable2,adoptingthehypoth- esis of a negligible p0 correlation leads to a better agreement withthepresentpdata(nσ=2.2). Atthemomentitisimpos- sibletodifferentiatebetweenthesetwocasesbecausetheexisting directmeasurementofthep0 channel isnotpreciseenoughfor drawingpertinentconclusions [32].Thep0measurementiscom- patiblewithboththeNLO predictions(ofaweaklyattractivep0 interaction)andwithaflatcorrelation(negligiblep0interaction).

Aprecisionmeasurementofthegenuinep0channel,expectedto

beachievedintheupcomingLHCRun3 [61],shouldprovideclar- ification. Then the actual strength of the N interaction can be pinneddowninamodelindependentwaybyadedicatedtheoret- icalanalysisofthepdata.

Alltheconclusionsofthepresentanalysisremainthesameun- derthealternativehypothesisofaconstantbaseline,orincasethe deviationisevaluatedfork<300 MeV/c.Withinthatmomentum region,the NLO19provides a satisfactorydescription ofthe data, with a deviation of =2.8, while the NLO13 still results in a largerdiscrepancy(nσ=3.6).

4. Summary

Inconclusion,two-particlecorrelationtechniqueswereusedto study the final state interaction in the NN coupled sys- tem. This was achieved by studying the p correlation function at low relative momenta with an unprecedented precision. The significanceofthecouplingofptoNismanifested asacusp- likeenhancement presentatthe corresponding thresholdenergy, which is the first direct experimental observation of this struc- ture. Further, using different modellings for the p0 feed-down leadstoastatisticallysignificantmodificationofthemeasuredp correlation, implying an indirect sensitivity to the genuine p0 correlation.In the momentumrangek∈ [110,300] MeV/c allof the tested NLO

χ

EFT interactions are compatible with the data, however a significant deviation is present at lower values. The detailed analysis, presented in Table 2, reveals a deviationof at least =3.2, for k<110 MeV/c, forthe considered

χ

EFT in- teractions.TheresultforNLO19exhibitsanoverallbettercompat- ibility, compared to theNLO13 prediction. The formerinvolves a weakerNNtransitionpotential anda moreattractivetwo- bodyinteractionofthehyperoninthemedium.Thisrequiresa strongerrepulsiveNNthree-bodyforce,whichleadstoastiffen- ingoftheEoSatlargedensities [4] andadisfavouredproduction ofthesestrangehadronsinneutronstars.Thepresenteddatapro- videanopportunitytoimprovethetheoreticalcalculationsforthe NNcoupledsystem,includingthelow-energypropertiesof N.The successfuluseofcorrelation techniquesinthetwo-body sectorcan beextendedto measuredirectlythethree-body corre- lations [62]. The increased amount of statistics during the third runningperiodoftheLHC [61] willallowforsuchmeasurements.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

The ALICE Collaboration wouldlike to thank all its engineers andtechniciansfortheirinvaluablecontributionstotheconstruc- tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab- oration gratefully acknowledges the resources and support pro- videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the followingfundingagencies fortheir support inbuildingandrun- ningtheALICEdetector: A.I. AlikhanyanNationalScienceLabora- tory(YerevanPhysics Institute)Foundation (ANSL),StateCommit- tee of Science and World Federation of Scientists (WFS), Arme- nia; Austrian Academy ofSciences, Austrian Science Fund (FWF):

[M 2467-N36]andNationalstiftungfürForschung,Technologieund Entwicklung,Austria;MinistryofCommunicationsandHighTech- nologies, National Nuclear Research Center, Azerbaijan; Conselho

(6)

Nacional de DesenvolvimentoCientífico e Tecnológico (CNPq), Fi- nanciadora de Estudos e Projetos (Finep), Fundac¸ão de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Ed- ucation of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC),China;MinistryofScienceandEducationandCroatianSci- ence Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN),Cubaenergía, Cuba; Ministryof Ed- ucation, YouthandSports ofthe CzechRepublic, Czech Republic;

TheDanishCouncilforIndependentResearchNaturalSciences,the Villum Fonden andDanish NationalResearch Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commis- sariatàl’ÉnergieAtomique (CEA)andInstitutNationaldePhysique Nucléaire et de Physique des Particules (IN2P3) and Centre Na- tional de laRecherche Scientifique (CNRS), France; Bundesminis- terium fürBildungundForschung(BMBF)andGSIHelmholtzzen- trum für Schwerionenforschung GmbH, Germany; GeneralSecre- tariatforResearchandTechnology,MinistryofEducation,Research andReligions, Greece;NationalResearch,Development andInno- vationOffice,Hungary;DepartmentofAtomicEnergy,Government of India (DAE), Department of Science and Technology, Govern- ment ofIndia (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innova- tive ScienceandTechnology,NagasakiInstituteofAppliedScience (IIST),JapaneseMinistryofEducation,Culture,Sports,Scienceand Technology(MEXT)andJapanSocietyforthePromotionofScience (JSPS)KAKENHI, Japan;Consejo Nacionalde Ciencia(CONACYT)y Tecnología, through Fondo de Cooperación Internacionalen Cien- cia y Tecnología (FONCICYT) and Dirección General de Asuntos delPersonalAcadémico (DGAPA),Mexico;NederlandseOrganisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re- search Council of Norway, Norway; Commission on Science and Technology forSustainableDevelopmentintheSouth(COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education andScience, National Science Centre andWUT ID- UB, Poland; Korea Institute of Science and Technology Informa- tion and National Research Foundation of Korea (NRF), Republic of Korea; Ministry ofEducation andScientific Research,Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research(JINR), MinistryofEducationandScienceofthe Russian Federation, NationalResearch Centre KurchatovInstitute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministryof Education,Science, ResearchandSportof the Slovak Republic, Slovakia; NationalResearch Foundation of South Africa,SouthAfrica;SwedishResearchCouncil(VR)andKnut&Al- iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization forNuclearResearch,Switzerland;SuranareeUniversityofTechnol- ogy (SUT),NationalScience andTechnology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU projectofThailand,Thailand;TurkishAtomicEnergy Agency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine;

ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom;

NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclear Physics (DOENP),UnitedStatesofAmerica.

References

[1]H. Polinder, J.Haidenbauer, U.-G.Meißner, Hyperon-nucleon interactions:a Chiral effective field theory approach, Nucl. Phys. A 779 (2006) 244–266, arXiv:nucl-th/0605050.

[2]J.Haidenbauer, S.Petschauer, N.Kaiser,U.-G.Meißner,A.Nogga,W.Weise, Hyperon-nucleoninteractionatnext-to-leadingorderinchiraleffectivefield theory,Nucl.Phys.A915(2013)24–58,arXiv:1304.5339 [nucl-th].

[3]J.Haidenbauer,U.-G.Meißner,A.Nogga,Hyperon–nucleoninteractionwithin chiraleffectivefieldtheoryrevisited,Eur.Phys.J.A56(2020)91,arXiv:1906. 11681 [nucl-th].

[4]D. Gerstung, N. Kaiser, W.Weise, Hyperon–nucleon three-body forces and strangenessinneutronstars,Eur.Phys.J.A56(2020)175,arXiv:2001.10563 [nucl-th].

[5]S. Petschauer,J. Haidenbauer,N. Kaiser,U.-G.Meißner,W.Weise,Hyperon- nuclear interactions from SU(3) chiraleffective fieldtheory,Front. Phys. 8 (2020)12,arXiv:2002.00424 [nucl-th].

[6]M.M. Nagels, T.A. Rijken, Y. Yamamoto, Extended-soft-core baryon-baryon model ESC16. II. Hyperon-nucleon interactions, Phys. Rev.C 99 (4) (2019) 044003,arXiv:1501.06636 [nucl-th].

[7]O.Hashimoto,H.Tamura,SpectroscopyofLambdahypernuclei,Prog.Part.Nucl.

Phys.57(2006)564–653.

[8]A.Gal,E.V.Hungerford,D.J.Millener,Strangenessinnuclearphysics,Rev.Mod.

Phys.88(2016)035004,arXiv:1605.00557 [nucl-th].

[9]B.Sechi-Zorn,B.Kehoe,J.Twitty,R.Burnstein,Low-energylambda-protonelas- ticscattering,Phys.Rev.175(1968)1735–1740.

[10]G.Alexander,U.Karshon,A.Shapira,G.Yekutieli,R.Engelmann,H.Filthuth,W.

Lughofer,Studyofthe–Nsysteminlow-energy–pelasticscattering,Phys.

Rev.173(1968)1452–1460.

[11]F.Eisele,H.Filthuth,W.Foehlisch,V.Hepp,G.Zech,Elastic+–pscatteringat lowenergies,Phys.Lett.B37(1971)204–206.

[12]J.A.Kadyk,G.Alexander,J.H.Chan,P.Gaposchkin,G.H.Trilling,Lambdapin- teractionsinmomentumrange300to1500MeV/c,Nucl.Phys.B27(1971) 13–22.

[13]J.M.Hauptman,J.A.Kadyk,G.H.Trilling,ExperimentalstudyofLambdapand xi0pinteractionsinthe range1-GeV/c-10-GeV/c, Nucl.Phys. B125(1977) 29–51.

[14]CLASCollaboration,J.Rowley,etal.,Improvedpelasticscatteringcrosssec- tionsbetween0.9and2.0GeV/candconnectionstotheneutronstarequation ofstate,Phys.Rev.Lett.127 (27)(2021)272303,arXiv:2108.03134 [hep-ex].

[15]T.Tan,Studyofhyperon-nucleoninteractioninthereactionKdπpat rest,Phys.Rev.Lett.23(1969)395–398.

[16]O.Braun,H.Grimm,V.Hepp,H.Strobele,C.Thol,T.Thouw,F.Gandini,C.M.

Kiesling,D.E.Plane,W.Wittek,OnthepenhancementnearNthreshold, Nucl.Phys.B124(1977)45–60.

[17]COSYTOFCollaboration,S.AbdEl-Samad,etal.,OntheNcuspintheppp K+reaction,Eur.Phys.J.A49(2013)41,arXiv:1206.0426 [nucl-ex].

[18]R.Münzer,etal.,DeterminationofN*amplitudesfromassociatedstrangeness production inp+pcollisions,Phys. Lett.B785(2018) 574–580,arXiv:1703. 01978 [nucl-ex].

[19]Y.Nogami,E.Satoh,Effectoflambdasigmaconversiononthelambda-particle bindinginnuclearmatter,Nucl.Phys.B19(1970)93–106.

[20]A.R.Bodmer,D.M.Rote,Lambda-nsigma-ncouplingforlambda-nscattering andforthelambda-particlebindinginnuclearmatter,Nucl.Phys.A169(1971) 1–48.

[21]J.Dabrowski,Ontheeffectoflambdasigmaconversiononthelambdaparticle bindingenergyinnuclearmatter,Phys.Lett.B47(1973)306–310.

[22]L.Tolos,L.Fabbietti,Strangenessinnucleiandneutronstars,Prog.Part.Nucl.

Phys.112(2020)103770,arXiv:2002.09223 [nucl-ex].

[23]H.Djapo,B.-J.Schaefer,J.Wambach,Ontheappearanceofhyperonsinneutron stars,Phys.Rev.C81(2010)035803,arXiv:0811.2939 [nucl-th].

[24]D.Logoteta,I.Vidaña,I.Bombaci,Impactofchiralhyperonicthree-bodyforces onneutronstars,Eur.Phys.J.A55 (11)(2019)207,arXiv:1906.11722 [nucl-th].

[25]I.Vidaña,A.Polls,A.Ramos,L.Engvik,M.Hjorth-Jensen,Hyperon-hyperonin- teractionsandpropertiesofneutronstarmatter,Phys.Rev.C62(2000)035801, arXiv:nucl-th/0004031.

[26]P.Demorest,T.Pennucci,S.Ransom,M.Roberts,J.Hessels,Shapirodelaymea- surementofatwo solarmass neutronstar,Nature 467(2010) 1081–1083, arXiv:1010.5788 [astro-ph.HE].

[27]J.Antoniadis,etal.,Amassivepulsarinacompactrelativisticbinary,Science 340(2013)6131,arXiv:1304.6875 [astro-ph.HE].

[28]H.T.Cromartie,etal.,RelativisticShapirodelaymeasurementsofanextremely massive millisecond pulsar, Nat. Astron. 4(2019) 72–76, arXiv:1904.06759 [astro-ph.HE].

[29]ALICECollaboration,S.Acharya,etal.,p-p,p-and-correlationsstudied viafemtoscopyinppreactionsat

s=7TeV,Phys.Rev.C99(2019)024001, arXiv:1805.12455 [nucl-ex].

[30]ALICECollaboration,S.Acharya,etal.,Searchforacommonbaryonsourcein high-multiplicitypp collisionsatthe LHC,Phys.Lett.B811(2020)135849, arXiv:2004.08018 [nucl-ex].

[31]ALICECollaboration,S.Acharya,etal.,Studyofthe-interactionwithfem- toscopycorrelationsinppandp-Pbcollisionsat theLHC,Phys.Lett.B797 (2019)134822,arXiv:1905.07209 [nucl-ex].

[32]ALICECollaboration,S.Acharya,etal.,Investigationofthep-0interactionvia femtoscopyinppcollisions,Phys.Lett.B805(2020)135419,arXiv:1910.14407 [nucl-ex].

Referenzen

ÄHNLICHE DOKUMENTE

Given the small numbers of physics Masters entering the labour market very few employers had experience of them and therefore there were few strong views on the differences

• Establishes overall scientific strategy; annual work programmes (incl. calls for proposals, evaluation criteria); peer review methodology;. selection and accreditation

With regard to the role of Danish in Iceland, it is important to make a distinction between, on the one hand, Danish as a foreign language and the importance of knowledge of Danish

Cotton fabrics of different structures were dyed with direct and reactive dyes to determine the exchange factor x (quotient of the dye concentration of the feeding liquor and the

The research team in the GAPCluster project has developed the described value adding web perspective on clusters that allows for a holistic view of clusters and extends

These benefits include the ability to obtain short-run (or contemporaneous) coefficients as well as long-run estimates; the ability to obtain coefficients for time-invariant

“business model wheel” for the e-mobility market which we have chosen as an example for platform markets with strong network effects and identified differences between the

The multivariate regression results show a substantial reduction in life satisfaction of empty- nesters when compared to pre-empty nesters; even when controlling for the standard