• Keine Ergebnisse gefunden

 Optimized Link State Routing (OLSR)

N/A
N/A
Protected

Academic year: 2022

Aktie " Optimized Link State Routing (OLSR)"

Copied!
55
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

Topologie-basierte Routingprotokolle

• Destination-Sequenced Distance-Vector Routing (DSDV)

Optimized Link State Routing (OLSR)

• Ad-Hoc On-Demand Distance Vector Routing (AODV)

• Dynamic Source Routing (DSR)

 Geographische Routingprotokolle

(2)

Proactive protocols – OLSR

 Combine link-state protocol & topology control

Optimized Link State Routing (OLSR)

 Topology control component: Each node selects a minimal dominating set for its two-hop

neighborhood

Called the multipoint relays

• Only these nodes are used for packet forwarding

• Allows for efficient flooding

 Link-state component: Essentially a standard link-state algorithm on this reduced topology

• Observation: Key idea is to reduce flooding overhead

(here by modifying topology)

(3)

Multipoint Relays

MPR Concept

Subset M of neighbors of given node S which covers all 2-hop neighbors of S

Node A is covered if it can receive message from S either directly or via 1-hop neighbor

Nodes in subset M are called relay point

Minimum-size multipoint relay is of interest for energy efficient broadcasting

Reduce number of broadcast relays but

Cover all nodes by the broadcast

Example for node S

1-hop neighbors: A, B, C, D, E, F

2-hop neighbors: U, V, W, X

A multipoint relay: {A, B, D, E}

A minimum-size multipoint relay: {C, F}

F U

X

D B

A

E V

W

S C

(4)

Multipoint Relays

 Greedy approximation

• Repeat selecting node B which maximizes set of not so far covered nodes

 Example

• (1) Maximum provided either by C or F; select C

• (2) Maximum provided then by F

• (3) All nodes covered; result {C, F}

F U

X B

A

E V

S

(5)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

Topologie-basierte Routingprotokolle

• Destination-Sequenced Distance-Vector Routing (DSDV)

• Optimized Link State Routing (OLSR)

Ad-Hoc On-Demand Distance Vector Routing (AODV)

• Dynamic Source Routing (DSR)

 Geographische Routingprotokolle

(6)

AODV: Main Idea

S

D

RREQ

RREQ

RREQ

RREQ

RREQ RREQ

(7)

AODV: Main Idea

S

D RREQRREP

(8)

AODV: Main Idea

S

D 1

2 3

1 2 3

1 2 3

(9)

AODV: Node Mobility

S

D

RREQ RREQ RREQ

(10)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

Topologie-basierte Routingprotokolle

• Destination-Sequenced Distance-Vector Routing (DSDV)

• Optimized Link State Routing (OLSR)

• Ad-Hoc On-Demand Distance Vector Routing (AODV)

Dynamic Source Routing (DSR)

 Geographische Routingprotokolle

(11)

DSR route discovery procedure

Search for route from 1 to 5

1

7

6

5 4 3

2

[1]

[1] 1

7

6

5 4 3

2

[1,7]

[1,7]

[1,4]

1

7

5 4 3

2 [1,7,2]

[1,4,6]

1

7

6

5 4 3

2

(12)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

 Topologie-basierte Routingprotokolle

Geographische Routingprotokolle

Greedy-Routing und Planar-Graph-Routing

• Konstruktion von planaren Graphen

• Lokales Multicasting

• Beispiel MSTEAM

(13)

Localized Geographic Unicast Forwarding

Assumptions:

 Localization system

 Nodes know position of

Themselves

Their neighbors

The destination source node

destination node

(14)

Geographic Greedy Routing

T S

A

(a)

F B

D C

E

Strategy: select from nodes closer to the destination the one which minimizes a local cost metric

B

E T S

(b)

?

A

C

D F

G

Problem: greedy routing failure

(15)

Recovery based on Planar-Graph Routing

source node

destination node

(16)

Planar Graph Routing Example

T S

P

F

(17)

Planar Graph Routing Example

T S

Q

F

P

(18)

Planar Graph Routing Example

T S

F

P

(19)

Planar Graph Routing Example

T S

P

F

(20)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

 Topologie-basierte Routingprotokolle

Geographische Routingprotokolle

• Greedy-Routing und Planar-Graph-Routing

Konstruktion von planaren Graphen

• Lokales Multicasting

• Beispiel MSTEAM

(21)

We need a Planar Graph

U V U V

Gabriel Graph (GG) Relative Neighborhood Graph (RNG)

W

U

V

Delaunay

Triangulation (DT)

(22)

We need a UDG or QUDG

 UDG: Localized GG and RNG versions based on 1-hop neighbors

 UDG: Localized DT version based on 2-hop neighbors (and less) Quasi unit disk graph (QUDG)

U V

Unit disk graph (UDG)

rmin rmax

U

(23)

Problems and Limitations

 Locally constructing a planar graph in arbitrary networks is impossible

 Even worse: localized unicast routing is impossible in arbitrary graphs

 Localized single path algorithms deviation from shortest paths

Let k be the hop/Euclidean length of the shortest path connecting s and t

Localized single path algorithms may produce paths of length O(k2)

Some even worse but some exist which are upper bounded by O(k2) u

x v

y

t s

(24)

Localized Unicast Routing in Practice!

 Wireless network graph has structure!

 Aim at localized unicast approaches with high delivery rate

arbitrary graph wireless network graph

(25)

Geographic Clustering

(26)

Geographic Clustering

(27)

Geographic Clustering

(28)

Geographic Clustering

(29)

K-Hop Clustering

(30)

K-Hop Clustering

(31)

K-Hop Clustering

(32)

K-Hop Clustering

(33)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

 Topologie-basierte Routingprotokolle

Geographische Routingprotokolle

• Greedy-Routing und Planar-Graph-Routing

• Konstruktion von planaren Graphen

Lokales Multicasting

• Beispiel MSTEAM

(34)

Localized Multicast Forwarding Problem

Assumptions:

 Location system

 Nodes know position of

Themselves

Their neighbors source node

destination node destination node

destination node

(35)

Building Blocks

T1

T3

T2 S

B A

D C

(36)

Building Blocks – Message Split

T1

T3

T2 S

B A

D C

(37)

Building Blocks – Next Hop Selection

T1

T3

T2 S

B A

D C

?

(38)

Building Blocks – Recovery

T1

T3

T2 S

B A

D C

?

?

(39)

Übersicht

 Untersuchte Netzstruktur und Problemstellungen

 Topologie-basierte Routingprotokolle

Geographische Routingprotokolle

• Greedy-Routing und Planar-Graph-Routing

• Konstruktion von planaren Graphen

• Lokales Multicasting

Beispiel MSTEAM

(40)

EMST Backbone Assisted Localized Routing

T9

T7

T6

T1

T3 S

T8

T5

T2 T1,…,T9

(41)

EMST Backbone Assisted Localized Routing

T8 T9

T7

T6

T5

T1

T2

T3 S

EMST(S,T1,…,T9)

(42)

EMST Backbone Assisted Localized Routing

T8 T9

T7

T6

T5

T1

T2

T3

D1

D2 D3

S

(43)

EMST Backbone Assisted Localized Routing

T8 T9

T7

T6

T5

T1

T2

T3 A

B

C

S

T7,T8,T9

T1,T2,T3 T4,T5,T6

(44)

The Cost over Progress Framework

T3

T1

W V

T2 S

Which one is the better next hop node?

T1,T2,T3

(45)

The Cost over Progress Framework

Approximate expected number of hops H(S,V)

H(S,V)  |EMST(S,T1,T2,T3)| / (|EMST(S,T1,T2,T3)| - |EMST(V,T1,T2,T3)|)

Approximate expected cost C(S,V) = cost(S,V) * H(S,V)

T3

T1

W V

T2 S

(46)

MSTEAM & MFACE

S T6

T5

T4

T1

T2

F1

F2

(47)

MSTEAM & MFACE

S T6

T5

T4

T1

T2

F1

F2

(48)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T1

T2 T3

(49)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T1

T2 T3

(50)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T1

T2 T3

(51)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T1

T2 T3 p

(52)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T1

T2

(53)

MSTEAM & MFACE

S

U

V W

F1 F2

F3

T2

(54)

Zusammenfassung

 Untersuchte Netzstruktur und Problemstellungen

 Topologie-basierte Routingprotokolle

 Geographische Routingprotokolle

(55)

Zusammenfassung

Wir betrachteten hier: drahtlose Vernetzung ohne aufwendige (und kostenpflichtige) Infrastruktur

Abdeckung größerer Gebiete trotz limitierter Kommunikationsreichweite  Multihop-Kommunikation

Wir haben es hier somit hauptsächlich mit einem Netzwerkproblem zu tun

Wesentliche Probleme: Routing und Topologiekontrolle

Anpassung traditioneller Routing-Verfahren: Topologie-basiertes Routing

Neuer Routing-Ansatz auf der Basis von Knotenkoordinaten

Dieser Ansatz erlaubt ganz neue Formen der Datenkommunikation und generell ganz neue Formen von Netzorganisation

Generelles Paradigma, um mit der Dynamik solcher infrastrukturlosen Multihop- Netze umzugehen: lokale Algorithmen/Verfahren

Dieses Paradigma ist auch zur Beherrschung von komplexen und dynamischen Internet-Overlay-Topologien anwendbar

Mit den hier behandelten lokalen Verfahren wurde nur ein kleiner Ausschnitt eines interessanten Forschungsfeldes betrachtet

Referenzen

ÄHNLICHE DOKUMENTE

Die Anwendung von ZRP auf ein gr¨ oßeres Netzwerk zeigt eine h¨ ohere Effi- zienz. Sobald diese Knoten mit dem glei- chen Radius ihre Zone pr¨ ufen, erkennt bereits der Knoten 9

• Ad-Hoc On-Demand Distance Vector Routing (AODV).. • Dynamic Source

• Ad-Hoc On-Demand Distance Vector Routing (AODV)?. • Dynamic Source

Was unterscheidet Ad-Hoc On-Demand Distance Vector Routing (AODV) vom Standard Distanz Vektor Routing.. AODV gehört zu den topologiebasierten, reaktiven Routingverfahren,

Da statische Routing-Tabellen zu inflexibel für das schnell veränderliche Internet sind, werden diese i.d.R.. dynamisch

Truncated Broadcast Tree based on DVMRP route metrics (S, G) Multicast Packet Flow. DVMRP Flood

Truncated Broadcast Tree based on DVMRP route metrics (S, G) Multicast Packet

 Alle Router des Netzwerks berechnen in gleicher Weise die günstigsten Wege und bilden Routing-Tabellen... Pfad) Loop: Für alle k E finde min... Beispiel: Open Shortest Path First