• Keine Ergebnisse gefunden

3. Übungsblatt zur Vorlesung WS 2019/20

N/A
N/A
Protected

Academic year: 2022

Aktie "3. Übungsblatt zur Vorlesung WS 2019/20"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

3. Übungsblatt zur Vorlesung WS 2019/20

Einführung in die Elementarteilchentheorie Prof. G. Hiller Abgabe: bis Di. 29. Oktober 2019, 12:00 Uhr Kasten 245 http://people.het.physik.tu-dortmund.de/~ghiller/WS1920ETT.html

Exercise 1: Dirac algebra (8 Points)

TheDirac equationis a relativistic equation of motion for fermions,

¡p/−m¢

ψ(p)=0 , (1)

wherep/=pµγµand the gamma matricesγµsatisfy the anticommutator relation

©γµ,γνª

γµγν+γνγµ=2gµν1. (2) In the following, we give a list of tensors which form a complete basis and can be con- structed out of gamma matrices:

tensor degrees of freedom

1 1

γµ 4

γ[µγν]= −iσµν=12εµνρωσρωγ5 6 γγνγρ]= −iεµνρωγωγ5 4 γ[µγνγργω]= −iεµνρωγ5 1

(3)

withγ5=iγ0γ1γ2γ3andσµν2i£ γµ,γν¤

. We define the antisymmetric product as A[a1,...,an]≡ 1

n!

Ã

X

even perm. inai

Aa1,...,an− X

odd perm. inai

Aa1,...,an

!

. (4)

Since the tensors in Eq. (3) form a basis, every product M of gamma matrices can be written as a linear combination of those 16 tensors:

M=X

a

MaΓa, (5)

where Γa

1,γµ, γ[µγν], γ[µγνγρ], γ[µγνγργω]ª

and Ma denote the expansion coeffi- cients. While all tensors can be separated into a symmetric and an antisymmetric part, it can be done more efficiently and easily in this particular basis.

The following relations hold:

Tr¡ γµ¢

=0 , Tr¡ γµγν¢

=4gµν, © γµ,γ5ª

=0 . (6)

a) Show that

γ5= − i

4!εµνρωγµγνγργω. (7)

b) Use Eqs. (6) and (7) to show that

γ[µγνγρ]= −iεµνρωγωγ5. (8)

1

(2)

c) An alternative basis isΓa

1,γµ, σµν, iγµγ5, γ5ª

. Just as the basis in Eq. (3), these matrices form an orthonormal basis with respect to the scalar product

〈Γab〉 ≡1 4Tr³

ΓaΓb´

. (9)

Prove that the aforementioned basis is indeed orthonormal, i.e. show that

〈Γab〉 =δab. (10) Hints:

εαβγδεαβγδ= −4! , (11)

εαβγµεαβγν= −6δµν, (12) εαβµνεαβρσ= −2³

δµρδνσ−δµσδνρ´

, (13)

ε0123= −ε0123= +1 . (14) In general, the following relation holds inn-dimensional Minkowski space:

εµ1...µmαm+1...αnεν1...νmαm+1...αn= −m!(nm)!δ[νµ11. . .δµνmm]. (15) Exercise 2: Lorentz transformations of spinors (6 Points) Left and right-handedWeyl spinorsφL/Rare two-component mathematical objects which are defined by their Lorentz transformation properties. They transform under a proper, orthochronous Lorentz transformationΛL+as

φL/R(x)→SL/R(Λ)φL/R¡ Λ−1x¢

. (16)

The transformationsSL/R(Λ) are functions of rotation angles~θand rapidities~η, which parametrize the Lorentz transformationsΛ=Λ³

~θ,~η´

. We can write SL/R(Λ)=exp

Ã

−i~θ·~σ 2 ∓~η·~σ

2

!

, (17)

whereσi denote the Pauli matrices which satisfy the anticommutator relation nσijo

=2δi j. (18)

Additional information/Context:

Dirac spinorsψare four-component objects and are composed by one left and one right- handed Weyl spinor:

ψ= µφL

φR

. (19)

The dependence of left and right-handed components of a particle are determined by the Dirac equation. Then, left and right-handed states can be obtained by applying the projection operator

PL/R=1 2

¡1∓γ5¢

(20) onto the Dirac spinors.

2

(3)

a) Show that the following equation holds for arbitrary~θand~η:

detSL/R(Λ)=1 . (21)

b) CalculateSL/R(Λ)in the case of a rotation along thez-axis, i.e.~θ=θz~ez and~η=~0. Furthermore, computeSL/R(Λ)forθz =2πandθz =4π. Compare your results to those of an analogous rotation of a vector inR3. What do you notice?

c) Show that the following equation holds for Lorentz boosts with~θ=0: SL/R(Λ)=exp

µ

∓~η·~σ 2

=1cosh µ|~η|

2

∓~σ·~η

|~η| sinh µ|~η|

2

. (22)

Afterwards, calculateSL/R(Λ)for a Lorentz boost from the rest frame into a refer- ence frame with momentump~.

Exercise 3: Dirac spinors (6 Points)

Solutions of the Dirac equation are defined as ψ+j(p)=uj(p) exp¡

−ipx¢

and ψj(p)= vj(p) exp¡

ip x¢

, withj=1, 2and Dirac spinors uj(p)= p/+m

p2(E+m) µξj

ξj

, vj(p)= −p/+m p2(E+m)

µξj

−ξj

, (23)

ξ1= µ1

0

, ξ2= µ0

1

. (24)

Show the following relations for spinors with four-momentum p, wherep2=m2 and p0=E>0:

a) u¯i(p)uj(p)=2mδi j, v¯i(p)vj(p)= −2mδi j ¡

normalization¢, b) u¯i(p)vj(p)=v¯i(p)uj(p)=0 ¡

orthogonality¢, c) Piui(p) ¯ui(p)=p/+m, P

ivi(p) ¯vi(p)=p/−m ¡

completeness¢, whereu¯=uγ0, /p=pµγµand

γ0= µ0 1

1 0

, γi=

µ 0 σi

−σi 0

, ³

σi´2

=1. (25)

3

Referenzen

ÄHNLICHE DOKUMENTE

(1.5) In order to formulate Wick’s theorem for fermionic fields, the time-ordered and normal- ordered product need to be generalized for fermions.. (1.6) The same is true for

(b) The most powerful tool to restrict new or additional terms is renormalization, which forbids all terms with mass dimension d > 4 in a quantum field theory in 3 + 1

Here, θ denotes the scattering angle in the center of mass frame of the incoming fermions... You can neglect the masses of

Exercise 1: Adjoint representation of SU (N ) (8 Points) The generators T a of the group SU (N ) are hermitian operators which construct all in- finitesimal group

(1.2) Φ abcd is the color factor of QCD, whereas M Dirac contains the Dirac structure of the matrix element.. these are the color indices

d) Write down the Klein-Gordon equation, Maxwell’s equations, and the Dirac equa- tion with their corresponding lagrangian densities in covariant notation. What is the

Exercise 1: Drell-Yan processes and New Physics (8 Points) Drell-Yan processes denote lepton production in high energy hadron collisions. For large momentum transfer perturbation

Einführung in die Elementarteilchentheorie Prof. Hiller Abgabe: bis Di.. The explicit solution of these equations is not part of this exercise.. d) Write down the Lagrangian after