• Keine Ergebnisse gefunden

Eigenvalues of the matrix H, CFL=0.48

N/A
N/A
Protected

Academic year: 2022

Aktie "Eigenvalues of the matrix H, CFL=0.48"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

two-dimensional wave equation system 1

M. Lukacova-Medvid'ova, 2

G. Warnecke 3

and Y. Zahaykah 3

Abstract

ThesubjectofthepaperistheanalysisofstabilityoftheevolutionGalerkin(EG)methods

forthetwo-dimensionalwaveequationsystem. WeapplyvonNeumannanalysisanduse

theFouriertransformationtoestimatethestabilitylimitsofboththerstandthesecond

order EGmethods.

Keywords: hyperbolicsystems, wave equation,evolutionGalerkinschemes, discreteFourier

transformation,amplicationmatrix,CFL condition.

1 Introduction

EvolutionGalerkin methods(EG-methods) were proposedto approximaterst order hyper-

bolicproblems. These schemes were introduced by Morton, see, e.g., [9 ] forscalar problems

and [10 ] for one-dimensional systems. The rst generalization to two-dimensional systems

was made in [11 ] by Ostkamp for the wave equation system as well for theEuler equations

ofgasdynamics. In [4 ]Lukacova, Mortonand Warneckesystematically studiedapproximate

evolution operators and constructed further EG-schemes with better accuracy and stability

properties. FurtherEGschemesaswellastheapproximateevolutionoperatorofthesolution

for thewave equationsystem inthreespace dimensionswere derived in[13 ]. These methods

or their nitevolume versions were applied to the nonlinearEuler equations, see [1 ], [6 ], as

wellasto thelinearizedEuler equationsand Maxwellequations [7 ]. Higherorder nite vol-

ume EG-methodshave beenintroduced andstudied in[3],[5 ],[6] and [8].

The main objective of this paper is the analysis of the stability of the evolution Galerkin

schemes. We derive a necessary and suÆcient stabilitycondition forthe evolution Galerkin

scheme (EG3 scheme) applied to the wave equation system in two space dimensions. The

discreteFouriertransformationisusedto obtaintheamplicationmatricesoftheseschemes.

Using estimates of thespectral norm we nda suÆcient stability condition. We derive am-

plication matrices for the rst and the second order nitevolume schemes (FVEG) based

on the approximate evolution operators. The spectral radius of the amplication matrices

is estimated experimentally by abuilt-in Matlab procedure. Hence the stabilitylimitof the

schemesisestimated also numerically.

The outline ofthispaperis asfollows: inthenext sectionwe surveythegeneral theorythat

1

ThisresearchwassupportedbytheVolkswagenStiftungAgency,bytheDeutscheForschungsgemeinschaft

GrantNo.Wa633/6-2andpartiallybytheEuropeannetworkHYKE,fundedbytheECascontractHPRN-

CT-2002-00282. Authorsgratefully acknowledgethesesupports.

2

TUHamburg-Harburg,ArbeitsbereichMathematik,Schwarzenbergstrasse95,21073Hamburg,Germany,

email: lukacova@tu-harburg.de

3

Institut fur Analysis und Numerik, Otto-von-Guericke-Universitat Magdeburg, Univer-

sitatsplatz 2, 39106 Magdeburg, Germany, emails: Gerald.Warnecke@mathematik.uni-magdeburg.de,

Yousef.Zahaykah@mathematik.uni-magdeburg.de

(2)

schemes. The exact integral equations as well as the approximate evolution operators for

thetwo-dimensionalwave equation systemare given inSection4. InSection 5we introduce

the discrete Fourier transformation as well as the spectral norm that serve as tools in our

analysis. In Section 6 we present the derivation of the suÆcient and necessary condition

and compare the theoretical limit, that we obtained by means of the Fourier analysis with

the experimental one. In Section 7 we consider the rst order nitevolume schemes based

on theapproximateevolution operatorE const

. We determinethe amplicationmatrices and

estimate theirstability limits. Finally inSection 8 we determine the amplication matrices

ofthesecondordernitevolumeschemesbasedontheapproximateevolutionoperatorE bil in

and estimate thestabilitylimits.

2 General theory

In this section we recall the exact integral equations for a general linear hyperbolicsystem

usingtheconcept ofbicharacteristics. Consider ageneral formof linearhyperbolicsystem

U

t +

d

X

k=1 A

k U

x

k

=0; x=(x

1

;:::;x

d )

T

2R d

; (2.1)

wherethecoeÆcientmatricesA

k

;k=1;:::;d areelementsofR pp

andthedependentvariables

are U=(u

1

;:::;u

p )

T

=U(x;t)2R p

. Let A(n)= P

d

k=1 n

k A

k

bethe pencil matrix,where

n = (n

1

;:::;n

d )

T

is a unit vector in R d

. Since the system (2.1) is hyperbolic the matrix

A(n) has p real eigenvalues

k

, k = 1;:::;p, and p corresponding linearlyindependent right

eigenvectorsr

k

=r

k

(n);k=1;:::;p. LetR=[r

1 jr

2 j:::jr

p

]bethematrixofrighteigenvectors.

WedenethecharacteristicvariableW =W (n)as@W (n)=R 1

@U. Sincethesystem(2.1)

has constant coeÆcient matrices A

k

we have W=R 1

U orU=RW .

Transformingsystem(2.1) bymultiplyingitwith R 1

from theleftweget

R 1

U

t +

d

X

k=1 R

1

A

k RR

1

U

x

k

=0: (2.2)

Let B

k

=R 1

A

k R =(b

k

ij )

p

i;j=1

,where k =1;2;:::;d, then thesystem (2.2) can berewritten

in thefollowingformusingcharacteristic variables

W

t +

d

X

k=1 B

k W

x

k

=0:

NowwedecomposeB

k

into thediagonalpartD

k

and therestpartB 0

k ,i.e.B

k

=D

k +B

0

k . We

obtain

W

t +

d

X

k=1 D

k W

x

k

= d

X

k=1 B

0

k W

x

k

=:S: (2.3)

The i-th bicharacteristiccorresponding to thei-th equation of(2.3) is denedby

dx

i

d

~

t

=b

ii

(n)=(b 1

ii

;b 2

ii

;:::;b d

ii )

T

;

(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . .

. . . . . . . .

. . . . .

. . . . . .

. . . . .

. . . .

. . . .

. . . .

. . .

. . .

. . .

. .

. .

. .

. .

. .

. .

. .

.

. .

. .

.

. .

..

. .

. ..

. .

. ..

...

. ..

....

....

. ...

. ....

. ...

...

...

. ...

. ...

. ...

... . ...

... ...

... ...

... . ... ... . .. . ... . .. ... . . . ... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. ...

. . . . . . . . . .

. . . . ... ... . .. .... ... . ... ... . .. ... . ...

. . . .. ... . . . .

. . . . . . . . . . . .

.

. .

. .

.

.

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

.

. .

..

. .

..

. .

..

.

. .

. .

..

. .

..

.

. .

..

. .

. .

.

..

. .

..

. .

..

. .

.

. .

. .

. .

..

. .

.

..

. .

..

. .

. .

. .

.

. .

..

. .

..

. .

..

.

. .

. .

. .

.

. .

..

. .

..

. .

..

.

. .

. .

..

. .

. .

. .

.

. .

. .

. .

. .

. .

. .

.

. .

..

. .

..

. .

.

. .

. .

. .

. .

.

. .

. .

. .

..

. .

. .

.

..

. .

. ... ... ...

. .... . .... .... . .... ...

... .... ...

... . .... . .... .... . .... ..

x y t

P 0

Q

i (n)

Figure 1: Bicharacteristics alongthe Mach conethroughP andQ

i

(n), d=2.

where i = 1;:::;p. The diagonal entries b k

ii

of the matrices B

k

, k = 1;:::;d, i = 1;:::;p,

create the so-called ray velocity vector b

ii

. We considerthe bicharacteristics backwards in

time and set the initial conditions x

i

(t+t;n) = x for all n 2 R d

and i = 1;:::;p, i.e.

x

i (

~

t ;n)=x b

ii

(n)(t+t

~

t).

We will integrate the i-th equation of the system (2.3) from the point P down to the point

Q

i

(n),where thebicharacteristic hitstheplane at timet, see Figure1. Note that bicharac-

teristicsarestraight lines because thesystem is linearhavingconstant coeÆcients. Nowthe

i-th equationreads

@w

i

@t +

d

X

k=1 b

k

ii

@w

i

@x

k

= 0

@ d

X

j=1;i6=j

b 1

ij

@w

j

@x

1 +b

2

ij

@w

j

@x

2

+:::+b d

ij

@w

j

@x

d

1

A

=S

i

; (2.4)

whereP (x;t+t)2 R p

R

+

is taken to be a xed point,while Q

i

(n)= (x

i

(n;t);t) =

(x tb

ii

;t). Takinga vector

i

=(b 1

ii

;b 2

ii

;:::;b d

ii

;1), we candene thedirectionalderivative

dw

i

d

i

=

@w

i

@x

1

;

@w

i

@x

2

;:::;

@w

i

@x

d

;

@w

i

@t

i

=

@w

i

@t +b

1

ii

@w

i

@x

1 +b

2

ii

@w

i

@x

2

+:::+b d

ii

@w

i

@x

d :

Hence thei-th equation (2.4) can berewritten asfollows

dw

i

d

i

=S

i

= d

X

j=1;i6=j

b 1

ij

@w

j

@x

1 +b

2

ij

@w

j

@x

2

+:::+b d

ij

@w

j

@x

d

:

Integration from P to Q

i

(n) gives

w

i

(P) w

i (Q

i

(n)) =S 0

i

; (2.5)

where

S 0

i

= Z

t+t

t S

i (x

i (

~

t ;n);

~

t ;n)d

~

t= Z

t

0 S

i (x

i

(;n);t+t ;n)d:

Reverse transformationof (2.5) into thesystem writteninoriginalphysicalvariablesisdone

by multiplication with R from the left and (d 1) dimensional integration of the variable

(4)

n over the unit sphereO in R . This leadsto the integral representation of the solutionat

pointat time t+t

U(P)=U(x;t+t)= 1

jOj Z

O R(n)

0

B

B

B

B

B

@ w

1 (Q

1 (n);n)

w

2 (Q

2 (n);n)

w

3 (Q

3 (n);n)

.

.

.

w

p (Q

p (n);n)

1

C

C

C

C

C

A dO+

~

S; (2.6)

where

~

S =(

~

S

1

;

~

S

2

;:::;

~

S

p )

T

= 1

jOj Z

O

R(n)S 0

dO= 1

jOj Z

O Z

t

0

R(n)S(t+t ;n)ddO

and jOjcorresponds to themeasure ofthedomain ofintegration.

3 Exact integral equations and approximate evolution opera-

tors for the wave equation system

Inthis section we illustratethe application of general theory of the bicharacteristics forthe

two-dimensionalsystemofwave equation. We recalltheexact integralequationsand present

their possible approximation, the so-called EG3 approximate evolution operator. Consider

thetwo dimensionalwave equationsystem

t +c(u

x +v

y

)= 0;

u

t +c

x

= 0;

v

t +c

y

= 0;

(3.1)

where c is a given constant representing the speed of sound. We will recall here the exact

integralequationsderivedin[4 ]. LetP =(x;y;t+t), P 0

=(x;y;t),Q=(x+ctcos;y+

ctsin;t)=(x+ctn();t)and theso-called sourcetermbe given as

S = c

u

x sin

2

(u

y +v

x

)sincos+v

y cos

2

; (3.2)

thenexact integralequations forthewave equation system(3.1) are given as

P

= 1

2 Z

2

0 (

Q u

Q

cos v

Q

sin)d+

~

S

1

; (3.3)

u

P

= 1

2 u

P 0

+ 1

2 Z

2

0 (

Q

cos+u

Q cos

2

+v

Q

sin cos)d+

~

S

2

; (3.4)

v

P

= 1

2 v

P 0

+ 1

2 Z

2

0 (

Q

sin+u

Q

cos sin+v

Q sin

2

d+

~

S

3

; (3.5)

(5)

~

S

1

= 1

2 Z

2

0 Z

4t

0

S(x+cn();t+t ;)d d;

~

S

2

= 1

2 Z

2

0 Z

4t

0

cosS(x+cn();t+t ;)d d

1

2 Z

2

0 Z

4t

0

c

x

(x;t+t )sin 2

c

y

(x;t+t )sincos

dd;

~

S

3

= 1

2 Z

2

0 Z

4t

0

sinS(x+cn();t+t ;)d d

1

2 Z

2

0 Z

t

0

c

y

(x;t+t )cos 2

c

x

(x;t+t )sincos

d d:

The above integral equations give us an implicit formulation of the solution at the point

P =(x;y;t n+1

). In order to obtainan explicitnumericalscheme itis necessary to use some

numerical quadratures in order to approximate the time integral from 0 to t. Using the

backwardrectangle ruleleadstoan O(t 2

) approximationof thetimeintegralsappearingin

~

S

1 ,

~

S

2 and

~

S

3

. Furtherwe usethefollowingresult [4 ,Lemma 2.1]

t Z

2

0

S(t;)d = Z

2

0

(ucos+vsin)d;

t Z

2

0

S(t;)cosd = Z

2

0

(ucos2+vsin2)d;

t Z

2

0

S(t;)sind = Z

2

0

(usin2+vcos2)d: (3.6)

Note that these formulaeallow to replace thederivatives ofour dependent variablesinS by

the variablesthemselves. Rectangle rule approximation forthe timeintegraland (3.6) yield

the so-called EG3 approximate evolution operator. We refer a reader to [4 ], [13] for other

approximateevolution operatorsEG1-EG4.

Approximate evolution operator for EG3

P

= 1

2 Z

2

0 (

Q 2u

Q

cos 2v

Q

sin)d+O(t 2

) (3.7)

u

P

= 1

2 u

P 0

+ 1

2 Z

2

0

( 2

Q

cos+(3cos 2

1)u

Q cos

2

+3v

Q

sincos)d+O(t 2

)(3.8)

v

P

= 1

2 v

P 0

+ 1

2 Z

2

0

( 2

Q

sin+3u

Q

sincos+(3sin 2

1)v

Q sin

2

)d+O(t 2

):(3.9)

(6)

Inthissection we describethe evolution Galerkinschemesinthe nitedierenceframework

as well as the nite volume evolution Galerkin schemes. The main idea of the evolution

Galerkinschemesisthefollowing. Transportedquantitiesareshiftedalongthebicharacteris-

ticsandthenprojectedonto aniteelementspace. Thesemethodsconnect theniteelement

ideaswith the theory of bicharacteristics. In the nite volume framework the approximate

operators are used only in order to compute uxes on cell interfaces. Thus, instead of the

one-dimensionalRiemann solvers,whichwork onlyinthenormal directionsto thecellinter-

faces,wecomputetheapproximatesolutionatcellinterfacesbyamulti-dimensionalevolution

operator. Thiscan be consideredasa predictorstep. In thecorrectorstep thenitevolume

update ismade.

ConsiderameshinR 2

,whichconsists ofthesquare meshcells

kl

=

(k 1

2

)h;(k+ 1

2 )h

(l 1

2

)h;(l+ 1

2 )h

=

x

k h

2

;x

k +

h

2

y

l h

2

;y

l +

h

2

;

where,h>0isthemeshsizeparameter,k;l2Z. LetusdenotebyH

(R 2

)theSobolevspace

of distributionswith derivatives up to the order in L 2

space, where 2 N. Consider the

generalhyperbolicsystemgivenbytheequation(2.1). LetusdenotebyE(s):(H

(R 2

)) p

!

(H

(R 2

)) p

the exact evolution operatorforthesystem(2.1), i.e.

U(:;t+s)=E(s)U(:;t): (4.1)

We suppose that S m

h

is a nite element space consisting of piecewise polynomials of order

m 0 with respect to the square mesh. Assume a constant time step, i.e. t

n

= nt. Let

U n

be an approximation in thespace S m

h

to the exact solutionU(:;t

n

) at time t

n

0. We

consider E

:(L

1

l oc (R

2

)) p

! (H

(R 2

)) p

to be a suitable approximate evolution operator for

E(). In practice we willuse restrictionsofE

to thesubspace S m

h

form 0. Then we can

dene thegeneralclass ofevolutionGalerkinmethods.

Denition 4.2 StartingfromsomeinitialdataU 0

2S m

h

attimet=0,anevolutionGalerkin

method (EG-method) is recursively dened by means of

U n+1

=P

h E

U

n

; (4.3)

where P

h

is the L 2

projection givenby the integral averages in the following way

P

h U

n

j

k l

= 1

j

kl j

Z

k l

U(x;y;t

n

)d xd y: (4.4)

We denote byR

h :S

m

h

!S r

h

a recovery operator, r >m 0 and considerour approximate

evolutionoperatorE

onS

r

h

. Inthispaperwewilllimitourconsiderationsto thecaseswhere

m = 0. In this case the integrals that we obtained from the projectionare evaluated either

exactly using the factthat the approximate values U n

are piecewiseconstants or bymeans

of some numericalquadratures. Usingpiecewiseconstantstheresultingschemes willonlybe

of rst order, even when E

is approximated to a higher order. Higher order accuracy can

be obtainedeitherbytakingm>0, orbyinsertinga recovery stage R

h

beforetheevolution

step inequation (4.3) to give

U n+1

=P

h E

R

h U

n

: (4.5)

(7)

This approach seemed to be hardly feasible for eective derivation and implementation of

higher order methods. A simplicationthatwe usedwastheapplication of themultidimen-

sionalevolutiononlyonthecellinterfaces. Thisleadsto thenitevolumeevolutionGalerkin

methods.

Denition 4.6 StartingfromsomeinitialdataU 0

2S m

h

,thenitevolumeevolutionGalerkin

method (FVEG) isrecursively dened by means of

U n+1

=U n

1

h Z

t

0 2

X

j=1 Æ

x

j f

j (

~

U n+

t

)d; (4.7)

where Æ

x

j f

j (

~

U n+

t

) represents an approximation to the edge uxdierenceand Æ

x

is dened

by Æ

x

v(x) = v(x+ h

2

) v(x h

2

). The cell boundary value

~

U n+

t

is evolved using the

approximate evolution operator E

tot

n

+ and averaged a long the cell boundary, i.e.

~

U n+

t

= X

k;l 2Z

1

j@

kl j

Z

@

k l E

R

h U

n

dS

kl

; (4.8)

where

kl

is the characteristic functionof @

kl .

Formore detailson the higher order nitevolume evolution Galerkin (FVEG) schemes, see

[1 ], [6], [8], where the error analysis aswell as numerical experiments are presented. Using

the L 2

-projection (4.4), the approximate evolution operator E

, and (4.7), (4.8) the nite

dierence formulaeforboththeEGand theFVEG schemescan bewritten intheform

U n+1

kl

=U n

kl +

1

X

r=1 1

X

s= 1 C

rs U

n

k+rl +s

; (4.9)

where

C

rs

= 0

@

1

rs

1

rs

1

rs

2

rs

2

rs

2

rs

3

rs

3

rs

3

rs 1

A

: (4.10)

Heretheentries m

rs

; m

rs

; m

rs

,m=1;2;3aretakenappropriatelyaccordingtotheapproximate

evolutionoperatorE

used. IntheAppendixthestencilmatrices m

; m

and m

,m=1;2;3

arewrittenforsome EG schemes.

5 Basic tools

Aswe mentioned above ourstability considerations are based on Fourier analysis. We rst

recall some basicconcepts. Letf n

kl g

1

k;l = 1

bea two dimensionalsequence in`

2 .

Denition 5.1 The discrete Fourier transformation of f n

kl g 2 `

2

is the function

^n

2

L

2

h

;

h

2

dened by

^ n

=h 2

1

X

k= 1 1

X

l = 1 n

kl exp

ih(k+l )

:

(8)

andParseval'sequality.

Lemma5.2 (Inverse formula) If f n

kl g 2`

2 and

^n

is the discrete Fourier transformation

of f n

kl g, then

n

kl

= 1

4 2

Z

h

h Z

h

h

^ n

exp

ih(k+l )

dd:

Lemma 5.3 (Parseval'sequality)Iff n

kl g2`

2 and

^n

isthediscreteFouriertransformation

of f n

kl g, then

jj

^ n

jj=jj n

kl jj;

wheretherstnormistheL

2

-normon

h

;

h

h

;

h

andthesecondnormisthe`

2 -norm.

Hencewe have thefollowingresult.

Lemma5.4 Thesequencef n

kl

gisboundedin `

2

ifandonlyifthe sequencef

^ n

g isbounded

in L

2

h

;

h

h

;

h

.

Inorderto studythestabilityoflinearnumericalschemestheFouriertransformationisused.

Thisleadstothe estimationof thespectralradiusof theso-calledamplicationmatrix. The

spectralradiusof asquare complexmatrixA witheigenvalues

i

isdened to be

(A)=max

i j

i

j: (5.5)

Thespectral normof thematrixA isdened as

jjAjj=sup

x6=0 jjAxjj

jjxjj

: (5.6)

The norms on the right handside of equation (5.6) are the Euclideannorms of the vectors

Ax and x, respectively. Notethat forthe spectralnorm, asforanymatrixnorm, we always

have jjAjj(A).

6 Estimate of the stability limit

In [4 , Lemma 5.1] Lukacova et al. proved the following stability result forthe EG-schemes.

Thereexists

max

<1suchthattheEGschemesforthetwo-dimensionalwaveequationsystem

(3.1) are stable forany such that 0

max

, where =c t

h

is the CFLnumber. The

goal ofthissectionisto estimate precisely

max

fortheEG3 scheme. Analogouscalculations

can be donealso for other EG-schemes of type EG1-EG4 as wellas forthe FVEGschemes.

We applythediscreteFourier transformationon bothsidesofequation (4.9).

^

U n+1

=

^

U n

+h 2

1

X

k= 1 1

X

l = 1 1

X

r= 1 1

X

s= 1 C

rs U

n

k+rl +s

!

exp

ih(k+l )

: (6.1)

(9)

Bymaking thechangeof variablesk =k+r and l =l+swe get

h 2

1

X

k= 1 1

X

l = 1 1

X

r= 1 1

X

s= 1 C

rs U

n

k+rl +s

!

exp

ih(k+l )

= 1

X

r= 1 1

X

s= 1 C

rs exp

ih(r+s)

h 2

1

X

k 0

= 1 1

X

l 0

= 1 U

n

k 0

l 0

exp ih(k

0

+l 0

)

!

= 1

X

r= 1 1

X

s= 1 C

rs exp

ih(r+s)

^

U n

(6.2)

Thususingthisexpressionintheequation (6.1) we get

^

U n+1

= I+ 1

X

r= 1 1

X

s= 1 C

rs exp

ih(r+s)

!

^

U n

; (6.3)

whereI is theidentitymatrix. The coeÆcient of

^

U n

intheequation (6.3),

T(;) =I+ 1

X

r= 1 1

X

s= 1 C

rs exp

ih(r+s)

; (6.4)

is called theamplication matrix of the nite dierencescheme (4.9). Applying recursively

theresultof equation (6.3) n+1times yields

^

U n+1

= I+ 1

X

r= 1 1

X

s= 1 C

rs exp

ih(r+s)

!

n+1

^

U 0

=T n+1

(;)

^

U 0

: (6.5)

Wenote thatifjjT(;)jj1 then jj^

u n+1

jj jj^

u 0

jj,whichmeansthatthe f^

u n

g isL 2

-stable.

ConsidertheEG3 scheme,i.e.thenumericalscheme basedonequations(3.7) -(3.9), cf. also

stencilmatrices in the Appendix. After some calculation we obtain the following entries of

theamplicationmatrixT(;)

T

11

(;) = 1+

2

4

+

2

cos (h)cos(h)+

2

2

(cos (h)+cos (h));

T

12

(;) = i

4 2

3

sin(h)cos(h)+

4

2

3

sin(h)

;

T

13

(;) = i

4 2

3

cos (h)sin(h)+

4

2

3

sin(h)

;

T

22

(;) = 1 2

+

2

2 +

2

2

cos (h)cos(h)+

2

2

2

cos (h)

2

2

cos (h);

T

23

(;) = 3

2

8

sin(h)sin(h);

T

33

(;) = 1 2

+

2

2 +

2

2

cos (h)cos(h)+

2

2

2

cos (h)

2

2

cos (h);

T

21

(;) = T

12

(;); T

31

(;)=T

13

(;); T

32

(;)=T

23 (;):

(10)

Using the substitutions S

= sin(h), s

= sin(

2 ), S

= sin(h) and s

= sin(

2 ) the

amplicationmatrixT =T(;) can bewrittenas

T = 0

@ C

11

iC

iC

iC

C

22

2

C

iC

2

C

C

33 1

A

;

where

C

11

= 1 4

(s

2

+s

2

)+

4 2

s

2

s

2

;

C

= S

(1

8

3 s

2

);

C

= S

(1

8

3 s

2

);

C

= 3

8 S

S

;

C

22

= 1 4

s

2

+

2 2

s

2

s

2

;

C

33

= 1 4

s

2

+

2 2

s

2

s

2

:

SetE = 0

@

i 0 0

0 1 0

0 0 1 1

A

; then Q = 0

@ C

11

C

C

C

C

22

2

C

C

2

C

C

33 1

A

= E 1

TE; which means that

T andQ aresimilarmatricesandthustheyhavethesameeigenvalues. Moreover, thematrix

Q can be decomposedas

Q=I ( D+C)+ 2

~

C;

where

D =

0

@

d+f 0 0

0 d 0

0 0 f

1

A

; C= 0

@

0 C

C

C

0 0

C

0 0

1

A

;

~

C= 0

@

0 0 0

0 0 C

0 C

0

1

A

;

d = 4

s

2

2

s

2

s

2

= 2

s

2

(2 s 2

); f = 4

s

2

2

s

2

s

2

= 2

s

2

(2 s 2

):

Since

jjQ (I (D+C))jj 2

jC

j

3 2

8

=O(

2

): (6.6)

we can approximate the eigenvaluesof Q bythe eigenvalues of H =I (D+C) with the

O(

2

) error. Note that for all [;] 2 [

h

;

h ][

h

;

h

] the entries of H are bounded. To

estimate thestability limitof the EG3 scheme we needto estimate spectral radius of Q for

all choices of , and ,0 1. Since 0s 2

1 and 0s 2

1 and 1 thend 0

andf 0. Nowthematrices D,C arereal and C isantisymmetricaswell. HenceD+C has

eitherthree real eigenvaluesorone real eigenvalueand two complexconjugate eigenvalues.

Considerareal eigenvalue,say=

r

. Letv=(v

1

;v

2

;v

3

) bethecorresponding eigenvector,

thenv T

(D+C)v=v T

r

v . Since C isantisymmetricthen v T

Cv=0. Hence we get

(d+f

r )v

2

1

+(d

r )v

2

2

+(f

r )v

2

3

=0: (6.7)

(11)

0min(d;f)

r

d+f: (6.8)

Let

r

be a real eigenvalue of H then

r

= 1

r

. Hence j

r

j 1 is equivalent to 1

1

r

1. Usinginequality(6.8) we get

1 4

s

2

+s

2

+ 4

2

s

2

s

2

1

r 1:

To getj

r

j1weneed

1 4

s

2

+s

2

+ 4

2

s

2

s

2

1:

The lastinequalityreads

2

4

s

2

s

2

4

s

2

+s

2

+20: (6.9)

Now, wewant to bound suchthat 2 4

s 2

+s

2

0. Henceinequality(6.9) yields

2

4

s

2

s

2

4

s

2

+s

2

+2 2 4

s

2

+s

2

2

8

0:

The lastinequalitygives

4

0:7854: (6.10)

Now let usassumethat

c

isa complexeigenvalue ofH . Then

c

=1

c

,where

c is a

complexeigenvalue ofthe matrixD+C. This implies

j

c j

2

=1 2R e(

c )+

2

j

c j

2

:

Thusj

c j

2

1 isequivalent to 2

j

c j

2

2R e(

c

)0. Supposethat

r

>0then

2

r j

c j

2

2

r R e(

c

)0: (6.11)

Letb=C

andc=C

. It is wellknown that

det(D+C) = d 2

f+f 2

d+b 2

f+c 2

d=

r j

c j

2

;

Tr(D+C) = 2(d+f)=

r +

c +

c

=

r

+2R e(

c );

Henceinequality(6.11) reads

p(

r )=

2

r

2(d+f)

r +(d

2

f +f 2

d+b 2

f +c 2

d)0: (6.12)

Thediscriminantof p gives

2

=4(d+f) 2

4(d 2

f+f 2

d+b 2

f+c 2

d)=4(d 2

+f 2

)+8fd 4(d 2

f+f 2

d+b 2

f +c 2

d):

(12)

8fd 4(d 2

f+f 2

d+b 2

f +c 2

d)0;

whichleadsto 2

4(d 2

+f 2

)0 and we obtain

8fd= 32

2

s 2

s

2

(2 s 2

)(2 s 2

) =

32

2

s 2

s

2

(4 2(s 2

+s

2

)+

2

s 2

s

2

)

32

2

s 2

s

2

(4 2(s 2

+s

2

)):

Hence,

8fd 32

2

s 2

s

2

(4 4)= 128

2

s 2

s

2

(1 ): (6.13)

Furtherwe have

d 2

f = 8

3

s 2

s

2

(2 s 2

)

2

(2 s 2

)

64

3

s 2

s

2

64

3

;

b 2

f = S

2

(1

8 2

3 s

2

)

2 2

s

2

(2 s 2

)

4

S

2

s

2

4

:

Analogously,we obtain

f 2

d 64

3

and c

2

d 4

:

Therefore,

4(d 2

f+f 2

d+b 2

f+c 2

d) 4

128+8 2

3

: (6.14)

Putting inequalities(6.13) and (6.14) together we get

8df 4(d 2

f+f 2

d+b 2

f +c 2

d)

128

2

s 2

s

2

(1 ) 4

128+8 2

3

= 128

2

s 2

s

2

128

2

s 2

s

2

+4

128+8 2

3

0:

Thelastinequalityimplies

128

2

s 2

s

2

4

128+8 2

3

+ 128

2

s 2

s

2

128

2

4

128+8 2

3

+ 128

2

s 2

s

2

:

Since

4

128+8 2

3

+ 128

2

s 2

s

2

4

128+8 2

3

we thenhave

1

4

128+8 2

3

+ 128

2

s 2

s

2

1

4

128+8 2

3

:

Thereforewe get

128

2

4(128+8 2

)

3

=

32

128+8 2

0:4858: (6.15)

Thus we have obtained a suÆcient condition on for 2

0. For 0:4858 we have

2

4(d 2

+f 2

)0.

(13)

Now=0correspondstod +f =0,whichimpliesthat

r

=0,cf. (6.8). Sinceweassume

r

>0then p(

r

)has two distinctrealrootsr

1 and r

2

,where

r

1

=(d+f)

2

; r

2

=(d+f)+

2 :

Inequality(6.8) gives

r r

2

. To show that

r r

1

note thatfrom 4(d 2

+f 2

) we have

r

1

(d+f) p

d 2

+f 2

. Furthermore p

d 2

+f 2

max (d;f). Therefore

r

1

(d+f) p

d 2

+f 2

(d+f) max (d;f)=min(d;f)

r :

Hence

r 2[r

1

;r

2

]. Thisimpliesthatp(

r

)0,what wewantedto show, cf. (6.12).

Now considerthe case

r

= 0, then either d =0 or f = 0. Suppose d = 2

s

2

(2 s 2

) = 0

thens

=0 and

D+C= 0

@ 4

s

2

0 S

0 0 0

S

0

4

s

2

1

A

:

The eigenvaluesofD+C are0;

4

s

2

iS

. Now j

c j

2

=j1

c j

2

1 gives

1

4

s

2

+iS

1

4

s

2

iS

=

1 4

s

2

2

+ 2

S 2

!

= 1 8

s

2

+

16 2

2

s 4

+

2

S 2

1:

Thisleadsto

8

s

2

+

16

2

s 4

+S

2

0:

Supposes

6=0,otherwise kH k=1 forany ,thenwe have

8

+

16

2

+

S

s

2

!

0;

16

2

+

S

s

2

!

8

:

Now thelastinequalityyields

8

16

2

+

S

s

2

2

1:5708: (6.16)

Finallyinequalities(6.10), (6.15) and (6.16) implythat if

32

128+8 2

0:4858; (6.17)

thenthespectralradius ofthe matrixHis lessthanorequalto 1.

(14)

stability limit of the scheme EG3

0

32

128+8 2

0:4858

isless than or equal to 3

8

32

128+8 2

2

0:0885.

Hence we have proved thefollowingresult.

Lemma 6.18 Consider the evolution Galerkin scheme EG3. Then, this scheme is stable if

0

max

=

32

128+8 2

0:4858. Theerror corresponding to this estimation is less than

or equal to 3

8

32

128+8 2

2

0:0885.

Remark 6.19 In the next table we have estimated the stability limit of the scheme EG3

using the standard MATLAB procedure for the eigenvalues of the matrix T. Note that the

upper boundof ourtheoretical result, i.e.0.4858+0.0885=0.5743, matches very well with the

experimental stability 0.58.

ct

h

;

(T(;))forEG3

0.10 1.00000000000000 0

0.20 1.00000000000000 0

0.30 1.00000000000000 0

0.40 1.00000000000000 0

0.50 1.00000000000000 0

0.58 1.00000000000000 0

0.59 1.00000324446152 1

0.60 1.00011223611144 8

0.70 1.00847404969631 9

Table1: Stabilitylimitusing

;

(T(;)).

In Figure 2 left we plot the eigenvalues of the matrix H as well as the unit circle. Similar

plotwithdierentscaleis showninFigure2 right. Withthissimulationwe illustratethatit

ispossibleto includeall eigenvalues, possiblyexcept the eigenvalue 1, inside theunit circle.

Since the entries of the of the matrix H are bounded, the condition stated in (6.17) is a

necessary and suÆcient stabilitycondition, see Richtmyer and Morton [12]. In Figure 3 we

showa sequence ofplots, withdierent scales,ofthe eigenvaluesof theamplicationmatrix

correspondingto therstorderEG3 scheme. Againusingsimilarargumentweconcludethat

thescheme isstableto CFL=0.58.

7 Approximate evolution operator E

const

for piecewise con-

stant data

In[2 ]Lukacova,MortonandWarneckeproposednewapproximateevolutionoperatorsE const

undE bil in

forthe two-dimensionalwave equation systemand for theEuler equationsof gas

(15)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues of the matrix H, CFL=0.48

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

0.2 0.25 0.3 0.35 0.4

Eigenvalues of the matrix H, CFL=0.48

Figure2: Eigenvaluesofthe matrixH ,CFL=0.48.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

EG3 scheme, CFL=0.55

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

EG3 scheme, CFL=0.55

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

EG3 scheme, CFL=0.58

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 1.005

0.1 0.15 0.2 0.25

EG3 scheme, CFL=0.58

Figure 3: Eigenvalues of theamplication matrix of the rst order EG3 scheme, CFL=0.55

(top),CFL=0.58 (bottom).

(16)

improvethestabilityoftheFVEG-schemesconsiderably. Wewillshowthatforspecialchoices

of discretization techniques stability limits close to the natural limit of 1 can be achieved.

Numerical experiments, presented in [2], for these FVEG schemes conrm high accuracy

as well as good multidimensional behaviour of new FVEG schemes. The key idea of the

development of these new operators was to exploit the fact that the exact explicitsolution

to the one-dimensional wave equation system is available. Our new approximate operators

are constructedinsucha waythat thisexact solutionis reproducedexactlyfora given one-

dimensional data. Thus, the approximate evolution operator E const

calculates exactly any

one-dimensionalwave,whichisrepresentedbyapiecewiseconstantdataandpropagateseither

in x or y direction. Analogous situation holdsfor theoperator E bil in

and approximated

waves by means of continuous piecewisebilinear data. The approximate evolution operator

E const

for piecewiseconstant datareads,cf. [2 ]

P

= 1

2 Z

2

0 (

Q u

Q

sgncos v

Q

sgnsin)d; (7.1)

u

P

= 1

2 Z

2

0

Q

sgncos+u

Q

1

2 +cos

2

+v

Q

sincos

d; (7.2)

v

P

= 1

2 Z

2

0

Q

sgnsin+u

Q

sincos+v

Q

1

2 +sin

2

d: (7.3)

Integrationsfrom0to2 aroundthesoniccircle in(7.1)- (7.3)areevaluatedexactly. Inthis

way all innitelymanydirections of wave propagation are taken into account explicitly. For

thecellinterfaceintegration along@in(4.8)wehavetwo possibilities. Theseedgeintegrals

can either be computed exactly or numerically. Exact cell interface integration yields, e.g.

fortheverticaledge, thefollowingintermediate values

~

n+

1

2

edge

=

1+

2 Æ

2

y

x

n

1

2 +

4 Æ

2

y

Æ 2

x U

n

x

y Æ

y V

n

;

~

U n+

1

2

edge

=

1

2 +

4 Æ

2

y

Æ

x

n

+

1+ 5

12 Æ

2

y

2

x U

n

+

6 Æ

x

y Æ

y V

n

; (7.4)

where

x f(x)=

1

2

f x+ h

2

+f x h

2

; Æ 2

x

f(x)=f(x+h) 2f(x)+f(x h):

The stencilmatricesofthisFVEGscheme aregiven intheAppendix. Anotherpossibilityto

evaluatethecellinterfaceintegrals isto usesome numerical quadrature. Inthisway,further

simplication in the evaluation of integrals can be made. Instead of the two-dimensional

integrals along thecell interfaces and around the sonic circle, onlythe sonic circle integrals

needto beevaluatedexactly. Inourexperimentswe usedthetrapezoidalruleand Simpson's

ruleforthe cellinterfaceintegration. Thus, we needto determine

~

U n+

1

2

~

n+

1

2

vertex

=

x

y

n 1

2

y Æ

x U

n 1

2

x Æ

y V

n

;

~

U n+

1

2

vertex

= 1

2

y Æ

x

n

+

x

y U

n

+ 1

4 Æ

x Æ

y V

n

;

~

n+

1

2

midpoint

=

x

n 1

2 Æ

x U

n

;

~

U n+

1

2

midpoint

= 1

2 Æ

x

n

+

x U

n

: (7.5)

(17)

forthecellinterfaceare given inthe Appendixaswell.

Analogous to theSection 6, we can show that the amplicationmatrix T of the rst order

FVEGscheme withexact edge integrals issimilarto thematrix

Q=I ( D+C)+ 2

~

C;

wherethematrixD isdened asbefore with

d=2s 2

1 2

s

2

; f =2s 2

1 2

s

2

:

Thematrices C and

~

C aregiven as

C= 0

@

0 C

C

C

0 0

C

0 0

1

A

;

~

C= 0

@ 0

1

S

1

S

0 0 C

0 C

0

1

A

;

where

C

=S

1 2

s

2

; C

=S

1 2

s

2

;

C

= 1

S

S

:

Since the matrix C is symmetric it is now not possible to carry out the analysis similarto

theSection 6 inorder to estimatethe stabilitylimit. Instead we use a MATLABprocedure

to estimate the stability limit. The results are given in Table 2. In Column 2 we present

the stabilitylimit of the rst order FVEG scheme with exact edge integrals. The stability

limitof this scheme is improved considerably, thescheme is stable approximatelyup to the

CFL=0.89. Column3demonstratesthattherstorderschemebasedonthetrapezoidalrule

isstableto thenaturalstabilitylimit1. Column4 shows that thestabilityofthe rst order

scheme based on Simpson's ruleis also increased, the scheme is stable approximately up to

theCFL=0.75.

ct

h

Exact Trapezoidal Simpson

0.70 1.0000000000 1.0000000000 1.0000000000

0.75 1.0000000000 1.0000000000 1.0000000000

0.76 1.0000000000 1.0000000000 1.0206666667

0.80 1.0000000000 1.0000000000

0.89 1.0000000000 1.0000000000

0.90 1.0007993640 1.0000000000

1.00 1.0000000000

1.01 1.0200000000

Table 2: Stabilitylimitusing

;

(T(;))

In Figures 4 and 5 we plot, using dierent scales, the eigenvalues of the amplication ma-

trices corresponding to the rst order FVEG schemes based on the operator (7.1) - (7.3).

(18)

bottom the trapezoidal rule was used to approximate the interface integrals. Analogous to

theprevioussection,itis possibleto encircleall eigenvalues,with exceptionof 1,intheunit

circle. Since the entries of the amplication matrices are bounded the estimated stability

limitsarenecessaryconditionsand suÆcientaswell. InFigure 5we have plottedeigenvalues

ofthe amplicationmatrix ofthe FVEG3 scheme withSimpson's ruleapproximation of the

cellinterfaceintegrations.

8 Approximate evolution operator E bilin

for piecewise bilinear

data

Inthissectionweinvestigatethestabilityofthesecondordernitevolumeschemesproposed

by Lukacova et al. in [2]. These schemes are based on theapproximate evolution operator

E bil in

,which isgiven as

P

=

1

2

0

P +

1

2 Z

2

0

2

Q

2cosu

Q

2sinv

Q

d+O(t 2

); (8.1)

u

P

=

1

4

u 0

P +

1

2 Z

2

0

2cos

Q +

2 3cos

2

1

u

Q +

3

2

sincosv

Q

d (8.2)

+O(t 2

);

v

P

=

1

4

v 0

P +

1

2 Z

2

0

2sin

Q +

3

2

sincosu

Q +

2 3sin

2

1

v

Q

d (8.3)

+O(t 2

):

Analogous to E const

,thisapproximateevolution operatorisdesigned such thatit computes

any one-dimensional linear plane wave propagating in x or y directionexactly, for more

detailssee[2 ]. Inorder to obtainsecond ordernitevolumeschemeswe carryouta recovery

stage before applyingthe approximate evolution operator, see Denition 4.6. The following

twotypesofbilinearrecoveries havebeenconsideredin[2 ]

R C

h U

k l

=

2

x

2

y +

x x

k

h

x

2

y Æ

x +

y y

l

h

2

x

y Æ

y +

(x x

k )(y y

l )

h

x

y Æ

x Æ

y

U

k l

;(8.4)

R D

h U

k l

=

1+ x x

k

h

x

2

y Æ

x +

y y

l

h

2

x

y Æ

y +

(x x

k )(y y

l )

h

x

y Æ

x Æ

y

U

k l

: (8.5)

Note, that the recovery (8.4) is continuous while the recovery (8.5) is discontinuous and

conservative. We use the midpoint rule to approximate the time integral in the equation

(4.7). Denoting the cellinterfaceintermediate value, that iscomputed in thepredictor step

(4.8),byU n+

1

2

wecan obtainthefollowingschemes

schemeA U

n+

1

2

= E

bil in

R

C

h U

n

+E const

(1

2

x

2

y )U

n

;

scheme B U

n+

1

2

= E

bil in

R

C

h U

n

;

scheme C U

n+

1

2

= E

bil in

R

D

h U

n

:

Each of these schemes hasfurthertwo types according to theevaluation of thecellinterface

integrals. We used thesubscripts 1,2 to distinguishbetween them. Thus, 1 correspondsto

(19)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: FVEG scheme based on operator (7.1−7.3), exact interface integrals,CFL=0.89

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.1 0.15 0.2 0.25 0.3

Eigenvalues: FVEG scheme based on operator (7.1−7.3), exact interface integrals,CFL=0.89

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: FVEG scheme based on operator (7.1−7.2), trapezoidal rule, CFL=0.9

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Eigenvalues: FVEG scheme based on operator (7.1−7.2), trapezoidal rule, CFL=0.9

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: FVEG scheme based on operator (7.1−7.3), trapezoidal rule, CFL=0.95

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: FVEG scheme based on operator (7.1−7.3), trapezoidal rule, CFL=1.0

Figure 4: Eigenvalues of the amplication matrices: top: exact interface integration

(CFL=0.89),middleand bottom: interfaceintegralsapproximatedusingthetrapezoidalrule

fortheCFL=0.9,0.95, 1.0.

(20)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: FVEG scheme based on operator (7.1−7.3), Simpson’s rule, CFL=0.70

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02

0.1 0.15 0.2 0.25 0.3

Eigenvalues: FVEG scheme based on operator (7.1−7.3), Simpson’s rule, CFL=0.70

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1

1.5 Eigenvalues: FVEG schemebased on operator (7.1−7.3), Simpson’s rule, CFL=0.75

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

0.05 0.1 0.15 0.2 0.25 0.3

Eigenvalues: FVEG schemebased on operator (7.1−7.3), Simpson’s rule, CFL=0.75

Figure 5: Eigenvalues of the amplication matrix, interface integrals approximated using

Simpson'srule,CFL=0.7 (top), CFL=0.75 (bottom).

(21)

2

valuesalong theright cellinterfaceare

~

n+

1

2

=

1+

32 +

16

Æ 2

x

2

y +

32 +

16

Æ 2

y

2

x +

32

8 +

2

32

Æ 2

x Æ

2

y

x

y

n

+

2

+

1

2

8

2

x

2

y +

1

8

16

Æ 2

y

2

x +

1

2 +

8 +

4

2

6

2

x Æ

2

y

Æ

x

y U

n

+

2

+

1

8

16

Æ 2

x

2

y +

1

2

8

2

x

2

y +

1

2 +

8 +

4

2

6

2

y Æ

2

x

Æ

y

x V

n

~

U n+

1

2

=

2

+

1

2

8

2

x

2

y +

1

8

16

Æ 2

y

2

x +

1

2 +

8 +

4

2

6

2

x Æ

2

y

Æ

x

y

n

+

1+

64 +

16

Æ 2

x

2

y

64 Æ

2

y

2

x +

64

16 +

2

64

Æ 2

x Æ

2

y

x

y U

n

+

1

8 +

1

16

8 +

2

64

2

x

2

y

x Æ

y V

n

withtheequationfor

~

V n+

1

2

thatisanalogoustothatof

~

U n+

1

2

:Further,wecanexpressanalo-

gously thepredictedvaluesforothercellinterfacesaswellasforotherschemes. Substituting

thepredictedvaluesinthecorrectorstep(4.7)yieldsforallsecondordernitevolumeschemes

FVEG-A, B, C

U n+1

kl

= U

n

kl +

1

X

r= 1 1

X

s= 1 C

rs U

n

k+rl +s +C

x

rs U

n

x

k +rl+s +C

y

rs U

n

y

k +rl+s +C

xy

rs U

n

xy

k +rl+s

;

(8.6)

whereC x

rs ,C

y

rs andC

xy

rs

arethecoeÆcientmatricescorrespondingtotheapproximationofx ,

y ,and xy slopes. Moreover,

U n

x

k +rl+s

=

x

2

y Æ

x U

n

k+rl +s

; U n

y

k +rl+s

= 2

x

y Æ

y U

n

k+rl +s

; U n

xy

k +rl+s

=

x

y Æ

x Æ

y U

n

k+rl +s :

Applyingthevon Neumannanalysisand theFouriertransformationwederivetheamplica-

tionmatrices T:It shouldbepointedoutthattheir structureistoo complicated in orderto

applythesimilarestimatesofthespectralradiusaswedidinSection6fortherstorderEG3

scheme. Anyway,wecan usethestandardMATLABprocedure to determinetheeigenvalues

ofT:This yieldsthestabilitylimitsgiven inTable 3.

InFigures6and7weplot,usingdierentscales,theeigenvaluesoftheamplicationmatrices

corresponding to the second order FVEG schemes; scheme A

i , B

i

and C

i

, where i = 1;2.

Similar to the previous cases, these plots indicate that all eigenvalues, possibly except of

1, can be bounded inside the unit circle. Thus the stability limits which we obtained are

necessaryaswellassuÆcient conditions.

Further,it followsfrom Figure6 thatthesecond order FVEGscheme based onthe operator

(8.1) - (8.3) with the continuous non-conservative recovery (8.4) using Simpson's rule to

approximate the cell interface integrals, i.e. scheme B

1

, is unconditionally unstable. This

(22)

scheme A 0.94 0.75

scheme B 0.78 -

scheme C 0.78 0.58

Table 3: Stabilitylimitsofthesecond order FVEGschemes.

fact has also been conrmed by other numerical tests for the wave equation system with

discontinuous solution, see the Problem 3 in [4 ]. We have found for all CFL numbers, no

matterhow smallthey werechosen, instabilitiesinthe solutionforneenough meshes. We

should note that all other CFL limits given in the Table 3 have also been conrmed by

particular numericalexperiments.

(23)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1

1.5 Eigenvalues: Scheme A1, CFL=0.75

0.9 0.95 1 1.05 1.1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Eigenvalues: Scheme A1, CFL=0.75

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: Scheme B1, CFL=0.1

0.992 0.994 0.996 0.998 1 1.002 1.004 1.006

−0.1

−0.05 0 0.05 0.1

Eigenvalues: Scheme B1, CFL=0.1

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1

1.5 Eigenvalues: Scheme C1, CFL=0.58

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

0.05 0.1 0.15 0.2 0.25 0.3

Eigenvalues: Scheme C1, CFL=0.58

Figure 6: Eigenvalues corresponding to the amplication matrices of the scheme A

1

(CFL=0.75), scheme B

1

(CFL=0.1), and thescheme C

1

(CFL=0.58).

(24)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1

1.5 Eigenvalues: Scheme A2, CFL=0.94

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

−0.2

−0.15

−0.1

−0.05 0 0.05 0.1 0.15 0.2

Eigenvalues: Scheme A2, CFL=0.94

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1 1.5

Eigenvalues: Scheme B2, CFL=0.78

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

−0.3

−0.2

−0.1 0 0.1 0.2 0.3

Eigenvalues: Scheme B2, CFL=0.78

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5 0 0.5 1

1.5 Eigenvalues: Scheme C2, CFL=0.78

0.5 0.6 0.7 0.8 0.9 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Eigenvalues: Scheme C2, CFL=0.78

Figure 7: Eigenvalues corresponding to the amplication matrices of the scheme A

2

(CFL=0.94), scheme B

2

(CFL=0.78), scheme C

2

(CFL=0.78).

(25)

EG3scheme

1

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

4

2

2

2

4

2

2 4

+

2

2

2

2

4

2

2

2

4 9

>

>

>

>

>

=

>

>

>

>

>

;

; 1

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

3 0

2

3

2 2

2

3 0

2 +

2 2

3

2

3 0

2

3 9

>

>

>

>

>

=

>

>

>

>

>

;

;

1

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

3

2 +

2 2

3

2

3

0 0 0

2

3

2 2

2

3

2

3 9

>

>

>

>

>

=

>

>

>

>

>

;

; 2

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

3 0

2

3

2 2

2

3 0

2 +

2 2

3

2

3 0

2

3 9

>

>

>

>

>

=

>

>

>

>

>

;

;

2

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

8

2

4

2

8

2

4 2

+

2

2

2

4

2

8

2

4

2

8 9

>

>

>

>

>

=

>

>

>

>

>

;

; 2

:=

8

>

>

>

>

>

<

>

>

>

>

>

: 3

2

32 0

3 2

32

0 0 0

3 2

32 0

3 2

32 9

>

>

>

>

>

=

>

>

>

>

>

;

;

3

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

3

2 +

2 2

3

2

3

0 0 0

2

3 +

2 2

2

3

2

3 9

>

>

>

>

>

=

>

>

>

>

>

;

; 3

:=

8

>

>

>

>

>

<

>

>

>

>

>

: 3

2

32 0

3 2

32

0 0 0

3 2

32 0

3 2

32 9

>

>

>

>

>

=

>

>

>

>

>

;

;

3

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

2

8

2

4

2

8

2

4 2

+

2

2

2

4

2

8

2

4

2

8 9

>

>

>

>

>

=

>

>

>

>

>

; :

Referenzen

ÄHNLICHE DOKUMENTE

against Symbian-based Smartphone operating systems in order to test their stability, security and robustness.. R ELATED

In this section, through long-time numerical simu- lations, we illustrate the performance of the FVEG method for the linear wave equation system, see [10] for its approximate

Finally in Section 8 we determine the amplification matrices of the second-order finite volume schemes based on the approximate evolution operator E ∆ bilin and estimate the

From the third picture onwards we observe the formation of a circle of finite precision Ritz values located somewhere in the region where complex minimizers occur most frequently..

seminal essay of extraordinary influence, 6 in which he argued that Luther's position on justification reflected rather more his own internal struggles than the teaching of

In §4 we present our main result, namely, that a given Sonneveld pencil defines a one-dimensional family of purified pencils and a one-dimensional family of deflated pencils

We have performed both a linear stability analysis with respect to radial perturbations and simulations into the nonlinear regime of strange mode instabilities identified in the

unexpected revenue shortfalls due to forecasting errors of the budgetary impact of (new) revenue measures, the estimates of their budgetary impact as well as