• Keine Ergebnisse gefunden

(a) Cartesian coordinates:

N/A
N/A
Protected

Academic year: 2021

Aktie "(a) Cartesian coordinates:"

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Solutions to problem sheet II Fluid Dynamics

1. Streamlines

(a) Cartesian coordinates:

 u v w

 = a

−x y 0

Streamlines:

dx u = dy

v Therefore:

− dx x = dy

y ⇒ ln y = ln 1 x + C y = C

x (One streamline for any C)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1 0 1 2 3 4

(b) Cylindrical polar coordinates:

 u r

u ϕ

u z

 =

 m/r

0 0

u r , u ϕ and u z are the ~u components in the directions ~e r , ~e ϕ and ~e z . Here only radial component important, dependent on m r

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1 0 1 2 3 4

1

(2)

(c) Cylindrical polar coordinates:

 u r

u ϕ

u z

 =

 0 k/r

0

Here only tangential component important, dependent on k r

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1 0 1 2 3 4

2. Vorticity and divergence

Vorticity:

~

ω = curl~v = ∇ ∧ ~v = ∇ ∧

 u v w

 =

∂w

∂y − ∂v ∂z

∂u

∂z − ∂w ∂x

∂v

∂x − ∂u ∂y

2-dimensional: ∂z = 0, w = 0

Cartesian coordinates: ζ = ∂v

∂x − ∂u

∂y Cylindrical polar coordinates: ζ = 1

r ∂

∂r (rv) − ∂u

∂ϕ

Divergence:

D = ∇ · ~v = ∂u

∂x + ∂v

∂y + ∂w

∂z 2-dimensional: ∂z = 0, w = 0

Cartesian coordinates: D = ∂u

∂x + ∂v

∂y Cylindrical polar coordinates: D = 1

r ∂

∂r (ru) + ∂v

∂ϕ

(a) Vorticity

ζ = ∂v

∂x − ∂u

∂y = 0

2

(3)

Divergence:

D = ∂u

∂x + ∂v

∂y = −a + a = 0 (b) Vorticity (r 6= 0):

ζ = 1 r

∂r (ru ϕ ) − ∂u r

∂ϕ

= 0 Vorticity (r = 0):

Gauss theorem:

Z

V

div ~u dV = Z

∂V

~u · ~n dS

= m

r 4πR 2 = 4πRm 6= 0 Divergence (r 6= 0):

D = 1 r

∂r (ru r ) + ∂u ϕ

∂ϕ

= 0 Divergence (r = 0): From Gauss theorem:

div ~u| r =0 6= 0 (c) Vorticity (r 6= 0):

ζ = 1 r

∂r (k) = 0 Vorticity (r = 0):

Divergence (r 6= 0):

D = 1 r

∂r (k) = 0

3. Divergence, deformation and vorticity

(a) Vorticity ζ = ∂v

∂x − ∂u

∂y = 2 (x + y + a)

Lines with constant vorticity: C = 2 (x + y + a) y = C

2 − x − a

Line between positive and negative vorticity:

(C = 0)

y = −x − a

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1 0 1 2 3 4

−3 −2

−2

−1

−1

−1

0 0 0 0

1

1

1

1 2

2

2 3

3 4

−3 −2

−2

−1

−1

−1

0 0 0 0

1

1

1

1 2

2

2 3

3 4

Flow field with isolines of vorticity

3

(4)

(b) Divergence D = ∂u

∂x + ∂v

∂y = −2 (x − y + a)

Lines with constant divergence: C = 2 (x + y + a) y = C

2 + x + a

Line between positive and negative divergence:

(C = 0)

y = x + a

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1 0 1 2 3 4

−8

−6

−6

−4

−4

−4

−2

−2

−2

−2 0

0

0

0

2

2

2 4

4 6

−8

−6

−6

−4

−4

−4

−2

−2

−2

−2 0

0

0

0

2

2

2 4

4 6

−8

−6

−6

−4

−4

−4

−2

−2

−2

−2 0

0

0

0

2

2

2 4

4 6

Flow field with isolines of divergence (c) Deformation

Def =

∂u

∂x − ∂v ∂y

∂u

∂y + ∂x ∂v

!

=

−2 (−x − y + a) 2 (x − y − a)

(Def) 2 = 4

(−x − y + a) 2 + (x − y − a) 2

= 8

(x − a) 2 + y 2

= R 2 Circle with centre in (a, 0)

4. Divergence

Continuity equation:

Dt + ρ~ ∇ · ~v = 0

⇒ ∇ · ~ ~v = div~v = − 1 ρ

Dρ Dt

∼ = ∆ρ ρ

1

∆t

∼ = ±0.1 · 1 7200s

∼ = ±1.4 · 10 5 s 1

• ∆ρ positive (compression):

⇒ div ρ negative (convergence)

• ∆ρ negative (dilatation):

⇒ div ρ positive (divergence)

4

Referenzen

ÄHNLICHE DOKUMENTE

¾ In steady flow the streamlines are independent of time, but the velocity can vary in magnitude along a streamline (as in flow through a constriction in a