• Keine Ergebnisse gefunden

A local basis approximation approach for nonlinear parametric model order reduction

N/A
N/A
Protected

Academic year: 2021

Aktie "A local basis approximation approach for nonlinear parametric model order reduction"

Copied!
22
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Research Collection

Journal Article

A local basis approximation approach for nonlinear parametric model order reduction

Author(s):

Vlachas, Konstantinos; Tatsis, Konstantinos; Agathos, Konstantinos; Brink, Adam R.; Chatzi, Eleni Publication Date:

2021-06-23 Permanent Link:

https://doi.org/10.3929/ethz-b-000477997

Originally published in:

Journal of Sound and Vibration 502, http://doi.org/10.1016/j.jsv.2021.116055

Rights / License:

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.

ETH Library

(2)

ContentslistsavailableatScienceDirect

Journal of Sound and Vibration

journalhomepage:www.elsevier.com/locate/jsv

A local basis approximation approach for nonlinear parametric model order reduction

Konstantinos Vlachasa,,Konstantinos Tatsisa, Konstantinos Agathosb, Adam R.Brinkc, Eleni Chatzia

aDepartment of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz-5, Zurich, 8093, Switzerland

bCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

cSolid Mechanics, Sandia National Laboratories, Albuquerque, New Mexico

a rt i c l e i nf o

Article history:

Received 16 March 2020 Revised 12 January 2021 Accepted 25 February 2021 Available online 26 February 2021 Keywords:

As-built as-deployed structures Parametric model order reduction (pMOR) Nonlinear reduction

Reduced bases interpolation

a b s t ra c t

Theefficientconditionassessmentofengineeredsystemsrequiresthecouplingofhighfi- delitymodelswithdataextractedfromthestateofthesystem‘as-is’.Inenablingthistask, thispaperimplementsaparametricModel OrderReduction (pMOR)schemefor nonlin- earstructuraldynamics,andtheparticularcaseofmaterialnonlinearity.Aphysics-based parametricrepresentationisdeveloped,incorporatingdependenciesonsystemproperties and/orexcitationcharacteristics.ThepMORformulationreliesonuseofaProperOrthog- onal Decompositionappliedtoaseriesofsnapshotsofthenonlineardynamicresponse.

Anewapproachtomanifoldinterpolationisproposed,withinterpolationtakingplaceon thereducedcoefficientmatrixmappinglocalbasestoaglobalone.Wedemonstratethe performanceofthisapproachfirstlyonthesimpleexampleofashear-framestructure,and secondlyonthemorecomplex3Dnumericalcasestudyofanwindturbinetowerunder aground motionexcitation. Parametricdependencepertainsto structural properties,as wellasthetemporalandspectralcharacteristicsoftheappliedexcitation.Thedeveloped parametricReducedOrderModel(pROM)canbeexploitedforanumberoftasksincluding monitoringanddiagnostics,controlofvibratingstructures,andresiduallifeestimationof criticalcomponents.

© 2021 The Authors. Published by Elsevier Ltd.

ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The emergenceofdigital twinsasamain enablerforvirtualization mandatesthecouplingofhighfidelitysimulations with data extracted frommonitored systems [62]. A ‘twin’ of an operating systemaims atprecise representationof its responseacrosstherangeofthesystem’sregularandextremeloadingconditions.Thisallowsforrobustdesignandeffective diagnosticsunderuncertainty[36,43].However,increasedsimulationaccuracyrequiresahigherdemandoncomputational

Corresponding author.

E-mail addresses: vlachas@ibk.baug.ethz.ch (K. Vlachas), K.Agathos@exeter.ac.uk (K. Agathos), arbrink@sandia.gov (A.R. Brink), chatzi@ibk.baug.ethz.ch (E.

Chatzi).

https://doi.org/10.1016/j.jsv.2021.116055

0022-460X/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(3)

resources, oftencompromisingefficiency.Forexample,models that cancapturelocal phenomenarequiretheinclusion of higher-end detail duringthe modeling stage, which leads to complex numericalrepresentations. To alleviate the burden ofcomputation, a trade-off betweenaccuracy andefficiency- tailoredtotheneeds oftheimplementation- isneeded. A means formaintaining accuracy liesin imprinting theunderlying physics intothe numericalrepresentation. Efficiencyis tackledbyderiving low-dimensionalmodels,whicharecapableofrapidcomputation,whilesufficientlyapproximatingthe underlying highfidelity representation[16,17]. Thisnotionis referred to asModelOrderReduction andthederived low- dimensional model as Reduced OrderModel (MOR andROM respectively). For the sake of simplicity the ROM acronym is used throughoutthispaper toindicate the Reduced OrderModeland MOR fortheprocess ofModel OrderReduction respectively.

TheavailableMORliteraturespansfromworksinthedomainsoffluiddynamics[12]andbiomedicalengineering[47],to thefieldsoffracturemechanics[37],structuraldynamics[5],monitoringandstateestimation[59]inamorecivilengineer- ingorientedperspective.Dependingonthedomainofimplementationandonthenaturalcomplexityoftheaddressedprob- lem (linear,nonlinear,orchaotic),severalapproachesandmethodologieshavebeenproposed. Acomprehensiveoverview, servingasaninitialbasis,maybefoundintheworksof[17]and[9].Besselinketal.[18]furtherofferareviewandcross- comparisonofestablishedMORtechniquesacrossscientific disciplines,includingstructuraldynamics,control, andapplied mathematics.

Under deterministicallyprescribed loadsandsystemproperties,a singleevaluationoftheROM atan examplesample representsaspecificinstanceofthephysicalsystemunderstudy.Inthiscase,theROMmayonlyreliablydescribethesys- tem’sresponseforagivenconfigurationandaroundanarrowrangeofsystemparameters.Ingeneralizingtheapplicability ofthe ROMformulation,it isnecessarytoexpressthedelivered representationintermsoftheparameters thatenter the governingequations.ThisgeneralizationisachievedviatheadoptionofparametricReducedOrderModels(pROMs)[16].A dynamicpROM,inparticular,shouldallowadequateapproximationofthedynamicsofthehighfidelitysystemthroughout therangeofinterestofmodelingparameters.

AssumingavailabilityofaHighFidelityModel(HFM)ofthesystemunderstudy,thederivationofaROMwithparametric dependency usually requires querying thisrepresentation over multipleparametric inputs. An extensive overviewof this class of intrusivemethods can be foundin [16,17]. Inthe samecontext, data-driven andindirect,non intrusivemethods havealsobeenproposed.Althoughthisextendsbeyondthefocusofthispaper,theinterestedreaderisencouragedtorefer to[45] forareviewonnon intrusivemethodsandto[33]forsuitable techniquesto addressnonlinearity.Regardingdata- drivenmethods,[50]canbetreatedasastartingpointreview.

AlthoughseveralapproachesforpROMsdoexist,notallofthemaresuitableforreproducingthetime-domainresponse andtheunderlyingphysicsofparametric,highorder,nonlineardynamicalsystems,representedbyFiniteElement(FE)mod- els.Anoverviewofrelevantliterature[16,17,41],revealstheProperOrthogonalDecomposition(POD-[23])asthedominant reduction method forthis class ofproblems. A shortintroductory review on the POD methodfor MOR can be found in [41].ThePODtechniquereliesondecompositionoftime-seriesresponsedatafromtrainingconfigurationsofthesystemin ordertoidentifyabasisforasubspaceoflowerdimensions,wheretheresponseliesandwheresolutionsaresoughtduring thevalidationphaseofthemethod.Since,typically,thissubspaceisofamuchlowerdimensionthantheHFM,thisallows to greatly reduce thesize ofthe problem.In principle thisresponsecould be obtainedfromeither simulatedoractually measureddata.Inthelattercaseadirectlinkisofferedonfusionofstructuralmodelswithmonitoringdataextractedfrom operatingstructures.

The POD approachis normallycoupledwith projection-basedreduction methodologies[17].Forexample, aglobalre- duction basis maybeassembled fortheentireparametric domain,whichseems tobe themethod ofchoicewhen linear problemsare addressed[5].In[2]cracked,twodimensionalsolidsareparameterizedwithrespecttothegeometric prop- ertiesofthecrack.ThepROMisshowntoefficientlyapproximatethestaticresponse forcracksthat donotliewithin the trainingset.Inthesamecontext,[25]proposeanadaptivetechnique,wherethepROMisembeddedwithinanoptimization process regardingthenumberoffull ordermodelevaluations.Similarconsiderations onreducingthe requirednumberof thetrainingsamplesarediscussedin[39].Theglobalapproachmaybeoffurtherusewhenthephenomenaunderconsid- eration are oflocalizednature.In thedomain offracturemechanics forinstance,[38] proposed a ROMbasedon domain partitioning,focusing thenumericalefforton thelocaldomainofthe defect.Thestructure domainispartitioned andre- ducedexceptforthelocalizeddomainofnonlinearitywherethefullmodelisevaluated.

Theglobalapproachmighthoweveryieldinaccurateresultsorbecomecomputationallyinefficientfornonlinearsystems, wheretheresponseisstronglydependentontheinputcharacteristics[6,67].Thisimpliesthateachnewtrainingparametric configurationcontributessubstantiallynewinformationtothePODbasis.Toaddressthisissue,[4]assembledapooloflocal PODbasesinsteadofusingasingleglobalprojectionbasis.Thenotionoflocalityrefersto“neitherspacenortimeapriori, but to theregion of the manifoldwhere the solutionlies ata given parametric input ortime instance”[5]. In[3] local subspacesareassembledwithrespecttotheparametricdomainofinput,whereasin[6]withrespecttotime.

Toreproducetheresponseofthesysteminan‘unseen’configuration,interpolationtechniquesareemployed.In[4]the localprojection basesareinterpolateddirectly,withinterpolationperformedinthespacetangenttotheGrassmannman- ifold. Thisis done to ensurethe interpolated basesmaintainorthogonality properties.A recentstudydiscussing detailed aspectsofthisapproachisgivenin[68].Analternativeapproachhasbeenimplementedin[8,27,48],whereinterpolationof theprojectedROMmatricesisused.ThisisreferredtoasmatrixinterpolationandlinearparametricROMsareinterpolated eitherintheoriginaldomainorinthespacetangenttotheGrassmannmanifold[4],aftersome formofcoordinatetrans-

(4)

formation hasbeenapplied forconsistency purposes[8].In thiscontext,the studiedinterpolationschemesincludespline interpolation[27]orLagrangepolynomials[8].

Severalcontributionsacrossvariousscientificdisciplinesarebasedontheformertwolocalinterpolationnotions,namely matrixandlocalbasesinterpolation.In[5]forexample,localbasesarecombinedwithk-meansclustering-basedinterpola- tionalgorithms.Asimilarapproachisusedin[6]wherelocalityisdefinedwithrespecttotime andaclusteringapproach with a suitable errormetric for onlineupdating is implemented.In [32] Gaussian Processes andBayesian strategies are adopted to address the optimal samplingof parametric input vectors, whereas similar considerations on optimizingthe number oftraining sampleswhile using a localbases interpolation approach are madein [42,56,58]. A novelpMOR ap- proach,suitable forcontactinmultibodydynamicsissuggestedin[19].GlobalcontactshapesarederivedandthepROMis augmented toincreaseaccuracy.Multi-parametricapproximationsarediscussedin[61],whereROMsareusedtoestimate steady-stateflowsovercomplexparameterizedgeometries.Anotherimportantcontributionis[52]whereanimprovedselec- tionstrategy forthebasisvectorsspanningthesolutionsubspaceisproposed.In[15]acomparisonofinterpolation-based reduction techniquesin the context of material removalin elastic multibody systems is discussed.Further contributions spanacrossthedomainsofshapeanddesignoptimization[7],solidandcontactmechanics[11,64],constrainedoptimization problems[63],highlynonlinearfluid-structureinteractionproblems[10]orcouplingMORwithComponentModeSynthesis [40].

The mentioned MORmethods focus mainlyon identifyingbases, ableto representthe HFMsolutions over arange of parameters. However,amainlimitingfactorfortheperformanceofnonlinearprojection-basedROMs istheactualprojec- tion of the systemvectorsand matricescontainingnonlinear terms inthe reduced space[29,51]. Therefore, a necessary componentforformulatingcomputationallyefficientROMsforFE-basedformulationsliesintheuseoftechniquestoreduce thecomplexityofsuchprojections,collectivelyreferredtoashyper-reductiontechniques.Thesesecond-levelapproximation strategiestypicallyrelyonevaluatingthenecessaryprojectionsonalimited,appropriatelyselected,setofelementsintheFE mesh.MethodsofthiscategoryincludetheGaussNewtonwithApproximatedTensors(GNAT)methodpresentedin[21],the DiscreteEmpiricalInterpolationMethod(DEIM)suggestedin[24]andtheEnergy-ConservingSamplingandWeightinghyper reduction methodproposedin[29].Thecomputational efficiencyoftheseapproacheshasbeensuccessfullydemonstrated in [6,22,28,31,46].Based on theconsiderations madein[30] regarding numericalstability,structure preservingproperties andoverallefficiency,thispaperimplementstheECSWapproach.

This paper focuseson developmentand demonstration of a pROM schemefor approximation of the time history re- sponseofstructuralsystemsfeaturingmaterialnonlinearity,tiedtophenomenasuchasplasticityandhysteresis.Werefrain from exemplifyingourapproach ongeometric nonlinear problemssince we considerthese havebeendiscussed indetail in [29,30,44],adoptingsimilar reductionstrategiesto theone proposed here.The topicofmaterialnonlinearityhas been addressedinthecontextofthermalloadsforexamplein[66],orwithrespecttoimpactanalysis[29,58].Ourpaperaddsto thisliteraturebyimplementingapROM,abletomodelmaterialnonlinearityandaddressparametricdependencypertaining ineitherthesystemortheexcitationconfiguration.Specifically,wedemonstratetherelevantaspectsofparameterizationin termsofinfluencingstructuraltraits,suchasmaterialpropertiesandhysteresisparameters,aswellasintermsofparame- terizationofactingloads,e.g.earthquakes,inthetemporalandspectralsense.Moreover,weimplementavarianttechnique to the established localbases interpolationmethod inthe sense that the dependenceofa HFM onthe characteristics of theconfigurationand/orloadingparametersisexpressedonaseparate leveltothatofthesnapshotprocedure.Theresult- ing pROMallowsforacceleratedcomputation,whichisparticularlycriticalforapplicationsinmonitoringanddiagnostics, controlofvibratingstructures,andresiduallifeestimationofcriticalcomponents.

2. ProblemstatementandpROMformulation

Structural systems and components are exposed to harsh operating environments and adverse loading. The resulting dynamicscanbeofnonlinearnature,albeittypicallysimplisticallyapproximatedby lineardomainassumptions,whichare oftentimesinsufficient.Afurthercomplexityliesinthefactthatthedynamicsofreal-lifestructuralsystemsisdependenton material,geometrical,environmentalorloadingparameters.Therefore,whendesiredtoreliablyapproximatethedynamicsof an‘as-builtas-deployed’system,i.e.,ofasysteminitsoperatingstatetheaspectsofnonlinearityandparametricvariability needtobeefficientlytackled.Naturally,thisposesalimitingfactorfromthecomputationalpointofview,sincetheprecise approximationofasystemacrossthewholerangeofitsdefiningparameterswouldrequirehighfidelitysimulationsacross multiple realizations ofits defining parameter vector. Thisimpliesa high computationaltoll that prohibits adoptioninto practice, particularlyfor scenarios which necessitate a fastreaction, such as fault diagnosisand control. The aimof this work istoaddress theaccuratemodeling of‘asbuiltas-deployed’nonlineardynamicstructuralsystems(orcomponents).

Thetaskistodeliverasufficientreducedorderapproximationundervariabilityofthestructuralpropertiesoroftheacting loads.

Thissection offersashortoverviewofthebackgroundknowledgerequiredfortheformulationoftheproposed pROM.

Firstly,theaspectofparametricdependencyisvisitedbyprovidinganoverviewofexistingpROMformulations.Then,hyper- reduction isdiscussed asafurthernecessary reductionmethodforreducing theprohibitive computational tollassociated withlargedegreeoffreedomfiniteelementrepresentations.

(5)

2.1. POD-basedpROMsfornonlinearsystems

Thissubsectionpresentsthefundamentalbackgroundrequiredforthetreatmentofparametricdependencieswithinthe MORframework,whichservesasthebasisforestablishingaparametricreducedordermodel(pROM)formulationfornon- linearsystems.Withinthiscontext,anonlineardynamicalsystemwhoseconfigurationdependsonl parameters,contained intheparametervectorp=[p1,...,pl]TRl isconsidered.Thevibrationresponseofsuchsystemisdescribedbythe governingequationsofmotion

M(p)u¨(t)+g(u(t),u˙(t),p)=f(t,p), (2.1)

whereu(t)Rnrepresentsthesystemdisplacement,M(p)Rn×ndenotesthemassmatrix,f(t,p)Rnrepresentsthevec- tor of externally applied loads andn is the order of the system, which physically representsthe numberof degrees of freedom.Thenonlinearityofthesystemliesintherestoringforcetermg(u(t),u˙(t))Rn,whichrepresents the resisting or internalforcesofthesystemduetointernalstressesandstrainsandisfurtherdependent,alongwiththemassmatrixand theexternallyappliedexcitation,ontheparametervectorp.Thisdependencymayrepresentdifferentsystemconfigurations dependingonthetargetapplication,suchasdamagescenarios,whichmaybereflectedonthestiffnessand/ordampingand massmatrices,orvaryingboundaryconditions,whicharedictatedbytheexcitationvector.

The goalofparametricROMsisto generatean equivalentsystemofdimension r,such thatr<<nandtheunderlying physics along withthe parametric dependenciesof interestare further retained. Giventhe dependenceof thegoverning system equations, represented by Eq. (2.1), on the parameters p, the reduction step is herein performedfor a number of samplepointspj for j=1,2,...,N in the parameterspace usinga projection-based strategy. As such, thesolution of Eq. (2.1) fora certain parameter sample pj is attractedto a lower dimensional subspace SRn, spannedby the set of orthonormalbasisvectorsV(pj)=

v1(pj),v2(pj),...,vr(pj)

,accordingto

u(t)=V(pj)ur(t), (2.2)

where V(pj)Rn×r is calledthe projection basis and thereduced sizevector urRr definesthe components ofthe so- lution inthisbasis. Thereafter, the reduced-order representationofthe High Fidelity Model(HFM) isobtainedby means ofaGalerkinprojection,whichiscarriedoutby substitutingEq.(2.2) intoEq.(2.1),pre-multiplying withthetransposeof the projectionbasis V(pj)T andlastly imposing theorthogonalityconditionoftheoccurringresiduals withrespectto the projectionbasis.Thisresultsinthefollowingsystemofequations:

Mr(pj)u¨r(t)+gr

u(t),u˙(t),pj

=fr(t,pj) (2.3)

where Mr(pj)Rr×r andgr

u(t),u˙(t),pj

Rr denote the reduced-order mass matrix and restoring force vector respec- tively,whilefr(t,pj)Rrdesignatesthegeneralizedvectorofexternalforces,asfollows

Mr(pj)=V(pj)TM(pj)V(pj) gr(pj)=V(pj)Tg

u(t),u˙(t),pj

fr(pj)=V(pj)Tf(t,pj) (2.4)

The computationoftheorthonormalbasis vectorsV(pj)=

v1(pj),v2(pj),...,vr(pj)

, whichisthekey elementof the reductionstep,istypicallycarriedoutbymeansofProperOrthogonalDecomposition(POD)[23].Assuch,apoolofdisplace- mentfieldsamplesiscollectedfromthetimehistoryanalysisoftheHFM.Eachoneofthepoolsisextractedfromaunique parameterconfigurationpj ofthefull ordermodel,whichishenceforthtermedassnapshot.Thereafter,theinformationof allsimulatedpoolsofsamples,orequivalentlysnapshots,iscollectedonaglobalbasisVfull,whichessentiallycapturesthe parametric dependenceofthemodel,since responseinformationacross theentireparameterspaceis assembledthrough sampling.ASingularValueDecomposition(SVD)islastlyappliedtoVfullinordertoobtaintheprincipalorthonormalcom- ponents ofthereductionbasis Vspanningthelowersubspace Softhesolution.Theerrormeasureusedin[31]isherein employed forthispurpose aswell. Thesesteps representtheoffline phaseof reduction,which producesthe globalSVD- basedprojectionbasis V.The lattermaybeutilizedforglobalsystemorderreduction,accordingtoEq.(2.4),withtheaim ofreflectingtheunderlyingdynamicsandthereforeapproximatingtheresponseofthemodelatunseenparametersamples.

Oneofthelimitationsofsuchanapproachliesonthefactthattheresponseofnonlinearsystemsisstronglydependent on the parameter values andmay be dominated by localized phenomena which are owed to the nonlinear terms. This impliesthattheresponsemaywelllieonspacesthatcannotbespannedbyasingleglobalbasis,unlessthelattercomprises a largenumberofbasisvectors. Asaresult,localizedfeaturesthat areobservedonlyinarestrictedparametersubdomain endup affecting anddetermining theoverall estimationcapabilitiesofthe ROM[67].To addresstheseissues,a different strategycanbeemployed,aswasinitiallyhighlightedinSection1.Insteadofformulatingaglobalprojectionbasis,apoolof localPODbasescanbeassembledduringtheofflinephase,witheachoneofthosebasescorrespondingtoauniquesample, orfamily ofparametersamples.Toreproduce thenthe responseof thesystemforan ‘unseen’configuration inan online manner,interpolationtechniquescanbeemployedwiththeaimofestimatingthelocalPODbasisattherequiredparameter pointandsubsequentlyobtainthereducedmatricesbasedonEq.(2.4).

Abbildung

Fig. 1. Graphical description of the CpROM approach implemented on this paper. The green surface represents the Grassmann Manifold (  M) and the  circular points denoted by V  i ,  i  =  1  ,  2  ,  3 the training samples
Fig.  2. Two story building  with nonlinear links. Geometrical con  figuration  depicted  in (a) in grey and example  deformed state in  black
Fig.  3. Domain  error  plot  for  Partition  A  for the  CpROM (  Table 2  ).  The RE  rf error  of  Eq
Fig. 6. Numerical set up considerations for the wind turbine tower case study: (a) The parametric domain of interest with respective partitions and (b)  reduction order selection  based  on  accuracy  thresholds
+5

Referenzen

ÄHNLICHE DOKUMENTE

In more detail, the key ideas to our error estimation procedure is to use local logarithmic Lipschitz constant [156] ap- proximations and an estimation of the DEIM approximation

GPU graphics processing unit GSM generalized standard material HBM homogenization of bulk materials HTL homogenization of thin layers LEFM linear elastic fracture mechanics LKH

Abstract: In this work, a numerical technique based on the phase field method is proposed to model complex microcracking in voxel-based models of cementitious materials obtained

In order to derive an error bound for the method and construct a state space representation for the reduced system, which has been computed by interpolation of reduced

In Theorem 4.4 we prove that for finitely many given points a i of infinite order, the `-parts of their reductions a i,v can be made simultaneously non-trivial on a set of

This chap- ter also discusses the LRCF-ADI iteration for solving projected algebraic Lyapunov equations arising from second order index 3 descriptor systems.. Computation of ADI

The fundamentals include the modeling of multibody dynamics using a floating frame ap- proach, finite element discretization, model order reduction approaches, validation of

We demonstrate that this technique yields satisfactory results also for large data sets provided missing information due to the small size of the subset is accounted for by