• Keine Ergebnisse gefunden

Cholesterol implications in plasmid DNA electrotransfer : Evidence for the involvement of endocytotic pathways

N/A
N/A
Protected

Academic year: 2022

Aktie "Cholesterol implications in plasmid DNA electrotransfer : Evidence for the involvement of endocytotic pathways"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways

Christelle Rosazza

a,b,c

, Emilie Phez

a,b

, Jean-Michel Escoffre

a,b,1

, Laurence Cézanne

a,b,2

, Andreas Zumbusch

c,∗

, Marie-Pierre Rols

a,b,∗∗

aDepartmentofStructuralBiologyandBiophysics,CNRS,InstitutdePharmacologieetdeBiologieStructurale,205RoutedeNarbonne,F-31077Toulouse,France

bUniversityofToulouse,UPS,InstitutdePharmacologieetdeBiologieStructurale,F-31077Toulouse,France

cDepartmentofChemistry,UniversityofKonstanz,Universitätsstraße10,D-78457Konstanz,Germany

Keywords:

Genedelivery Electroporation Cholesterol Endocytosis Colocalizationanalysis

a b s t r a c t

ThedeliveryoftherapeuticmoleculessuchasplasmidDNAincellsandtissuesbymeansofelectricfields holdsgreatpromiseforanticancertreatment.Toallowfortheirtherapeuticaction,themoleculeshave firsttotraversethecellmembrane.ThemechanismsbywhichtheelectrotransferredpDNAinteracts withandcrossestheplasmamembranearenotyetfullyexplained.Theaimofthisstudyistounravelthe roleofcholesterolduringgeneelectrotransferincells.Weperformedcholesteroldepletionexperiments andmeasureditseffectsonvariousstepsoftheelectroporationprocess.Thefirsttwostepsconsisting ofelectropermeabilizationoftheplasmamembraneandofpDNAinteractionwithitwerenotaffected bycholesteroldepletion.Incontrast,geneexpressiondecreased.Colocalizationstudieswithendocytotic markersshowedthatpDNAisendocytosedwithconcomitantclathrin-andcaveolin/raft-mediatedendo- cytosis.CholesterolmightbeinvolvedinthepDNAtranslocationthroughtheplasmamembrane.Thisis thefirstdirectexperimentalevidenceoftheoccurrenceofendocytosisingeneelectrotransfer.

1. Introduction

Thecellplasmamembraneactsasaselectivebarriercontrolling moleculeexchangebetweenthecellanditsexternalenvironment.

Asmanytherapeuticmoleculesarenonpermeant,theirtargeted deliveryintolivingcellsandtissuesisanimportantgoalofmodern pharmacologyandtherapy(Escoffreetal.,2010b).Indeed,theaim ofmoleculedeliverymethodsistoefficientlyovercome thecell barrierstoallowfortheirtherapeuticaction.Astrictlocalizationof thepharmacologicalactivityoftherapeuticmoleculestoacellular targetsitewouldresultinasignificantreductionofitstoxicity,a reductionofitsdose,andwouldincreasetreatmenteffectiveness.

Correspondingauthorat:FachbereichChemie,UniversitätKonstanz,Univer- sitätsstraße10,Fach722,D-78457Konstanz,Germany.Tel.:+497531882357;

fax:+497531883870.

∗∗Correspondingauthorat:InstitutdePharmacologieetdeBiologieStructurale, CNRSUMR5089,205RoutedeNarbonne,F-31077Toulouse,France.

Tel.:+33561175811;fax:+33561175900.

E-mailaddresses:andreas.zumbusch@uni-konstanz.de(A.Zumbusch),marie- pierre.rols@ipbs.fr(M.-P.Rols).

1Presentaddress:UMRSInsermU930“ImagerieetCerveau”,CNRSERL3106,Uni- versitéFranc¸oisRabelaisdeTours,CHULeBretonneau,10TerbdTonnellé,37044 ToursCedex9,France.

2InmemoryofLaurenceDupou-Cezanne,acolleagueandafriend.

Inrecentyears,promisingnewpossibilitiesfortargeteddeliv- eryoftherapeuticmoleculeshavebeendeveloped.Someofthese relyontheelectropermeabilizationoftheplasmamembrane(an approachalsotermedelectroporation).Electropermeabilization,a physicalmethodthatconsistsoftheapplicationofelectricpulses oncellsandtissues,wasintroducedinthe1970sandsubsequently developedinthe1980sforgenedelivery(Neumannetal.,1982).

Ithastheadvantageofbeingveryversatile,highlyefficient,sim- ple,andlowincost(Golzioetal.,2004).Theseattractivefeatures havebeenpointedoutinseveralreviews(CemazarandSersa,2007;

Gehl,2008;HellerandHeller,2010;Miretal.,2003).Applications havebeensuccessfullydevelopedforantitumordrugs(Campana etal.,2009;Landstrometal.,2010;Miretal.,1998;Rolsetal., 2002)andgenedelivery(AiharaandMiyazaki,1998;Helleretal., 1996;Miret al.,1999; Rolset al.,1998; Titomirovetal.,1991).

Meanwhile,electrochemotherapyhasbeenacceptedinanumber ofcountriesasapalliativecaretreatment(Giardinoetal.,2006;

Sersaetal.,2008;Spugninietal.,2008)andclinicaltrialsofelec- trogenetherapyareunder investigation(Daud etal., 2008;Low etal.,2009).Inthelattercase,plasmidDNA(pDNA)isthether- apeuticagentusedtotransfergeneticinformation.Widerspread useof this approachis hampered bythe factthat verylittle is knownaboutthemolecularandcellularmechanismssupporting thereorganizationofthecellmembranewhichaccompaniesthe pDNAuptake(Teissieetal.,2005).Itisevidentthatgainingabetter http://dx.doi.org/10.1016/j.ijpharm.2011.05.024

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-211256

(2)

understandingoftheinternalizationandintracellulartraffickingof pDNAisaprerequisiteforsafeuseofgeneelectrotransferinclin- icalapplications.SeveraltheoreticalmodelspostulatethatpDNA crossestheplasmamembranethrough“electropores”anddirectly accessesthecytosolduringelectropulsation(Escoffreetal.,2009a).

However,todatesuchmodelshavenotbeensupportedbyexper- imentaldataperformedoncells.Experimentsperformedongiant unilamellarvesicles(GUVs)showthat electroporesmaybecre- ated(Portetetal.,2009)and thattheseelectroporesmayallow thedirectentranceofplasmidDNAintothevesicles(Portetetal., 2011).Experiments performedat thesinglecelllevelonmam- maliancellsshowthatthemechanismsofmoleculedeliveryare much morecomplex. Theyreportedphenomenologicaldescrip- tionsofsmallmoleculesandgeneelectrotransferprocesses.Small molecules(below4kDa)andmacromolecules(above4kDa)enter thecellthroughwelldefinedcellularregionsfacingtheelectrodes.

Smallmolecules(e.g.propidiumiodide,cytotoxicdrugssuch as bleomycinandcisplatin)enterthecellinmembraneregionsfac- ingboththecathodeandanode.Thisdiffusivefluxisdrivenbythe concentrationgradientdifferencebetweentheexternalmedium andthecytosoland/orbyelectrophoresis(Escoffreetal.,2010a;

GabrielandTeissie,1997;Puciharetal.,2008).Incontrast,pDNA uptakeonlyoccursin themembrane regionfacingthecathode.

ThecurrentunderstandingisthatpDNAuptakerequiresanumber ofconsecutivesteps(Golzioetal.,2002):duringtheelectropul- sation,the plasmamembrane is permeabilized,pDNA migrates electrophoreticallytowardsthepermeabilizedcells,andisinserted intothepermeabilizedmembrane. Afterelectropulsation,pDNA translocationacrossthemembraneoccurs,andthepDNAmigrates towardsthenucleusand crossesthenuclearenvelope(Escoffre etal.,2009a).Thus,pDNAdoesnotenterthecellduringelectropul- sation,butistransientlytrappedinthepermeabilizedmembrane.

Itsdistributioninthepermeabilizedmembrane isnothomoge- neous.Instead,itappearsin“competentsites”whosesizeranges from0.1to0.5mm(Faurieetal.,2004,2010;Golzioetal.,2002).

ThepDNAinteractsinayetunknownwaywithsomemicrodomains oftheplasmamembrane,thenatureofwhichisalsonotknown.

These“competentmicrodomains”havenotbeendetectedduring theelectrotransferofpDNAinpurelipidmembranes(Portetetal., 2011).Asecondimportantobstacleingeneelectrotransfercomes frompDNAtranslocationacrossthemembraneanditsintracellular traffickingintothecytosol.Inpreviousinvestigations,fluorescently labeledpDNAcouldonly bedetectedinsidethecytosolseveral minutesafterelectropulsation(Golzioetal.,2002;Jeromeetal., 2009).Thenit wasseen asfreepDNAand inaggregates. These resultssuggestedthatthepDNAcouldcrossthemembranethrough poresor/andviaendocytosis.Themodelofelectroendocytosishas beensuggestedbyseveralgroups(Antovetal.,2004;Chernomordik etal.,1990;Glogaueretal.,1993;Klenchinetal.,1991;Mahrour etal.,2005;Rolsetal.,1995;Rosazzaetal.,2011;Rosembergand Korenstein,1997).Thestimulationoffluidphaseendocytosishas beenreportedbymostofthem.Anincreaseoffluidphasemark- ersuptakesuchasLuciferYellowordextranhasbeenshownto occurafterelectropulsation.Moreover,theinternalizationofmem- branephospholipidswasincreasedandthefluidphase markers uptakeshowedtemperaturedependence(Antovetal.,2004).In addition,thecytoskeletonseemstohaveanactiveinvolvementin themacromoleculesuptake.Arecentstudyontheactincytoskele- tonimplicationsintheDNAelectrotransfershowedtheformation ofactinpatchescolocalizingwiththeDNAaggregatesatthemem- brane(Rosazzaetal.,2011).Moreover,analterationoftheactin networkinducedadecreaseinboththeamountofpDNAinter- actingwiththecellmembraneandthegeneexpressionlevel.Up todate,thepDNAtranslocationmechanismisnotyetfullychar- acterized,itispossiblethatbothsuggestedmodels,electropores andelectroendocytosis,occuratthesametimeaspDNAasbeen

detectedinbothaggregatedandfreeformsinthecytoplasm(Golzio etal.,2002).However,ratherlittledataconcerningtheintracellu- lartraffickingofelectrotransferredpDNAwhichcouldshedlight onthetranslocationmodehavebeenpublishedtodate.

Fromwhathasbeendetailedabove,wecansuggestthatthe membranecompositionislikelytoaffectitsinteractionwithpDNA molecules. This in turn could influence the pathway of pDNA entryintothecell (Rejmanet al.,2004).Inorder toverify this assumption,weinvestigated theroleof cholesterolin thegene electrotransferprocess.Cholesterolrepresents30%ofmembrane lipidsofmammaliancellsandhasamajorinfluenceonthebiophys- icalpropertiesoftheplasmamembrane,suchase.g.membrane fluidity and thickness (Maxfield and Tabas, 2005).It is mainly foundintheinnerleafletoftheplasmamembraneofcellsandis alsoenrichedinmembranedomainsinvolvedinalargevarietyof processessuchasproteintransport(Yoshimorietal.,1996),sig- naltransduction(SimonsandToomre,2000),andpathogenentry (Fivazetal.,1999;Lafontetal.,2004;Manesetal.,2003).More- over,cholesterolisinvolvedinclathrin-andcaveolin/raft-mediated endocytosis(DohertyandMcMahon,2009).Itplaysakeyrolein moleculeentryintocellsandcanthereforehaveamajorroleinthe interactionofpDNAwiththeplasmamembrane,thetranslocation ofpDNAthroughthemembrane,anditsintracellulartrafficking.

Thequestionsweaddresshereare:Ischolesterolinvolvedinthe electropermeabilizationprocessofthemembrane?Doesitpartici- pateintheformationofthepDNAinteractionwiththemembrane?

Whatisitseffectonelectroporationmediatedgenedelivery?How doesthepDNAcrosstheplasmamembrane?Inordertoanswer thesequestions,wehaveperformedcholesteroldepletionexperi- ments,whichallowustomeasureitseffectonthedifferentstepsof theelectroporationprocess.Inaddition,weperformedcolocaliza- tionstudieswithseveralendocytoticmarkerswhichgiveinsight intotheinternalizationpathwaysofpDNA.

2. Materialsandmethods

2.1. Cellculture

Thewild-type(Torontostrain)ChineseHamsterOvary(CHO) celllinewasselected forits ability togrowinsuspension in a spinner or platedonPetri dishes or on22mm×22mm micro- scopeglasscoverslips(Lab-Tek®II,NuncTM,Roskilde,Denmark).

CHO cells were grown in Eagle’s minimum essential medium (MEM1011,Eurobio,LesUlis,France)supplementedwith8%heat inactivatedfetal bovine serum(Gibco®,InvitroGenTM, Carlsbad, CA),0.584g/Ll-glutamine (Gibco®,InvitroGenTM,Carlsbad, CA), 3.5g/Ld-glucose(Sigma–Aldrich,St.Louis,MO),2.95g/Ltryptose- phosphate (Sigma–Aldrich, St. Louis, MO), 100U/mL penicillin (Gibco®,InvitroGenTM,Carlsbad,CA),1mg/Lstreptomycin(Gibco®, InvitroGenTM,Carlsbad,CA)andBMEvitamins(Sigma–Aldrich,St.

Louis,MO).Thecellswereroutinelysub-culturedevery2daysand incubatedat37Cinahumidifiedatmospherewitha5%CO2incu- bator(Golzioetal.,2002).

2.2. Electropulsationprocedure

ElectropulsationwasperformedusingaCNRScellelectropul- sator (Jouan, St. Herblain, France), which delivers square-wave electric pulses. The amplitude (U), the duration (T), the num- ber (N), and the frequency (f) of the electric pulsetrain were controlled independently. Anoscilloscope (Enertec,St. Etienne, France)monitoredthepulseshape.FortheCHOcells,theoptimum electropermeabilizationparametersare10pulsesof5msat1Hz frequencywithanelectricfieldstrengthbetween0.4and0.8kV/cm (Golzioetal.,2002).Stainless-steelelectrodeswereusedinorder

(3)

toavoidelectrochemicalreactionsofthemetal.Severaltypesof electrodeswereuseddependingontheproceduretobeapplied:

(i)parallelplateelectrodes(10mmlength,5mminter-electrode distance)wereusedtopulsecellsuspensionsand(ii)parallelrod electrodes(10mmlength,0.5mmdiameter,7mmgap)wereused topulsecellsunderfluorescencemicroscope(Mazeresetal.,2009).

Theelectropulsationswereperformedinalowconductivitybuffer (10mMK2HPO4/KH2PO4,pH7.4,1mMMgCl2,250mMsucrose), whichminimizedthetemperatureincreaseduetotheapplication oftheelectricfield.Cellsweremaintainedinthepulsationbuffer for5minaftertheapplicationoftheelectricpulsestoallowfor membraneresealing.

2.3. Cholesteroldepletion

Thecholesteroldepletionwasperformedusing5mMmethyl- b-cyclodextrin (MbCD) (Sigma–Aldrich, St. Louis, MO) in the culture mediumwithout serum.Cell suspensions werewashed withPBSandsuspendedinthedepletionmediumatadensityof 106cells/mL.Theywereincubatedinthespinnerfor15minat37C withlowagitation(70–100rpm).Controlcellswerehandledand incubatedunderthesameconditionsusingtheculturemedium withoutserum.Standard techniqueswereusedforquantitative analysis: thepercentageof cholesteroldepletionwasevaluated accordingtoCezanneetal.(1992);aftercelllysisandseveralcen- trifugations, themembrane proteinswere quantified usingthe Lowry method (Lowry et al., 1951); lipids were extracted and measuredashasfirstbeendescribedbyBlighand Dyer(1959);

phosphate measurementsweredoneaccording toRouseret al.

(1970),cholesterolmeasurementsaccordingtoZlatkisetal.(1953).

2.4. Electropermeabilization

A cell suspension (106cells/mL) wasincubated in a spinner either in the depletion medium for the MbCD treated cells or intheculturemediumwithoutserumforthecontrolcells.After the 15min incubation time, the cells were centrifuged (5min, 120g). For each electropermeabilization condition 5×105 cells weresuspendedin100mLpulsationbuffercontaining100mmol/L propidium iodide (PI). The pulse series were applied at field strengthsbetween0.1and1kV/cm,theothersparameterswere chosenashasbeendescribedabove.After5min,thecellswere transferredtoPBSbufferandanalyzedusingflowcytometry(FAC- Scan,BDBiosciences,LePontdeClaix,France)viatheFL2channel (560nm≤em≤600nm).Thepercentageoffluorescentcellsthere- forecorrespondstothepercentageofelectropermeabilizedcells (i.e.theefficiencyofelectropermeabilization)andthemeanflu- orescenceintensityreflectsthemeanquantityofPIincorporated intothecells(i.e.thelevelofelectropermeabilization)(Rolsand Teissie,1998).

2.5. InteractionpDNA/membrane

pEGFP-C1 plasmid (Clonetech, Palo Alto, CA) contains the EnhancedGreenFluorescentProtein(EGFP)geneunderthecon- trol of the cytomegalovirus promoter. Plasmids were prepared fromtransformedDH5˛EscherichiacoliusingtheMaxiprepDNA purificationsystemaccordingtomanufacturerinstructions(Qia- gen,Chatsworth,CA). ThispDNAwasstainedstoichiometrically with a 30.4×10−5mol/L TOTO-1 solution (Molecular Probes®, InvitroGenTM, Eugene, OR), for 1mg/mL pDNA solution during 60minonice(e.g.anaveragebasepairtodyeratioof5)(Escoffre etal.,2009b;Ryeetal.,1992).

AftertheMbCDincubation,thecellswerecentrifuged(5min, 120g)andsuspendedin100mLpulsationbuffercontaining2mg labeledpDNAatarateof2×105cellspercondition.Forthispur-

pose,eachsuspensionwasdepositedbetweentherod-electrodes whichwerepreviouslyfixedontheLab-Tek®-IIinstalledonthe fluorescence microscope. The electric field parameters were as describedabovewithstrengthsbetween0.4and1kV/cm.

Cells were observed with a Leica 100×, 1.3 numerical aperture oil immersion objective mounted on a Leica DMIRB inverted microscope (Leica Microsystems GmbH, Wetzlar, Germany). The excitation source was a Leica mercury lamp 100 HBO. The wavelengths were selected using the Leica L4 filter block (450nm≤ex≤490nm; dichroic mirror pass band, 515nm≤em≤560nm).ImageswererecordedwiththeCellScan System fromScanalytics (Billeria,MA) equipped witha cooled charge-coupled devicecamera (PrincetonInstruments, Trenton, NJ). This digitizing set-up allowed for quantitative localized analysisof thefluorescenceemission along thecellmembrane.

Plot histograms detected local fluorescence intensity increase abovethebackgroundleveloutsideofthecells.Twocharacteristic parameterswereused:thepeakintensityandtheintegralunder thepeak.Bothweredirectlyrelatedtothenumberoffluorescent moleculeslocallypresent(Faurieetal.,2010).

CellswerealsotransferredinPBSbufferandanalyzedusingflow cytometry(FACScan,BDBiosciences,LePontdeClaix,France)via thechannelFL1(510nm≤em≤540nm).Thepercentageoffluo- rescentcellsgivesthepercentageofcellsbeingininteractionwith thelabeledpDNAandthemeanfluorescenceintensityassociated isproportionaltothemeanamountofpDNAininteractionwith thecells.

2.6. Geneelectrotransfer

Cellsuspensionswereculturedatadensityof106cells/mLin spinners,treatedornotwithMbCD,andcentrifugedtoremove themedia.Theyweresuspendedinthepulsationbuffercontain- ing2mgpEGFP-C1plasmidDNAand106cellspercondition.The pulse parameters were 10 pulses of 5ms at 1Hz with ampli- tudesvaryingbetween0.4and0.8kV/cm.Afterthe5minwaiting timetoallowcellstoreturntotheimpermeablestate,cellswere seeded in 35mm Petri dishes for 24h in the culture medium (seeSection2.1).Subsequently,theywerewashed,harvestedwith trypsin-EDTA,suspendedinPBS,andanalyzedusingflowcytom- etry(FACScan,BD Biosciences,LePont deClaix,France)viathe channelFL1(510nm≤em≤540nm).Thepercentageoffluores- centcellsgivesthepercentageofEGFPtransfectedcells(i.e.the efficiency of transfection) and the mean fluorescence intensity associatedisproportionaltothemeanamountofEGFPexpressed bythecellpopulation(i.e.theleveloftransfection).

2.7. Cellviability

Cell viabilitywasdetermined bytheability of cellsto grow and divideover a24hperiod(corresponding tomorethanone generation)(Kuengetal.,1989).Viabilitywasmeasuredbymoni- toringcellgrowththroughacolorationmethodwithcrystalviolet (Merck&Co.,WhitehouseStation,NJ).Aftertreatment,thecells wereculturedtoadensityof106cells/mLintheculturemedium on35mm Petridishesfor 24h. After3washingswithPBS,the cells were incubatedwith0.1% crystal violet in PBSfor 20min undergentleagitation(20rpm)atroomtemperature.Then,the cellswerewashed3timeswithPBSandlysedwith10%aceticacid (Sigma–Aldrich,St.Louis,MO)for10minundergentleagitationat roomtemperature.100mLofthelysatewasdilutedin2mLPBS andtheopticaldensity(OD)wasmeasuredat595nm.TheODis proportionaltotheamountofcellsandthemeasurementswere normalizedinrelationtotheuntreatedcells (controlcondition) (Golzioetal.,1998).

(4)

2.8. Intracellulartrafficking 2.8.1. Endocytoticmarkers

ThepDNAwascovalentlystainedwithCy3dyeusingtheLabel IT®NucleicAcidLabelingKit(Mirus®,Madison,WI)accordingto manufacturerinstructions. Theendocytotic markerswereAlexa Fluor® 647-transferrin (MolecularProbes®,InvitroGenTM, Carls- bad, CA) to test for the clathrin-mediated endocytosis path or Alexa Fluor® 647-cholera toxin subunit B (Molecular Probes®, InvitroGenTM,Carlsbad,CA)totestforthecaveolin/rafts-mediated endocytosispath.24hpriortoelectropulsation,2×105cellswere culturedonLab-Tek® IIslides.Then,thecellswereincubatedat 4Cfor30mintoinhibitanyendocytoticprocesses.Thecellswere subsequentlywashedwithpulsationbufferandpulsedin300mL pulsationbuffercontaining1mgCy3-labeledpDNAwiththe10mm lengthplate-electrodes.Five minutesafter electropulsation,the pulsationbufferwasremovedandicecoldculturemediumcontain- ingtheendocytoticmarker,either50mg/mLtransferrinor1mg/mL choleratoxinsubunitB,wasadded.Thecellswereagainincubated at4Cfor 30mintoallowfortheendocytotic markertointer- actwiththeplasmamembranewithoutendocytosistakingplace.

Afterwards,thecellswereincubatedfor15minat37Ctoinduce theendocytosis.

2.8.2. Fluorescencemicroscopy

Asolidstatelaser(CoboltJive561nm,75mW,CoboltAB,Stock- holm, Sweden) and a diode laser (HL6535MG 658nm, 90mW Hitachi,Thorlabs,Newton,NJ)wereusedtoexcitetheCy3orAlexa Fluor®647labeledmolecules.Thelaserpowerswereadjustedwith neutraldensityfilters.Toobtainhomogeneousillumination,the laserswerecoupledintoamulti-modefiber(0.22±0.02NA,Optro- nisGmbH,Kehl,Germany)whichwasshakentodestroycoherence andsuppressinterferenceeffects.Thefluorescencewascollected usinga100×/1.4NAoilobjective(HCXPLAPO,LeicaMicrosystems GmbH,Wetzlar,Germany),separatedfromexcitationlightwitha dualbanddichroicmirror(HCDualbandBeamsplitterz561/660, Semrock,Rochester,NY).Thefluorescenceemittedfromthegreen labels wasselectedusing a long-pass filter(Raman emitterRU 568,Semrock,Rochester,NY)andaband-passfilter(BrightLineHC 593/40,Semrock,Rochester,NY).Thefluorescenceemittedfrom theredlabelswasselectedusingalong-passfilter(Ramanemit- terRU664,Semrock,Rochester,NY).Imageswererecordedusing anEMCCDcamera(AndoriXON,AndorTechnologyPLC,Belfast, Ireland).Acquisitionsweresequentiallytakentoavoidcrosstalk.

2.8.3. Colocalizationanalysis

The image processing and analysis were performed using ImageJ(NIH,Bethesda,MD,USA)andaprocedureadaptedfrom (Lachmanovichetal.,2003).Indetail,pointnoiseonrawimages wasremovedbyapplyinga3×3pixelsmedianfilter.Toremove diffusebackground,anadditionalfilteringstepwasperformed.For thispurpose,firsttheshortmorphologypluginofImageJwasused withthesizesettoacirclewith15pixelsdiameter.Theresult- ingimagewassubtractedfromthepointnoisefilteredimage.This processallowsforthesuppressionofthebackgroundwithoutsig- nificantlychangingtherelativeintensitiesoftheparticles.Further objectsegmentationandquantificationwereperformedwiththe JACoPpluginofImageJ(BolteandCordelieres,2006).Thelatterwas usedtomanuallydefinethethresholdabovewhichallpixelsare consideredtobepartofanobject.Theobjectcountingmoduleofthe plugingivesthetotalnumberofparticlesandthatofcolocalizing onesforeachchannel.Twooptionsareavailablefordefiningcolo- calization.Thefirst,calledtheoverlapapproach,definesthecenter ofmassofeachobjectbelongingtothegroupA(e.g.greendetec- tionchannel)andtestsifitfallsintotheareacoveredbyanobject belongingtothegroupB(e.g.reddetectionchannel).Colocalization

thenisamatchbetweenthecentersofmassofgroupAobjectswith theareacoveredbygroupBobjects.Thedegreeofcolocalization isgivenbythepercentageofAobjectscolocalizingwithBobjects.

Thisoperationcanbeperformedseparatelyforeachchannel.The secondoptiontodefinecolocalizingobjectsiscallednearestneigh- bordistanceapproach.Aswiththeoverlapmethod,thecenterof massofeachobjectisdefined,butthistimeforbothgroups.The softwaremeasuresthedistancebetweenthecentersofmassofA groupobjectsandthecentersofmassofBgroupobjects.Asthe numberofobjectsoftendiffersfromonechanneltotheother,the programselectsthechannelwithfewerobjectsandsearchesthe nearestneighborinthesecondchannelwhichhasmoreobjects.

Ifthisdistanceisfoundtobebelowtheopticalresolutionofthe acquisitionsystem,thetwoobjectsareconsideredtobecolocal- ized.Thedegreeofcolocalizationisthengivenbythepercentage ofobjectsinthefirstchannelcolocalizingwithobjectsofthesecond channel.

2.9. Statisticalanalysis

Errorbarsrepresentthestandarderrorofthemean(SEM).The statisticalsignificancesofdifferencesbetweenthecontrolandthe MbCD treated cells for allexperimentswere evaluatedusing a pairedStudent’st-test.The degreeofsignificance is givenwith these following labels:NS, not significant; *p<0.05; **p<0.01;

***p<0.001.

3. Results

First, weanalyzed theeffect ofcholesterol depletiononthe differentstepsinvolvedinthepDNAelectrotransferprocess:mem- braneelectropermeabilization,pDNA/membraneinteraction,and geneexpression.Then,wedeterminedthemechanismofpDNA translocationthroughtheplasmamembraneanditsintracellular traffickingusingendocytoticmarkers.Forthat,cellswerepulsed underelectricfieldparameterswhichwereknownfromprevious studiestoleadtoefficientgeneexpression.

3.1. Effectofcholesteroldepletiononelectrotransfectionsteps Inorder todeterminetowhat extentthecholesterolhasan influenceongeneelectrotransfer,CHOcellswereincubatedwith methyl-b-cyclodextrin (MbCD). Indeed, cyclodextrinsare cyclic oligomersofglucosethathavetheabilitytosequesterlipophiles intheirhydrophobiccore(Pithaetal.,1988).Treatmentofcellcul- turewiththeMbCDdrugresultsindepletionofcholesterolfrom theplasmamembranefollowedbydissociationofproteinsfrom rafts(SimonsandToomre,2000)anddisturbanceofclathrin-coated vesiclesformation(Rodaletal.,1999).Therefore,MbCDcanaffect clathrin-andcaveolin/raft-mediatedendocytosis.Ourexperimen- talconditions inducedapproximately40% cholesteroldepletion witharather low reductionof thephospholipids/proteinsratio (12%).Thisdepletionrateremainedstableforupto2h.Thesecon- ditionsallowedpreservingthecellviabilityatahighlevel(upto 80%).

3.1.1. Effectofcholesteroldepletiononmembrane electropermeabilization

Theresultsregardingtheuptakeofpropidiumiodideintocon- trolandcholesteroldepletedCHOcellsexposedtoelectricpulse seriesareshowninFig.1.Intheabsenceofanelectricfield,25–30%

ofthecellswerefluorescentduetothepresenceofdeadcellsinthe population.Thispercentagewasthesameforthecontrolaswellas thecholesteroldepletedcells(Fig.1a).Theapplicationofelectric fieldpulsesresultedinthepermeabilizationofcells.Thepercentage ofelectropermeabilizedCHOcellswasnotaffectedbycholesterol

(5)

Fig.1.EffectofcholesteroldepletionontheelectropermeabilizationofCHOcells.

CellswereincubatedwiththedrugMbCDfor15minandexposedtoanelectric field.10pulsesof5msat1Hzwithstrengthsvaryingbetween0and1kV/cmwere applied.Themembranepermeabilizationwasdetectedbypropidiumiodideuptake andmeasuredusingflowcytometry.(a)Percentageofpermeabilizedcellsand(b) meanfluorescenceintensity.Thewhitedotsrepresentthecontrolcells,i.e.not treatedwiththedrugMbCD,theblackdotscorrespondtothetreatedcells.(c)Cell viabilityofthecontrolcells(whitebars)andthecholesteroldepletedcells(black bars).8independentexperimentswereperformed.

depletion.Theelectropermeabilizationthresholdwas0.3kV/cmfor bothcontrolandtreatedcells.Abovethatthreshold,anincreaseof theelectricfieldstrengthsfurtherincreasedthefractionofelec- tropermeabilizedcells.Foranelectricfieldstrengthof0.8kV/cm, nearly 90% of all cells are permeabilized. Higher electric fields donotleadtoafurtherincreaseinthenumberofpermeabilized cells.Theefficiencyofpermeabilization,relatedtotheamountof moleculeselectrotransferredintothecells,wasquantifiedbymea- suringthemeanfluorescenceintensityvalueofthecellpopulations (Fig.1b).Intheabsenceofelectricfields,thenativepermeability washigherforthecholesteroldepletedcellsthanforthecontrol ones.TheMbCDtreatmentdidnotaffectthemeanfluorescence intensityofthePI(datanotshown).Inthepresenceofelectricfields, the cell electropermeabilization was still higher for theMbCD

treatedcells,buttheeffectoftheelectricfield(theincreaseinflu- orescence,i.e.in theamountofelectrotransferredPImolecules) wasthesameasforthecontrolcells.Thedifferenceinpermeabil- itybetweentreatedanduntreatedcellsremainednearlyconstant forallelectricfieldstrengths.Inaddition,wedeterminedtheeffect ofelectricpulsesonthecellviability,whichwasmeasured24h later(Fig.1c).Asmentionedabove,cholesteroldepletionresultedin 20%decreaseincellviability.Theeffectofelectropermeabilization oncellviabilitywasthesameforcontrolandcholesteroldepleted cells.Inconclusion,cholesteroldepletiondidnotsignificantlyaffect theelectropermeabilizationprocess,i.e.theelectrotransferofsmall moleculesintocellsandthecellviability.Itonlychangesthenative permeabilityoftheCHOcells.

3.1.2. EffectofcholesteroldepletiononpDNA/membrane interaction

Videomicroscopyatthesinglecellleveloffersdirectaccessto theearlyeventsofpDNAdeliveryacrosstheelectropermeabilized membrane.ImagesofpDNA/membraneinteractionwereacquired usingfluorescencemicroscopywithTOTO-1labeledpDNAinthe minutesafterapplicationof thepulses. Aspreviouslydescribed (Golzioetal.,2002)andasshowninFig.2aandb,pDNAinteracted intheformofaggregateswiththeelectropermeabilizedpartofthe plasmamembranefacingthecathode.Thisprocessisstillpresent incholesterol depletedcells.pDNAdoesnotenterthecelldur- ingelectropulsation,butinsteaditistrappedatthepermeabilized membrane.OnlyseveralminutesafterelectropulsationispDNA detectedinside thecytoplasm. Consequently,the interactionof pDNAatthemembranelevelcanbequantified.AsshowninFig.2c, theamountofpDNAinteractingwiththepermeabilizedmembrane ofcholesteroldepletedcellswasnotsignificantlydifferentfrom thatofcontrolcells.Flowcytometryanalysisshowedsimilarresults (Fig.2dand e).Whatever theelectricfieldstrengthapplied,the numberofcellsinteractingwiththepDNAandthemeanlevelofflu- orescenceintensitywerenotaffectedbythecholesteroldepletion.

Inconclusion,theelectro-mediatedformationofpDNAaggregates withthecellmembraneisnotacholesterol-dependentprocess.

3.1.3. Effectofcholesteroldepletionongenetransferand expression

Tohighlightanyotherstepsofgeneelectrotransferthatmay beaffected by cholesterol,we measured EGFPgene expression ofviablecells,whichisthefinalstepofthemechanismofgene electrotransfer.Withoutelectropulsation,controlandcholesterol depleted cells did not expressEGFP (Fig.3a and b). Moreover, thepresenceoftheMbCDdrugdoesnotaffectthemeanfluores- cenceintensityoftheEGFP(datanotshown).Atthethreeelectric fieldstrengthvaluesleadingtomembranepermeabilization,cells expressedtheEGFPreportergene.Boththepercentageoftrans- fectedcellsandtheassociatedfluorescenceintensityofcholesterol depletedcellsweredramaticallylowerthanthoseofcontrolcells.

At0.4kV/cm,cholesteroldepletioninduceda3.5-folddecreaseof thetransfectionefficiencycomparedtothecontrolcondition.At 0.6kV/cm,thetransfectionefficiencyofcholesterol-depletedcells was5-foldlowerthanthatofcontrolcellsandthetransfectionlevel decreasedbyafactorof2.Theeffectofcholesteroldepletiononthe transfectionefficiencywaslessvisibleat0.8kV/cm,butthetrans- fectionleveldecreasedbyafactorof14.Cellviabilitywasthesame forcontrolandtreatedcellspulsedinthepresenceofpDNA(Fig.3c).

Theseresultsshowthatcholesterolcanplayamajorroleinthe pDNAtranslocationthroughthemembraneand/oritsintracellular trafficking.

(6)

Fig.2.EffectofcholesteroldepletiononthepDNA/membraneinteractionwithCHO cells.CellswereincubatedwiththedrugMbCDfor15minandexposedtoanelectric field.10pulsesof5msat1Hzwithfieldstrengthsvaryingbetween0and1kV/cm wereapplied.ThepDNAwaslabeledusingTOTO-1dyeandobservedusingwidefield microscopy.(a)Controlcellsand(b)treatedcells(c)quantificationofthisinteraction bymeasuringthefluorescenceintensityanddividingitbytheareaoftheinterac- tion(n=30cellspercondition).TheTOTO-1-pDNA/membraneinteractionwasalso quantifiedusingflowcytometrygivingaccessto(d)thepercentageofcellsinter- actingwithlabeledpDNAandto(e)theassociatedmeanfluorescenceintensity.

3independentexperimentswereperformed.Forallgraphs,thewhitebarscorre- spondtothecontrolcellsandtheblackonestothecholesteroldepletedcells.Scale bar=15mm.

Fig.3.Effectofcholesteroldepletionongeneexpressionafterelectroporationof CHOcells.CellswereincubatedwiththedrugMbCDfor15minandexposedtoan electricfieldinthepresenceofpEGFP-C1.10pulsesof5msat1Hzwithstrengths varyingbetween0and1kV/cmwereapplied.TheEGFPproteinexpressionwasmea- sured24haftertheapplicationoftheelectricfield.(a)Percentageofcellsexpressing theEGFPprotein,(b)meanfluorescenceintensityoftheEGFPprotein,(c)cellviabil- ity.Forallgraphs,thewhitebarscorrespondtothecontrolcellsandtheblackones tothecholesteroldepletedcells.4independentexperimentswereperformed.

3.2. Colocalizationstudywithendocytosismarkers

The effects of cholesterol depletion ongene electrotransfer, as well as the role of actin which we just reported (Rosazza et al., 2011), prompted us todetermine thepathway of pDNA entryintotheelectropermeabilizedcells.Indeed,bothactinand cholesterol are involved in endocytotic processes. In order to determinethemannerofpDNAentryafterelectropulsation,we performeddualcolorobservationsofCy3-labeledpDNAandtwo endocytoticmarkers:AlexaFluor®647labeledtransferrin(TF)to

(7)

Fig.4. ColocalizationofpDNAwithaclathrin-mediatedendocytosismarker,transferrinandwithacaveolin/raft-mediatedendocytosismarker,choleratoxinsubunitB.

Cy3labeledpDNAwaselectrotransferredontoCHOcellsviatheapplicationof10electricpulsesof5msat1Hzand0.4kV/cm.ObservationseitherwithAlexaFluor®647- transferrin,orwithAlexaFluor®647-choleratoxinsubunitBwereperformedusingwidefieldmicroscopy.(aandd)pDNA,(b)transferrin,(e)choleratoxinsubunitB,and (candf)mergeofthetwochannels.Thewhitelinesontheimagerepresentthecellshapes.Scalebar=5mm.

assess theclathrin-mediated endocytosisand AlexaFluor® 647 labeledcholeratoxinsubunitB(CTB)toevaluatethecaveolin/raft- mediatedendocytosis.

Inafirstqualitativeapproach,microscopydatashowthatthe pDNApartiallycolocalizeswithboththeTFandtheCTB(Fig.4).

Thismeans that pDNAis internalized, atleast in part,via two endocytotic processes. To determine the involvement of each pathwayinthepDNAinternalization,colocalizationquantification wasperformedusingobject-basedapproaches,whichanalyzethe spatialdistributionofthefluorescencesignals(Lachmanovichetal., 2003).Thecolocalizationanalysisdoesnotrelyonthecoincidence ofindividualpixelsbutonthecoincidenceofstructures.Therefore, eachpixelisnotconsideredasapartofanimagebutasapartof a uniqueobject. Object-based methodsalsodiscriminate better betweensignalscomingfromstructuresandthoseoriginatingfrom background.Thesemethodsareofspecialinterestfortheanalysis ofsubcellularstructureshavingspecificshapesandsizescloseto theopticalresolutionlimitofmicroscopes.Afterprocessing(Fig.5a andc),theimagesaresegmented(Fig.5banddred,patches).All thepixelsabovealimitvalueareconsideredtobepartofanobject.

Theedgesofthefluorescentstructuresarethendelimited.From each obtainedobject, thecenterofmass isdetermined(Fig.5b andd,greendots).Theanalysisusingtheoverlapapproachtests whetherthecentersofmassofobjectsinthefirstchannelfallin areascoveredbyobjectsofthesecondchannel(Fig.5bandd).This canbedoneseparatelyforbothchannels.Thenumberofcolocaliz- ingobjects(Fig.5bandd,yellowdots)amongthetotalamountof objectscountediscalculatedasthepercentageofcolocalization.

Theanalysisusingthenearestneighbordistanceapproachmea- suresdistancesbetweenthecentersofmassofobjectsinthefirst channelandthecentersofmassofobjectsinthesecondchannel (Fig.5f).Thesedistancesarecompared totheopticalresolution limitoftheacquisitionsystem.Twoeventscolocalizewhenthedis- tanceoftheircentersofmassisbelowtheopticalresolutionofthe

system(Fig.5f,blueandpurpledots).Thedegreeofcolocalization isalsogivenasapercentageofobjectsofchannelonecolocalizing withchanneltwo.Fig.5gshowsthetwodefinedpercentagesof colocalizationbetweenthepDNAandthetwoendocytoticmarkers.

Thepercentagesofcolocalizationdeterminedbythetwodifferent approachesyieldavalueofapproximately50%±7%ofcolocaliza- tionofthepDNAwiththeCTBandof25%±7%withtheTF.We thereforeconcludethat themain endocytoticprocess occurring duringpDNAelectrotransferiscaveolin/raft-mediatedendocytosis.

Clathrin-mediatedendocytosisisalsoobserved,butlessfrequently.

4. Discussion

Theobjectivesofourworkweretoinvestigatethepotential role of cholesterol in the process of pDNA electrotransfer and tocharacterize someroutesof itsinternalizationintocells. We firstshowedthatthenativecellpermeabilityis affectedbythe plasmamembranecholesterollevel.Inagreementwithprevious investigations,thisresultcanbeexplainedbyanincreaseinmem- branefluidity,whichisinfluencedbythecholesterollevel.Indeed, thedepletion or theaddition ofcholesterol in lipid vesicles or bilayerfilms,respectively,increasesordecreasestheirpermeabil- itywithrespecttowater,ions,glucoseandothersolutes(Lande etal.,1995;Mathaietal.,2008;Papahadjopoulosetal.,1972).Our datashowthat,whatevertheelectricfield strength,cholesterol depletionhasnosignificanteffectonpermeabilizationleveland efficiencyaccessedbyPIuptake.Thesedataare,toourknowledge, thefirstresultingfromcellexperiments.Previousdataontheeffect of cholesterol onmembrane electropermeabilization havebeen obtainedusingmolecular dynamics simulationsand usinglipid bilayersorvesiclesasmembranemodels.Theyshowedthatmem- braneelectroporationrequiredanenhancementorareductionof theelectricfieldstrengthwhenthecholesterolcontentincreasedor decreased,respectively(Fernandezetal.,2010;Kakorinetal.,2005;

(8)

Fig.5.AnalysisofthecolocalizationofpDNAwithaclathrin-mediatedendocytosis marker,transferrinandwithacaveolin/raft-mediatedendocytosismarker,cholera toxinsubunitB.Thequantificationwasperformedusingobject-basedmethods;

theoverlapapproachandthenearestneighbordistanceapproach(Lachmanovich etal.,2003).Thefirststep,commonforthetwomethodsofanalysis,istheimage processinggivingsuchimages:(a)pDNAchannel,(c)choleratoxinsubunitchan- nel,and(e)mergeofthetwochannels.Foracomparison,therawimagesareshown,

KoronkiewiczandKalinowski,2004;vanUitertetal.,2010).More- over, simulation datashowedthat pore formationkineticswas underthecontrolofcholesterollevel.Thesedifferencesbetween modelsandcellsclearlyshowthatthepermeabilizationofplasma membranesismorecomplexthanthatdescribed bymembrane models.Thiscanbeexplainedbythefactthatthecompositionin proteinsandinlipidsofaplasmamembrane(variousphospho- lipidsand proteins,membrane asymmetry,interactionwiththe cytoskeleton...)ismuchmorecomplexcomparedtomembrane models(oneorthreephospholipids)(vanMeeretal.,2008).

We further show that cholesterol depletion has no effect onpDNAinteractionwiththeplasmamembrane subsequentto theelectricfield application,a keystepofpDNAelectrotransfer (Escoffreetal.,2010a;Faurieetal.,2010;Golzioetal.,2002;Phez etal.,2005).Ifmembraneelectropermeabilizationisanecessary stepforpDNA/membraneinteractiontooccur,theelectrophoret- icallydriven insertionof thepDNAin theplasmamembrane is crucialforgenetransfer.Cholesteroldepletionseemstohaveno effectoneitherstep.Increasingtheelectricfieldstrengthindeed enhancesthepDNAinsertioninthemembraneinthesamepro- portionsforboththecontrolandthecholesteroldepleted cells.

TheseresultsshowthatthepDNA/membraneinteractionstepis acholesterol-independentprocess.Moreover,thecholesterolcon- tentcannotbeanimportantparameterdefining“competentsites”

forpDNA/membraneinteraction.

Theresultsdescribedaboveindicatethatcholesterolmightnot haveanyinvolvementinthefirststepsofthegeneelectrotransfer processbut,asgeneexpressionisconsiderablyaffectedincholes- teroldepletedcells, furtherstepscouldbeaffected.Indeed,our resultsshowthatbothtransfectionlevelandefficiencyweredra- maticallylowercomparedtothoseofthecontrol,forallelectric fieldstrengthsapplied.Cholesterolmayhaveaninvolvementin thepDNAtranslocation acrosstheplasmamembraneand/orits intracellular trafficking. Because cholesterol is mainly found in plasmamembranes,weproposethatitisthetranslocationstep thatis alteredbythereduction ofcholesterol content.Thishas beendemonstratedfortheendocytosisofseveraldifferentparti- cles(Kabouridisetal.,2000;Laietal.,2008;Norkin,1999;Norkin etal.,2001;Rejmanetal.,2004).

Thecolocalizationstudiesperformedinthisworkclearlyshow thatpDNAisendocytosed.pDNApartiallycolocalizedwithboth thecholeratoxinsubunitBandthetransferrin.Thismeansthat caveolin/raft-aswellasclathrin-mediatedendocytosisisusedby theelectrotransferredpDNAtoenterthecell.Thequantificationof therespectivepathwaysindicatesthataround50±7%ofthepDNA entersintothecellsviathecaveolin/raft-mediatedpathwayand around25±7%viatheclathrin-mediatedpathway.Whileprevious workssuggestedthatanendocytoticprocesscouldoccurduring geneelectrotransfer(Antovetal.,2005;Klenchinetal.,1991;Rols etal.,1995;Satkauskasetal.,2001),thisisthefirsttimethatthis

respectively,inFig.4d–f.Fortheoverlapapproach,theImageJpluginJACoPtested whetherthecentersofmassofeachgreenpatch(shownasagreendot)fallswithin theareacoveredbyaredpatch.(b)pDNAasredpatchesandcholeratoxinsubunit Basgreendots,(d)choleratoxinsubunitBasredpatchesandpDNAasgreenones.

Yellowcolorrepresentsthecolocalizingobjects.Forthenearestneighbordistance approach,theprogramteststhedistancebetweenthecentersofmassofgreen objectsandthecentersofmassofredobjects.(f)pDNAasgreendotsandcholera toxinsubunitBasreddots.Whenthedistanceisbelowtheopticresolutionlimit oftheacquisitionsystem,thedotsare,respectively,representedasblueandpurple dots.Inbothcases,thepercentagesofcolocalizingobjectswerethuscalculated.The analysisofmorethan100cellswitheachendocytoticmarkergavethepercentages showninthegraph(g).Theblackbarsrepresentthepercentagesofcolocalization withthecholeratoxinsubunitB,i.e.withthecaveolin/raft-mediatedendocytosis (CAV-MEonthegraph),thegreybarsrepresentthepercentagesofcolocalization withthetransferrin,i.e.withtheclathrin-mediatedendocytosis(CLA-MEonthe graph).Scalebar=5mm.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

(9)

isclearlydemonstrated.Theseresultsmayexplain thedecrease ofgeneexpressionobservedwhencellsarecholesteroldepleted.

Sincecholesterolisinvolvedinendocytoticprocesses(Dohertyand McMahon,2009),itsdepletionisexpectedtoreducetheendocy- toticactivityandmay,inourcase,reducethepDNAuptakewitha subsequentlowerpDNAquantityreachingthenucleusandbeing availableforgeneexpressiontooccur.Thisfinallygivesoneexpla- nationfortheobservationofreducedlevelsofgeneexpressionin cholesteroldepletedcells.Oneshouldnotethatcholesteroldeple- tionmayinadditionreducethefurtherintracellulartrafficking, endosomalescape, and/ornucleartargetingoftheelectrotrans- ferredpDNAasit isthecasefortheadenovirustype2andthe choleratoxin(Imellietal.,2004;ShogomoriandFuterman,2001).

Around75%ofthepDNAduringelectrotransferisinternalized byconcomitantclathrin-andcaveolin/raft-mediatedendocytosis.

ThepDNAaggregatesinteractingwiththeplasmamembranehave sizesvaryingfrom100to500nm(Faurieetal.,2004,2010;Golzio et al., 2002).This wide range of sizesmay explain the several endocytoticpathwaystakenbypDNA.Astudyontheuptakeof microspheresshowedthatparticlesupto200nmwereinternalized mainlybytheclathrin-mediatedpathway.Withincreasingdiame- ters,ashifttoacaveolin/raft-mediatedendocytosiswasobserved andfor500nmmicrospheresthelatterwasthepredominantendo- cytoticpathway(Rejmanetal.,2004).Thus,particlesizeinitself candeterminewhichpathwayisfollowed.Theremaining25%of pDNAforwhichwecannotclearlyidentifytheinternalizationpath- waycouldenterbyoneoftheotherendocytoticprocessessuchas macropinocytosis.pDNAcould,however,stillentercellsviaelec- tropores.Thishypothesis,evenifnotsupportedbyexperimental dataatthepresentstage,stillhastobeconsideredasonepotential wayforpDNAtocrosstheplasmamembraneasispostulatedbased onsimulations(Smithetal.,2004)andonresultsbasedonpDNA electrotransferinGUVs(Portetetal.,2011).Inthislastpaper,it hasbeenshownthatthepredominantpathwayofelectromediated pDNAuptakeintoliposomesisundoubtedlytheelectrophoretic entranceinafreeformviadefectscreatedonthepoleofthevesicles facingthecathode.

ThefactthatpDNAinternalizationislargelytakingplacevia endocytosisallowsspeculationsabouttheintracellulartrafficking ofthepDNA.Intracellulartraffickingofendosomesiscellcytoskele- tonbased(MurrayandWolkoff,2003).Theactincytoskeleton,in additiontobeingrequiredfor anyendosomeformation,canbe usedfortheearlystepofthetransport.Furtherlongrangetrans- porttakes placeviathetubulinnetwork. Previousstudieshave showntheinvolvementofboththeactinandthetubulinnetworks inthemechanismofgeneelectrotransfer.Indeed,actinpolymer- izationoccursatthemembranesiteswherethepDNAaggregates areformedanditsalterationpriortogeneelectrotransferreduces thepDNAaccumulationatthemembraneandthepDNAexpression (Rosazzaetal.,2011).VaughanandDean(2006)andVaughanetal.

(2008)haveshownthatastabilizationofthemicrotubulenetwork enhanceselectrotransferredpDNAexpression.Theyalsodemon- stratedtheabilityofpDNAtointeractwiththemicrotubulesvia otherproteins.Ourfindingsareinagreementwiththesestudies, asanendocytoticprocessrequirestheparticipationoftheactinand thetubulinfilaments.It,inaddition,reinforcesthehypothesisofan activeintracellulartransportofthepDNA.

In conclusion, we show that although cholesterol has no significant effect on the electropermeabilization and on the pDNA/membrane interactionsteps,it isinvolved inlater stages of gene electrotransfer. We report here,for thefirst time, that 50%±7%ofpDNAisinternalizedbycaveolin/raft-mediatedendo- cytosisand25%±7%byclathrin-mediatedendocytosis.Thesedata giveimportantinsightintothemechanismofgeneelectrotransfer evenifthetranslocationstephasstilltobecharacterized.Ithasto beclarifiedhowtheremaining25%ofpDNAareinternalized.Other

endocytotic pathways may beinvolved as wellas the transfer through electropores as reported in giant lipid vesicles (Portet etal.,2011).

Acknowledgements

WethankElisabethBellardandAndreaNagyfortheirhelpand theproofreadingofthisarticle.Weacknowledgefinancialsupport fromtheAssociationFranc¸aisecontrelesMyopathies(toM.-P.R.), fromthe Ministèredes Affaires Etrangèreset Européennes and the Deutscher Akademischer Austausch Dienst (program PHC PROCOPE).

References

Aihara,H.,Miyazaki,J.,1998.Genetransferintomusclebyelectroporationinvivo.

Nat.Biotechnol.16,867–870.

Antov,Y.,Barbul,A.,Korenstein,R.,2004.Electroendocytosis:stimulationofadsorp- tiveandfluid-phaseuptakebypulsedlowelectricfields.Exp.CellRes.297, 348–362.

Antov,Y.,Barbul,A.,Mantsur,H.,Korenstein,R.,2005.Electroendocytosis:expo- sureofcellstopulsedlowelectricfieldsenhancesadsorptionanduptakeof macromolecules.Biophys.J.88,2206–2223.

Bligh,E.G.,Dyer,W.J.,1959.Arapidmethodoftotallipidextractionandpurification.

Can.J.Biochem.Physiol.37,911–917.

Bolte,S.,Cordelieres,F.P.,2006.Aguidedtourintosubcellularcolocalizationanalysis inlightmicroscopy.J.Microsc.224,213–232.

Campana,L.G.,Mocellin,S.,Basso,M.,Puccetti,O.,DeSalvo,G.L.,Chiarion-Sileni, V.,Vecchiato,A.,Corti,L.,Rossi,C.R.,Nitti,D.,2009.Bleomycin-basedelec- trochemotherapy:clinicaloutcomefromasingleinstitution’sexperiencewith 52patients.Ann.Surg.Oncol.16,191–199.

Cemazar,M.,Sersa,G.,2007.Electrotransferoftherapeuticmoleculesintotissues.

Curr.Opin.Mol.Ther.9,554–562.

Cezanne,L.,Navarro,L.,Tocanne,J.F.,1992.Isolationoftheplasmamembrane andorganellesfromChinesehamsterovarycells.Biochim.Biophys.Acta1112, 205–214.

Chernomordik,L.V.,Sokolov,A.V.,Budker,V.G.,1990.Electrostimulateduptakeof DNAbyliposomes.Biochim.Biophys.Acta1024,179–183.

Daud,A.I.,DeConti,R.C.,Andrews,S.,Urbas,P.,Riker,A.I.,Sondak,V.K.,Munster, P.N.,Sullivan,D.M.,Ugen,K.E.,Messina,J.L.,Heller,R.,2008.PhaseItrialof interleukin-12plasmidelectroporationinpatientswithmetastaticmelanoma.

J.Clin.Oncol.26,5896–5903.

Doherty,G.J.,McMahon,H.T.,2009.Mechanismsofendocytosis.Annu.Rev.Biochem.

78,857–902.

Escoffre,J.-M.,Mauroy,C.,Portet,T.,Wasungu,L.,Rosazza,C.,Gilbart,Y.,Mallet,L., Bellard,E.,Golzio,M.,Rols,M.-P.,Teissié,J.,2009a.Geneelectrotransfer:from biophysicalmechanismstoinvivoapplications.Biophys.Rev.1,177–184.

Escoffre,J.M.,Bellard,E.,Golzio,M.,Teissie,J.,Rols,M.P.,2009b.Transgeneexpres- sionoftransfectedsupercoiledplasmidDNAconcatemersinmammaliancells.

J.GeneMed.11,1071–1073.

Escoffre,J.M.,Portet,T.,Favard,C.,Teissie,J.,Dean,D.S.,Rols,M.P.,2010a.Electrome- diatedformationofDNAcomplexeswithcellmembranesanditsconsequences forgenedelivery.Biochim.Biophys.Acta.

Escoffre,J.M.,Teissie,J.,Rols,M.P.,2010b.Genetransfer:howcanthebiological barriersbeovercome?J.Membr.Biol.236,61–74.

Faurie,C.,Phez,E.,Golzio,M.,Vossen,C.,Lesbordes,J.C.,Delteil,C.,Teissie,J.,Rols, M.P.,2004.Effectofelectricfieldvectorialityonelectricallymediatedgenedeliv- eryinmammaliancells.Biochim.Biophys.Acta1665,92–100.

Faurie,C.,Rebersek,M.,Golzio,M.,Kanduser,M.,Escoffre,J.M.,Pavlin,M.,Teissie, J.,Miklavcic,D.,Rols,M.P.,2010.Electro-mediatedgenetransferandexpression arecontrolledbythelife-timeofDNA/membranecomplexformation.J.Gene Med.12,117–125.

Fernandez,M.L.,Marshall,G.,Sagues,F.,Reigada,R.,2010.Structuralandkinetic moleculardynamicsstudyofelectroporationincholesterol-containingbilayers.

J.Phys.Chem.B114,6855–6865.

Fivaz,M.,Abrami,L.,vanderGoot,F.G.,1999.Landingonlipidrafts.TrendsCellBiol.

9,212–213.

Gabriel,B.,Teissie,J.,1997.Directobservationinthemillisecondtimerangeofflu- orescentmoleculeasymmetricalinteractionwiththeelectropermeabilizedcell membrane.Biophys.J.73,2630–2637.

Gehl,J.,2008.Electroporationfordrugandgenedeliveryintheclinic:doctorsgo electric.MethodsMol.Biol.423,351–359.

Giardino,R.,Fini,M.,Bonazzi,V.,Cadossi,R.,Nicolini,A.,Carpi,A.,2006.Elec- trochemotherapyanovelapproachtothetreatmentofmetastaticnoduleson theskinandsubcutaneoustissues.Biomed.Pharmacother.60,458–462.

Glogauer,M.,Lee,W.,McCulloch,C.A.,1993.Inducedendocytosisinhumanfibrob- lastsbyelectricalfields.Exp.CellRes.208,232–240.

Golzio,M.,Mora,M.P.,Raynaud,C.,Delteil,C.,Teissie,J.,Rols,M.P.,1998.Control byosmoticpressureofvoltage-inducedpermeabilizationandgenetransferin mammaliancells.Biophys.J.74,3015–3022.

Referenzen

ÄHNLICHE DOKUMENTE

In a typical experimental setup (i.e., the sequential two-task paradigm), participants first work on a task that either does or does not require self-control exertion (e.g.,

In the hypertensive population, effective blood pressure control with traditional drug therapy based on thiazide-type diuretics in high dosage led to a distinct decrease

In order to evaluate whether endocytosis is an important pro- cess leading to the internalization of DNA after electropora- tion, we performed EGFP reporter gene expression in CHO

Top branches of spruces a well exposed to the electric field and collect the radon daughters from the air.. Method: The top needles of spruces under HV line were picked and

In the current study, we investigated by how much the plant sterol α-spinasterol reproduces the very unique membrane properties of cholesterol in lipid membranes by comparing

In this study we pres- ent results which clearly indicate that the actin cytoskeleton also has an active role during the electric field mediated gene transfer in mammalian

The displacements of Fe 3 + (at the Ta 5 + site) along the [001] direction in KTaO 3 crystal, caused by the electric field, have been studied by calculating the

The number of times each country appears in tables and graphs of the different “The Economist” issues for year 1995 confirms the evolution of the index between 1990 and 2000.. Data