• Keine Ergebnisse gefunden

Increased seawater temperatures cause temporal shifts in catabolic pathways of Antarctic krill Euphausia superba

N/A
N/A
Protected

Academic year: 2022

Aktie "Increased seawater temperatures cause temporal shifts in catabolic pathways of Antarctic krill Euphausia superba"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Tobias Mattfeldt1, Mathias Teschke1, Natasha Waller2, So Kawaguchi2, Bettina Meyer1

BREMERHAVEN Am Handelshafen 12 27570 Bremerhaven Telefon 0471 4831-0 www.awi.de

Increased seawater temperatures cause temporal shifts in catabolic pathways of Antarctic krill Euphausia superba

1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

2 Department of Environment and Heritage, Australian Antarctic Division, Kingston, Australia

The  Atlan*c  sector  of  the  Southern  Ocean  is  par*cularly  suscep*ble  to  climate  change  and  among  the  fastest  warming  regions  

worldwide.  Antarc*c  krill  Euphausia  superba  play  a  pivotal  role  in  the  Southern  Ocean  food  web  and  fishery  by  sustaining  a  large   number  of  predators  and  cons*tu*ng  the  largest  underexploited  stock  of  forage  fish.  As  such  the  response  of  the  Southern  Ocean  

ecosystem  will  largely  depend  on  the  response  of  the  krill  popula*on  to  changes  in  its  environment.  Temporal  and  spa*al  shi@s  in  the   Southern  Ocean  are  already  observable  today  and  the  habitat  of  krill  is  projected  to  dras*cally  change  over  the  next  century.  Data  on   krill’s  physiological  ability  to  acclima*ze  to  increasing  temperatures  is  scarce.  However,  to  further  aid  the  ability  to  predict  ecosystem   behavior  it  is  essen*al  to  gain  an  understanding  of  the  underlying  mechanism  of  response.

Background:

Lisa  Roberts  CC  BY-­‐NC-­‐SA  3.0

The  aim  of  this  study  was  to  elucidate  the  direct  effects  of  rising  seawater  temperature  on  Antarc8c  krill  catabolism.

Experimental Design:

Schematic  overview  of  experimental  tank  holding   200  individual  krill.  Light  conditions  were  kept  

constant,  temperature  was  regulated  within  a  range   of  0.1°C.  Krill  were  fed  ad  libitum.

Sampling  scheme  of  control  and  treatment  tanks.  Temperature  was  gradually  increased  from  0.5°C  to   7°C  over  a  period  of  16  weeks.  Temperature  in  control  tank  remained  constant  at  0.5°C.  At  each  

sampling  point  (0.5°C,  3°C,  5°C  and  7°C)  18  individuals  were  sampled  from  the  treatment  tanks  and  6   individuals  from  control  tank.

Week

18  x 18  x 18  x

6  x 6  x 6  x 6  x

-­‐ Morphometry   -­‐ Respiration   -­‐ C/N  Analysis  

-­‐ Enzyme  Activity:  

-­‐ Citrate  Synthase  

-­‐ Malate  Dehydrogenase   -­‐ Pyruvate  Kinase  

-­‐ 3-­‐Hydroxyacyl-­‐CoA-­‐  

-­‐ Dehydrogenase

Measured  Parameters

Results & Discussion:

Overall  metabolic  ac*vity  increased  with  temperature  (A).  In  response  to   this   increased   energy   demand   krill   experienced   temporal   shi@s   in   its   catabolism:  a  prolonga*on  of  lipid  oxida*on  (B)  and  an  earlier  onset  and   increased  reliance  on  protein  catabolism  (C  and  D).  During  winter  when   food   is   scarce   Antarc*c   krill   enters   a   state   of   quiescence   and   relies   heavily   on   the   u*liza*on   of   lipid   reserves   that   are   generated   in   the   preceding   summer   months.   An   increased   energy   demand   during   the   summer   that   is   met   by   both   protein   and   lipid   catabolism   (E)   has   the   poten*al  to  impede  the  buildup  of  reserves.  With  fewer  lipids  available   during   the   winter   krill’s   over-­‐wintering   ability   will   be   affected.   In   addi*on,   any   energy   channeled   towards   higher   maintenance   with   increasing   temperature   will   be   lacking   elsewhere,   e.   g.   in   matura*on   processes.    

Further   research   is   needed   to   validate   the   enzyma*c   reorganisa*on   found   in   this   study   on   a   gene*c   level   and   to   broaden   the   scope   to   include  regulatory  networks.  It  is  crucial  to  gain  a  deeper  understanding   of  the  underlying  mechanism  driving  this  catabolic  shi@.

Puta8ve  consequences  of  temporal  shi@s  in  catabolism:  

-­‐ Prolonged  lipid  oxida8on  will  impede  buildup  of  important  energy  reserves  for  successive  winter   -­‐ Increased  energy  demand  must  be  met  at  the  expense  of  other  processes  (e.g.  matura8on)

E

Referenzen

ÄHNLICHE DOKUMENTE

In summary, the eVects of starvation on the ultrastructure of the digestive gland of krill larvae were observed as early as 5 days, and these e V ects increased with duration of

Statistical analyses. Selective feeding towards a specific cell size was characterised using a regression between clearance rate of larvae against cell size of food items. The

The objectives of this thesis were the establishment of molecular approaches in the diversity investigation of eukaryotic protists in the Southern Ocean, the comparison of different

The changes in ecosystems, krill distribution and recruitment already observed imply that environmental change may quickly outrun the ability of current manage- ment procedures to

The oceanic residence time of TEI is of great importance to investigate ocean circulation patterns. However, despite the fact there have been numerous studies on

Leopard seals produce very characteristic vocalisations from 200 to 400 Hz (Rogers et al., 1996), the chorus of this calls is most pronounced during December... If we compare

Body length, elemental composition and growth The high inter-annual variability in phytoplankton concentration in the water column during summer and autumn, and the sea ice dynamics

detecting and assessing effects of global warming on the composition and distribution of phytoplankton assemblages in the Southern