• Keine Ergebnisse gefunden

Naïve Bayes

N/A
N/A
Protected

Academic year: 2022

Aktie "Naïve Bayes"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Naïve Bayes

Pattern Recognition HS2019 University of Basel

Dana Rahbani

With slides from: Professor Thomas Vetter, HS2018 lecture by Dr. Adam Kortylewski

Recall: Bayes classifier

• Classification based on posterior distribution

 Model likelihood and prior (Bayes’ rule)

• Advantages of generative models:

Minimizes classification error probability (lecture 3)

Provides classification probability (class certainty)

Can deal with asymmetric risks (penalty term)

o Open question: Is inference tractable? 2

𝑃 𝑥 𝐶

1

𝑃 𝑥 𝐶

2

𝑃 𝐶 2 𝑥 ∝ 𝑃 𝑥 𝐶 2 𝑃 𝐶 2

Which features?

Prior and

likelihood

distributions?

(2)

Example: document classification

• Sentiment classification (positive or negative)

• Spam detection

• Authorship identification For a document Ԧ 𝑥 and a class 𝑐:

𝑐 = arg max

𝑐 𝑃(𝑐| Ԧ 𝑥) 𝑐 = arg max

𝑐

𝑃 Ԧ 𝑥 𝑐 𝑃 𝑐 𝑃( Ԧ 𝑥) 𝑐 = arg max

𝑐 𝑃 Ԧ 𝑥 𝑐 𝑃 𝑐 𝑃 Ԧ 𝑥 𝑐 = 𝑃 𝑥 1 , 𝑥 2 , 𝑥 3 , … , 𝑥 𝑀 𝑐

3

Document with M words

Joint distribution of all features (words) in class!

Naïve Bayes Classifier

Classification model based on Bayes’ classifier + assumption: Conditionally independent features

Independent features conditional on the class

Each feature can have a distribution

Keeps generative model advantages

𝑃 Ԧ 𝑥 𝑐 = 𝑃 𝑥 1 , 𝑥 2 , 𝑥 3 , … , 𝑥 𝑀 𝑐

𝑃 Ԧ 𝑥 𝑐 = 𝑃 𝑥 1 𝑐 𝑃 𝑥 2 𝑐 … 𝑃(𝑥 𝑀 𝑐

(3)

Received: from mx1-pub.urz.unibas.ch (131.152.226.162) by exch.unibas.ch (131.152.8.132) with Microsoft SMTP Server id 14.3.174.1; Wed, 28 May 2014 12:21:57 +0200 From: "bis zum 8. Juni"

xbnmmsjgnscfh@gareau.toyota.ca To: mifdav00@stud.unibas.ch

Subject: Ruby Palace Handycasino verdreifacht heute Ihre Einzahlung

Hallo,

Sie haben Glück! Ihr und unser guter Freund, Christian, hat eine Glückssträhne bei uns im Ruby Palace Casino – er gewann £/$/€640 auf Blackjack – und nun möchte er, dass Sie es ihm gleichtun und in den Gewinnerkreis einsteigen.

Ruby Palace bietet Ihnen nur das Beste – von einer großartigen Auszahlungsrate von 97 Prozent bis hin zur einer exklusiven Auswahl an spannenden Spielen, einschließlich Spieltischen sowie beliebte Spielautomaten und vieles mehr.

Zudem steht Ruby Palace für fairen Spielbetrieb und verantwortungsvolle Casinoführung.

Als ein Freund von Christian, und er hat dich mit Begeisterung empfohlen, erhalten Sie ein Willkommensgeschenk von 200% auf Ihre erste Einzahlung, wenn Sie sich noch heute anmelden.

Beginnen Sie noch heute! Sagen Sie “Ja” und melden Sie sich heute an.

Viel Glück!

Naïve assumption (1) – Bag of words representation

5

CALL FOR PARTICIPATION

The organizers of the 11th IEEE International Conference on Automatic Face and Gesture Recognition (IEEE FG 2015) invite interested research groups to participate in the special sessions and workshopsorganized as part of IEEE FG 2015. Accepted papers will be published as part of the Proceedings of IEEE FG2015 &

Workshopsand submitted for inclusion into IEEE Xplore.

Special sessions

(http://www.fg2015.org/participate/special- sessions/):

1. ANALYSIS OF MOUTH MOTION FOR SPEECH RECOGNITION AND SPEAKER VERIFICATION

Organizers: Ziheng Zhou, Guoying Zhao, Stefanos Zafeiriou

Submission deadline: 24 November, 2014

2. FACE AND GESTURE RECOGNITION IN FORENSICS Organizers: Julian Fierrez, Peter K.

Larsen, (co-orgnized by COST Action IC 1106) Submission deadline: 24 November, 2014

The order of the words is lost!

Auszahlungsrate 3

Glückssträhne 2

Geschenk 2

Spieltischen 1

Geld 5

Research 2

Proceedings 5

Recognition 2

Face 3

Submission 1

Naïve assumption (2) – Conditional independence

• Conditional independence – assume feature probabilities are independent given the class

6

𝑃 Ԧ 𝑥 𝑐 = 𝑃 𝑥 1 , 𝑥 2 , 𝑥 3 , … , 𝑥 𝑀 𝑐

𝑃 Ԧ 𝑥 𝑐 = 𝑃 𝑥 1 𝑐 𝑃 𝑥 2 𝑐 , … , 𝑃(𝑥 𝑀 𝑐

Likelihood of document given spam

class Likelihood

of word 1

given

spam

class!

(4)

Application to email classification

• Message email is a collection of independent words 𝑤

𝑃 𝑐 email = 𝑃(𝑐) ෑ

𝑤∈email

𝑃 𝑤 𝑐

𝑤

𝑃 𝑤 𝑐 = 1

• Each word is drawn from a vocabulary with probability 𝑃 𝑤 𝑐

Occurrence in vocabulary is specific to each class

• Parameter estimation: Maximum Likelihood

7

𝑐 = ቊ ham spam

Parameter Estimation

𝑝(𝑤|𝑐) = 𝑁 𝑤𝑐

σ 𝑤 ′ 𝑁 𝑤 𝑐 Relative frequency of a word 𝑤 in the training set

𝑝(𝑐) = 𝑁 𝑐

σ 𝑐′ 𝑁 𝑐 Relative frequency of the document class c in

the training set

(5)

Bag-of-Words Model: Word Histograms

9

word P(w|ham) P(w|spam)

information 18.0% 17.1%

conference 19.4% 0.3%

submission 10.0% 0.5%

university 44.3% 1.2%

business 0.8% 21.8%

money 0.6% 25.2%

mail 6.9% 33.9%

information conference submission university business money mail

Word Histograms

ham spam

“vocabulary”

Parameter Estimation

• What if a word does not occur in a document class?

10

𝑝(𝑤|𝑐) = (𝑁 𝑤𝑐 +1)

σ 𝑤 ′ (𝑁 𝑤 ′ 𝑐 +1) Laplace smoothing for Naïve Bayes

(6)

Bag-of-Words Model: Classification

• Classification rule: find best class 𝑐 of e𝑚𝑎𝑖𝑙

11

Largest posterior: Bayes classifier

log: numerical accuracy Independent words

All words in message (in dictionary)

Careful: If you work with explicit counts and you need to compare different messages with each other, you need an additional normalization factor which depends on the message length (multinomial distribution)

𝑐 = arg max

𝑐 𝑃 𝑐 e𝑚𝑎𝑖𝑙

𝑐 = arg max

𝑐 𝑃 𝑐 ෑ

𝑤∈e𝑚𝑎𝑖𝑙

𝑃 𝑤 𝑐

𝑐 = arg max

𝑐 log 𝑃 𝑐 + ෍

𝑤∈e𝑚𝑎𝑖𝑙

log 𝑃 𝑤 𝑐

Bag-of-Words Model: Scoring

• Log of posterior ratio can be interpreted as a spam score

Each word adds to the total spam score of the message

𝑟 = log 𝑃 s e𝑚𝑎𝑖𝑙

𝑃 h e𝑚𝑎𝑖𝑙 = log 𝑃 e𝑚𝑎𝑖𝑙 s 𝑃(s)

𝑃 e𝑚𝑎𝑖𝑙 h 𝑃(h) = log 𝑃(s) 𝑃(h) + ෍

𝑤∈𝑚

log 𝑝(e𝑚𝑎𝑖𝑙|𝑠)

𝑝(e𝑚𝑎𝑖𝑙|ℎ)

(7)

Pipeline

13

Input:

Whole message as pure text

Preprocessing (training set and test emails):

• Split into words: tokenization

• Remove stop words: and, of , if, or, … (optional)

• Stemming: replace word forms by a common class (optional) e.g. includes, included, include, … Learning:

• Word counts → word likelihoods

• Class counts → class likelihoods Classification:

Scoring with likelihoods of words in message

Likelihood Models

Our word counting heuristic is a sound probabilistic likelihood model

• Multinomial distribution:

𝑃 𝑁 1 , 𝑁 2 , … , 𝑁 𝑊 | 𝑐

Other likelihood models?

• Binomial distribution: A word occurs or does not (Boolean)

• Does not care how many times a word appears

• Missing words also appear in likelihood term

14 Probability of absolute word frequencies 𝑁

𝑤

for W words

𝑃 𝜃 1 , 𝜃 2 , … , 𝜃 𝑊 | 𝑐 = ෑ

𝑤

𝑝 𝑤 1 𝑐 𝜃 𝑤 1 − 𝑝 𝑤 1 𝑐 1−𝜃 𝑤 𝜃 𝑤 ∈ {0, 1}

𝜃

𝑤

= 1: word occurs

(8)

Conditionally Independent Features

• Representation of class density:

product of feature marginals only, no correlation

• Conditional independence assumption is rarely appropriate:

• ignores correlation between features of a class!

• example: size and weight of a fish in a single class.

15

Class density

Naïve Bayes, Marginals

Conditionally Independent Features

• Estimation of marginals is easier than full joint estimation

• “Incorrect” model often outperforms “real” one, especially in high-dimensional spaces

Generative modeling invests where it is not important for classification

Full model No structure

Model complexity Estimation complexity

Ease of use

𝑃(𝑥 1 , 𝑥 2 , … , 𝑥 𝑁 ) 𝑃 𝑥 1 𝑃 𝑥 2 ⋯ 𝑃(𝑥 𝑁 )

Inference complexity

(9)

Generative vs. Discriminative

Both classify based on the posterior distribution 𝑃 𝑐 𝑖 𝑥 Ԧ

BUT modeled in conceptually different ways:

• Generative Model: Likelihood and prior models form the posterior using Bayes rule

𝑃 𝑐 𝑖 𝑥 ∝ 𝑝 Ԧ Ԧ 𝑥 𝑐 𝑖 𝑃 𝑐 𝑖

• Discriminative Model: Directly estimate the posterior distribution 𝑃 𝑐 𝑖 𝑥 Ԧ

Known algorithmically: SVM, Perceptron, Logistic regression, etc.

17

Generative vs. Discriminative

18

Class densities (1D) Posterior (blue class)

Details are not important for classification

Generative models :

 can generate artificial samples: model sanity

 deal with missing data & hidden variables (~EM)

 expert knowledge guides structure

 extensible: can add new factors without invalidating model

• waste modeling effort where it might not be important

(10)

Summary: Naïve Bayes Classifier

• Bayes classifier with the assumption of independent features

• Probabilistic, generative classifier

• Easy-to-estimate likelihoods: Product of feature marginals

• Can deal with different distributions for each feature

Application to text classification with the bag-of-words model:

• Content-based classification: Text as a collection of words

• Order of words is not important

• Word occurrence histograms (Multinomial likelihood model)

• Easy classification by summing word scores

19

𝑃 𝑥 1 , 𝑥 2 , 𝑥 3 , … , 𝑥 𝑀 𝑐) = 𝑃 𝑥 1 𝑐 𝑃 𝑥 2 𝑐 𝑃 𝑥 3 𝑐 ⋯ 𝑃 𝑥 𝑀 𝑐

Referenzen

ÄHNLICHE DOKUMENTE

Understanding Strategic Information Manoeuvres in Network Media to Advance Cyber Operations: A Case Study Analysing pro- Russian Separatists’ Cyber Information

This work presented the protocols DTLS, IPSec and the ones defined by IEEE 802.11i, namely 4-Way Handshake and Group Handshake Protocol, Temporal Key Integrity Protocol and Counter

The organizers of the 11th IEEE International Conference on Automatic Face and Gesture Recognition (IEEE FG 2015) invite interested research groups to participate in the special

„ member of another prof.society who who whishes to affiliate to membership in specific IEEE society. „ not entitled to any IEEE benefits or services, only from

T HIS special section of IEEE Transactions on Visualization and Computer Graphics (TVCG) presents extended ver- sions of four selected papers from the 2014 IEEE Pacific

Philippe Rudolf von Rohr, Head SCCER EIP, ETHZ Oliver Kröcher, Head SCCER BIOSWEET, PSI Domenico Giardini, Head SCCER SoE, ETHZ Matthias Sulzer, Head SCCER FEEB&D, Empa

aus denvorgegebenen Bauteilen(LEGO-Tech- begleitende EDV-Projekte anbieten. Es besteht nik~ Motoren. Sensoren und einem also die Möglichkeit. neben dem Spaß am

In one such scenario, the Republic of China (ROC) could develop a nuclear weapons arsenal in a bid to gain international recognition, a move here termed “bubble tea diplomacy.”