• Keine Ergebnisse gefunden

Wasserstofferzeugung aus erneuerbaren Quellen (Beispiel AER-Prozess) • Dr. Ulrich Zuberbühler (ZSW) - PDF ( 0.9 MB )

N/A
N/A
Protected

Academic year: 2022

Aktie "Wasserstofferzeugung aus erneuerbaren Quellen (Beispiel AER-Prozess) • Dr. Ulrich Zuberbühler (ZSW) - PDF ( 0.9 MB )"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

FVS Workshop 10. November 2008

Wasserstofferzeugung aus erneuerbaren Quellen

AER-Prozess

Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW), Stuttgart

(2)

Wasserstofferzeugung aus erneuerbaren Quellen AER-Prozess

Motivation

Prinzip des AER-Prozesses Ergebnisse

Ausblick

(3)

H2 production and consumption

Natural Gas 48%

Coal 18%

Oil 30%

via Ele ctr olys is

4%

Othe rs 6%

Oil Indus try 35%

M e thanol 8%

Che m ical Indus try

51%

Production Consumption

5 x 1011 m³/a

< 2% global energy demand

Source: George A. Olah, Alain Geoppert, G.K. Surya Prakash: “Beyond Oil and Gas: The Methanol Economy”, WILEY-VCH, 2006

(4)

Pathways to Hydrogen and Conversion Efficiencies

Source: Ewan B, Allan R: A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30 (2005) supplemented

Primary energy sources

Solar

Natural gas Nuclear energy Hydro power Tidal power Wind power Solar

Nuclear energy Solar

Solar Coal

electric power HYDROGEN

gas separation gasification

process heat biomass

reforming

direct turbine generation water electrolysis thermo-chemical cycles

photovoltaic

rankine cycle

photo catalysis thermolysis / thermo-chemical cycles

59%

76%

> 40%

4%

70%

50%

1%

15%

40%

100%

(5)

Wasserstofferzeugung aus erneuerbaren Quellen AER-Prozess

Motivation

Prinzip des AER-Prozesses Ergebnisse

Ausblick

(6)

Biomasse Konversion

Wasser 20-50%

Trockensubstanz Hu 18.5 MJ/kg

C:H:O 50:6:44

mineralische Bestandteile sonst. Inhaltsstoffe

0.5-10%

Wärmezufuhr

gasförmige Produkte

80 %

fester Bestandteil Koks

20 %

(2/3 Heizwert)

1/3 (Heizwert)

(7)

Festbettvergaser Imbert-Holzgasanlage

Quelle: Archiv-Verlag

Ford-LKW

mit Imbert-Generatoranlage

(8)

Trockene Produktgaszusammensetzung

Vergasungsmittel H2 CO CH4 CO2 N2

Luft 15% 20% 2% 15% 48%

Sauerstoff 40% 40% 20%

Wasserdampf 40% 25% 8% 25% 2%

AER Process 65% 5% 13% 15% 2%

CO + H2 O ↔ CO2 + H2 Shift Reaktion

(9)

AER - Reactions

(Absorption Enhanced Reforming)

ΔHR >> 0 Steam Reforming / Gasification of Biomass

CHx Oy + (1-y) H2 O CO + (0.5x + 1 –y) H2

Combined with a HT-CO2 Absorption

CO2 + CaO CaCO3 ΔHR << 0

CO Shift Reaction

ΔHR < 0 CO + H2 O CO2 + H2

Overall (600 – 700 °C, 1 bar)

ΔHR 0 CHx Oy + (2 - y) H2 O + CaO CaCO3 + (0.5 x + 2 - y) H2

(10)

AER-Process: Twin Fluidised Bed Gasifier - Allothermal - in situ CO2 Removal

Add.

Fuel AER Gasifier

COMBUSTION +

CALCINATION

Steam Air

CO2 -rich Flue Gas H2 -rich

Product Gas

CaO

Biomass

ABSORPTION ENHANCED REFORMING

Gaseous Products

Chemical Loop

Regenerator CaCO3

Solid Products

T = 600 – 700 °C (1 bar)

T > 800 °C (1 bar)

(11)

Wasserstofferzeugung aus erneuerbaren Quellen AER-Prozess

Motivation

Prinzip des AER-Prozesses Ergebnisse

Ausblick

(12)

Goal of AER (Absorption Enhanced Reforming) Biomass Gasification Process

Innovative Process with

¾ Electricity (Gas Engine;

Future Option: Fuel Cell)

¾ District Heat

¾ Fuel

(Future Option: H2 , SNG, adapted Syngas)

¾ > 70 Vol.-% H2 in Raw Gas

¾ > 15 Vol.-% CH4 (+ CnHm) in Raw Gas

¾ Low Tar Content in Raw Gas < 500 mg/mNTP3

¾ Utilisation of Low Rank Biomass (e.g. Straw)

Poly-Generation from Biomass

AER: Absorption Enhanced Reforming

(13)

Test of AER-Process

in Biomass 8 MWth Power Plant Güssing / Austria

07/2007: Successful AER Test Campaign in Güssing, next Campaign 2008

Source: TUV

AER Advantages:

High Efficiency

High H2 Content

Low Rank Biomass

Adapted Gas

Biomasse-Kraftwerk Güssing GmbH

(14)

Coupling

AER Biomass Gasification / Fuel Cell

Product Gas

>60% H2 Bio-

mass

SNG H2

AER Gasifier

On-site Power Plant

SNG

Fuel Gas via Biomass Gasification

Remote Ref. / PSA

H2 Cleaning

SNG

Energy Carrier Fuel Utilisation

Δ Δ

PEM FC

SOFC / MCFC

PEM FC

Ref.

PEM FC SOFC / Δ

MCFC CHP

Transportation Sector

CHP

μ-CHP

in Fuel Cells

PSA

Metha- nation

“Syngas“

(15)

Verfahrenskonzept:

H2 -Erzeugung via thermochemische Konversion im DFB

Ver- gasung

Biomasse

Dampf

Luft

CO2-reiches Abgas H2-reiches

Produktgas Grob- reinigung

Fein- reinigung

Motor PSA

Strom/

Wärme H2

Purgegas

(16)

Methanation

of COx in Bio-Syngas

CO + 3 H2 CH4 + H2 O(g)

ΔH298K = - 206.158 kJ/molCH4

CO2 + 4 H2 CH4 + 2 H2 O(g)

ΔH298K = - 165.475 kJ/molCH4

2 CO + 2 H2 CH4 + CO2

ΔH298K = - 246.841 kJ/molCH4

(17)

Experimental Result:

SNG from AER Product Gas

1,0%

CH4 99,0%

LHV

Intermediate Gas

Wobbe Index 13,35 kWh/Nm³ H2

4,2% CO2 4,9%

CH4 90,9%

Educt Gas

LHV 3,49 kWh/Nm³ H2

66,5%

CO2 13,0%

CH4 12,0%

CO 8,5%

Methanation

Vol.% Vol.%

9,19 kWh/Nm³

H2 57,0%

9,0% 34%

CO CH4

H2

Wobbe Index 6,26 kWh/Nm³

8,37 kWh/Nm³

Wobbe Index 12,32 kWh/Nm³

Methanation

Product Gas

4,0%

H2

CH4 96,0%

CO2 7,5%

H2

12,2% CO

0,02%

CH4 80,3%

Vol.%

LHV LHV

(18)

Comparison Electricity, Electricity/H2 , SNG via AER Process

31

63

33

14 43

35

17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

electricity H2 + electricity SNG

efficiency [%]

LHV(H2/SNG)_out/(LHV_bio_in+P_el) P_el_out/(LHV_bio_in+P_el_in) Q_out

(19)

Wasserstofferzeugung aus erneuerbaren Quellen AER-Prozess

Motivation

Prinzip des AER-Prozesses Ergebnisse

Ausblick

(20)

AER-Leuchtturm-Projekt mit Anbindung an das

“Biosphärengebiet Schwäbische Alb”

Vorhaben:

¾ Transfer AER-Ergebnisse in neues 10 MWth Kraftwerk

¾ Kooperation mit Industrie, Energieversorger, Unis

¾ Standort zwischen Geislingen und Widderstall:

Fernwärme-, Erdgasnetz, Biomasse vorhanden

¾ FuE-Plattform „BtG“ (Biomass-to-Gas) am Kraftwerk etablieren:

Æ wissenschaftliche Begleitung

Æ innovative Nutzung des AER-Produktgases

Referenzen

ÄHNLICHE DOKUMENTE

Existing elements (settling basin, headrace tunnel) were used as storage tanks to improve flexibility of the Gletsch-Oberwald run- of-river hydropower plant with the aim to

show that a design basis accident scenario must be anticipated, and that resulting normative accident probabilities must be derived from permissible dose rates.. Thereby upper

controversies are reviewed; the nuclear power controversy is viewed from this perspective. Social movements for greater participation in the decision-making process are discussed

The construction licence is no longer the responsibility of the Federal Council, but is now awarded by the Swiss Federal Department of the Environment, Transport, Energy

Overview of licensing procedure for new nuclear power plants in accordance with the Swiss Federal Nuclear Energy Act. - Safety assessments (esp. by the ENSI) -

Both states worked with incumbents to increase domestic supply, constrain demand, or otherwise reduce the vulnerability of energy systems. This mechanism explains Germany's

In this study, we have explored how VRE deployment depends on VRE technology costs, VRE resources, VRE integration challenges, climate policy as well as the availability of

With this in mind, the International Resource Panel’s experts have analysed nine key electricity generation technologies, including coal- and gas-fired power plants, technologies