• Keine Ergebnisse gefunden

Parallelität, Synchronisation Technik und Umwelt Forschungszentrum Karlsruhe

N/A
N/A
Protected

Academic year: 2022

Aktie "Parallelität, Synchronisation Technik und Umwelt Forschungszentrum Karlsruhe"

Copied!
76
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Parallelität, Synchronisation

(2)

Übersicht

Einführung und Grundbegriffe

Java Threads

Synchronisationskonzepte

Kommunikation durch Nachrichtenaustausch

Verklemmungen

Semantik und Spezifikation nebenläufiger

Prozesse

(3)

Einführung und Grundbegriffe

Sequentielles System

– Rechner führt einen einzigen Strom von Anweisungen aus

Paralleles System

– Anweisungen können gleichzeitig ausgeführt werden – Beispiel: Mehrprozessor-Systeme, Rechnernetz

Nebenläufiges System (concurrent system)

– Es existieren mehrere Ströme von Anweisungen, die unabhängig voneinander abgearbeitet werden

– Diese Ströme werden entweder parallel oder pseudoparallel ausgeführt

– Pseudoparallelität: Häufiger Wechsel zwischen Ausführungsströmen

(4)

Typische nebenläufige Systeme

Betriebssysteme

– Prozesse laufen nebenläufig ab

Verteilte Systeme

– Systeme, wie in der Vorlesung diskutiert

– Mehrere Prozesse auf (eventuell) verschiedenen Rechnern, die parallel zueinander ablaufen können

Auch GUI Programme sind oft nebenläufig!

– GUI Programme arbeiten häufig mit Worker-Threads, die lang andauernde Aktionen nebenläufig zum zentralen GUI-

Ergeignisbehandlungsthread durchführen

(5)

Prozess und Thread

Prozess

– Ablauf eines Programms mit eigenen Ressourcen (z.B. Adressraum)

Thread

– (paralleler) Ablaufvorgang innerhalb eines Prozesses

– Alle Threads in einem Prozess nutzen die gleichen Ressourcen (die vom Prozess)

– werden vom Benutzerprogramm verwaltet und erzeugt – lightweight processes

Bei der Modellierung von (parallelen) Vorgängen unterscheidet man meist nicht zwischen Prozess und Thread

(6)

Welche Problematiken gibt es bei

Nebenläufigkeit?

(7)

Beispiel: The Dining Philosophers *

Fünf Philosophen sitzen um einen runden Tisch. Jeder Philosoph beschäftigt sich entweder mit Denken oder mit Essen. In der Mitte steht eine große Schüssel mit Spaghetti. Ein Philosoph benötigt zwei Gabeln, um essen zu können.

Zwischen jedem Teller liegt eine Gabel und ein Philosoph kann nur die Gabeln links und rechts von seinem Teller nehmen.

*Dijkstra, 1968

(8)

Was kann alles passieren?

Ein Philosoph, der hungrig ist, muss so lange warten, bis die Gabeln rechts und links von ihm frei sind.

Es kann passieren, dass ein Philosoph nie zum Essen kommt, auch wenn er hungrig ist.

– dieser Philosoph wird (im wahrsten Sinne des Wortes) ausgehungert – man sagt: die Verteilung der Gabeln ist nicht fair

Es kann auch passieren, dass alle Philosophen gleichzeitig hungrig sind und alle die Gabel an ihrer rechten Seite nehmen.

– dann kann kein Philosoph jemals essen

– das System befindet sich im Zustand der Verklemmung (Deadlock)

(9)

Beispielsituationen

Deadlock

(10)

Begriffe zum Thema Synchronisation

Synchronisation: Koordination nebenläufiger Prozesse – regelt den Zugriff auf gemeinsame Ressourcen

Verklemmung (Deadlock)

– Kein Prozess kann fortfahren, weil alle auf eine Bedingung warten, die nur ein anderer (ebenfalls wartender) Prozess erfüllen kann

Aushungerung (Starvation)

– Ein Prozess wird dauerhaft nicht mehr zur Ausführung zugelassen, obwohl er noch nicht beendet ist

Faire Zuteilung von Ressourcen

– Jedem wartendem Prozess wird eine Ressource irgendwann auch mal zugeteilt

(11)

Komplikationen durch Nebenläufigkeit

Zusätzliche Sprachkonstrukte notwendig

Zusätzlicher Aufwand für die Verwaltung der Nebenläufigkeit bei der Programmierung

Nichtdeterminismus

– keine Annahmen über die Reihenfolge von Aktionen unterschiedlicher Prozesse zulässig

– Ergebnis eines Programms nicht mehr eindeutig vorhersehbar – Fehlerfälle treten oft nur in ganz bestimmten Situationen auf

• siehe Beispiel der Verklemmung bei den Philosophen

Dies macht den Entwurf, das Verständnis und den Test nebenläufiger Programme äußerst schwierig

(12)

Klassifizierung nebenläufiger Systeme

Klassifizierung nach der Art der Interaktion zwischen Prozessen – Interaktion durch Zugriff auf gemeinsame Ressourcen

– Interaktion durch Nachrichtenaustausch

Beispiel: Viele Arbeiter arbeiten in einer Autowerkstatt – Interaktion durch Zugriff auf gemeinsame Ressourcen

• Die Arbeiter benötigen manchmal Werkzeuge, die nur in beschränkten Maße vorhanden sind

• Wenn alle Exemplare eines Werkzeugs belegt sind, muss ein Arbeiter warten, der dieses Werkzeug benötigt

– Interaktion durch Nachrichtenaustausch

• In der Firma gibt es nur einen Meister, der Achsvermessungen durchführt

• Wenn ein Arbeiter für eine Autoreperatur eine Achsvermessung braucht, kommuniziert er mit dem Meister, der diese durchführt

(13)

Interaktion durch Zugriff auf gemeinsame Ressourcen

Zugriff auf gemeinsame Variablen, Speicherbereiche

Dieser Zugriff muss synchronisiert werden

– um die Ressource(n) in einem konsistenten Zustand zu halten – um die Ressource(n) nach einer bestimmten Strategie (fair)

auf auf die zugreifenden Prozesse zu verteilen

• Beispiel: abwechselndes Schreiben und Lesen

• Zuteilung von Druckaufträgen zu Druckern

– Klassische Synchronisationskonzepte hierfür sind:

• Semaphore

• Monitore (wird von Java direkt unterstützt), siehe später

(14)

Interaktion durch Nachrichtenaustausch

Die Prozesse interagieren durch das Senden und Empfangen von Nachrichten (messages)

– synchronisierter Nachrichtenaustausch: der Sender wartet, bis der Empfänger empfangsbereit ist und die Nachricht

vollständig empfangen und bearbeitet hat und gegebenenfalls ein Ergebnis zurückliefert

– asynchroner Nachrichtenaustausch: der Sender wartet nicht,

bis der Empfänger empfangsbereit und/oder die Nachricht

bearbeitet hat. Die Nachricht wird gegebenenfalls gepuffert

(15)

Typische Interaktionen bei Verteilten Systemen

Zugriff auf gemeinsame Ressourcen

– RMI, CORBA, Servlet Container, etc. arbeiten implizit mit Thread-Pool – Klassenvariablen von Entfernten Objekten, Servlets, etc. werden

daher in der Regel gemeinsam von mehreren Threads genutzt

– Bei Zugriff auf Datenbanken ist eine Verbindung zur Datenbank eine evtl. gemeinsam genutzte Resource

Zugriff über Nachrichtenaustausch

– typischer Weise bei Aufruf entfernter Methoden

– normaler Weise synchroner Aufruf, aber asynchrones Verhalten über Anwendungslogik realisierbar

(16)

Java Threads

Wie erzeuge ich Nebenläufigkeit in Java Programmen

(z.B. in Multithreaded Servern)

(17)

Java Threads

Beim Start eines Java Programmes wird ein Prozess erzeugt, der u.a. einen Thread enthält, der die main-Methode der

angegebenen Klasse ausführt

Der Programmierer kann weitere Threads definieren und starten

– Ausführung von programmierten run() Methoden innerhalb von Thread Objekten

2 Möglichkeiten zur Definition der run() Methoden, die in einem Thread Objekt abgearbeitet werden

– Ableiten einer eigenen Klasse von Thread mit eigener run()

Methode

(18)

Ableiten von der Klasse Thread

Thread Thread()

Thread(String name // überschreiben!

run()

// startet Thread start()

public class myThread extends Thread {

public void run() {

System.out.println("Hello World");

}

public static void main(String args[]) {

MyThread t=new myThread();

t.start();

} }

Ein Thread Objekt ist ein Ablaufrahmen, innerhalb dem die run() Methode einer Klasse ausgeführt wird

Der Ablauf wird mit dem Aufruf der start() Methode im Thread Objekt gestartet

(19)

Implementieren von Runnable

Thread

Thread(Runnable r) ...

start()

public class SomethingToRun implements Runnable {

public void run() {

System.out.println("Hello World");

}

public static void main(String args[]) {

SomethingToRun runner = new SomethingToRun();

Thread t=new Thread(runner);

t.start();

} }

<<interface>> Runnable run()

(20)

Beispiel: Klasse Loop1

public class Loop1 extends Thread { public Loop1(String name) {

super(name);

}

public void run() {

for (int i=1; i<=100; i++)

System.out.println(getName() + "(" + i + ")");

}

public static void main(String[] args) { Loop1 t1 = new Loop1("Thread 1");

Loop1 t2 = new Loop1("Thread 2");

Loop1 t3 = new Loop1("Thread 3");

t1.start(); t2.start(); t3.start();

} }

Starten von 3 Threads

(21)

Mögliche Ausgabe von Loop1

Die 3 Threads laufen zeitlich verzahnt ab

– die JVM schaltet zwischen den Threads um

Keine Aussage über relative Geschwindigkeit der Threads möglich

– Wann zwischen 2 Threads umgeschaltet wird, ist nicht vorhersagbar

Ausgabe des Programms nichtdeterministisch

Thread 1(1) Thread 1(2) Thread 1(3) Thread 1(4) ...

Thread 1(35) Thread 2(1) Thread 3(1) Thread 1(36) Thread 2(2) Thread 3(2) Thread 2(3) Thread 2(4) Thread 2(5) Thread 3(3) Thread 3(4) Thread 1(37) ....

(22)

Beispiel: Klasse Loop2

public class Loop1 extends Thread { public Loop1(String name) {

super(name);

}

public void run() {

for (int i=1; i<=10; i++)

System.out.println(getName() + "(" + i + ")");

try {

Thread.sleep(100);

} catch (InterruptedException e) {}

}

public static void main(String[] args) { Loop1 t1 = new Loop1("Thread 1");

Loop1 t2 = new Loop1("Thread 2");

Loop1 t3 = new Loop1("Thread 3");

t1.start(); t2.start(); t3.start();

} }

sleep(long millis)

lässt Thread 100 ms schlafen.

Dies beeinflusst implizit die Threadreihenfolge, da

schlafende Threads nicht bei Threadumschaltung

berücksichtigt werden

(23)

Mögliche Ausgabe von Loop2

Die 3 Threads laufen scheinbar abwechselnd ab

Auf diese Reihenfolge kann man sich allerdings nicht verlassen

Um eine Reihenfolge zu erzwingen, sollte man auf alle Fälle andere,

bessere Mechanismen verwenden

– siehe folgende Diskussion zu Synchronisationsmechanismen

Thread 1(1) Thread 2(1) Thread 3(1) Thread 1(2) Thread 2(2) Thread 3(2) Thread 1(3) Thread 2(3) Thread 3(3) Thread 1(4) Thread 2(4) Thread 3(4) Thread 1(5) Thread 2(5) Thread 3(5) ....

(24)

Threads und Interrupts

Ein „Interrupt“ ist eine Art Nachricht an einen Thread, seine augenblickliche Tätigkeit zu unterbrechen / abzubrechen

Senden eines Interrupts

– Schicken eines Interrupts erfolgt durch Aufruf der Methode threadObject.interrupt()

– „Interrupt Flag“ wird gesetzt

Empfangen eines Interrupts

– Bei Methodenaufrufen, die einen Thread blockieren (sleep(), join()), führt Interrupt zum Werfen einer InterruptedException

– Thread kann manuell das Erhalten eines Interrupts durch Aufruf der statischen Methode Thread.interrupted() abfragen

• Aufruf sollte in Methoden erfolgen, die längere Zeit arbeiten und nicht blockieren

(25)

Zugriff von Threads

auf gemeinsame genutzte Objekte und

Synchronisation solcher Zugriffe

(26)

Beispielszenario

Mehrere Threads kooperieren durch Zugriff auf gemeinsam genutzte Objekte

Beispiel:

– Klasse Konto mit einem Attribut Kontostand – Klasse Bank, die ein Array von Konten enthält

– Bankangestellte, die Beträge auf Konten buchen, werden als Thread modelliert (Klasse Bankangestellter)

– Die Klasse Bankbetrieb enthält eine Bank und mehrere

Bankangestellte, die auf dieses Objekt zugreifen

(27)

Beispiel: Klasse Konto und Klasse Bank

public class Konto {

private float kontostand;

public void setzen(float betrag) {

kontostand=betrag;

}

public float abfragen() {

return kontostand;

} }

public class Bank {

private Konto[] konten;

public Bank() {

konten=new Konto[100];

for (int i=0; i < konten.length(); i++) konten[i]=new Konto();

}

public void buchen(int kontonr, float betrag) {

float alterStand=konten[kontonr].abfragen();

float neuerStand=alterStand + betrag;

konten[kontonr].setzen(neuerStand);

} }

Klasse Konto

Klasse Bank

(28)

Beispiel (Forts.): Klasse Bankangestellter

public class BankAngestellter extends Thread { private Bank bank;

public BankAngestellter(String name, Bank bank) { super(name);

this.bank=bank;

start();

}

public void run() {

for (int i=0; i < 10000; i++) {

// Kontonnummer einlesen, simuliert durch Zufallszahl int kontonr=(int)(Math.random()*100);

// Überweisung einlesen, simuliert durch Zufallszahl float betrag=(int)(Math.random()*1000)-500;

bank.buchen(kontonr, betrag);

} } }

Thread selbst startet die Ausführung der run() Methode

(29)

Beispiel (Forts.): Klasse Bankbetrieb

public class BankBetrieb {

public static void main(String[] args) {

Bank sparkasse = new Bank();

BankAngestellter müller=new BankAngestellter("Peter Müller", sparkasse);

BankAngestellter schmitt=new BankAngestellter("Petra Schmitt", sparkasse);

} }

• Alle Angestellten greifen auf das gleiche Bankobjekt sparkasse zu

• Der Zugriff erfolgt parallel (Bankangestellte sind Threads) mit zufälligen Zahlungen

(30)

Was kann alles passieren?

Der Thread "Peter Müller" will 100 EUR auf Konto Nr. 44 buchen – Aufruf der Methode bank.buchen(44,100)

– Innerhalb dieser Methode wird die Methode abfragen() aufgerufen, die den Wert 50 zurückgibt

– Die Variable neuerStand wird auf 150 gesetzt

Es wird auf den Thread "Petra Schmitt" umgeschaltet; Petra Schmitt will 20 EUR vom Konto Nr. 44 abbuchen

– Aufruf der Methode bank.buchen(44,-20)

– Innerhalb dieser Methode wird die Methode abrufen() aufgerufen, die den Wert 50 zurückliefert

– Die Variable neuer Stand wird auf 30 gesetzt – Auf dem Kontoobjekt wird setzen(30) aufgerufen

Es wird wieder auf den Thread "Peter Müller" umgeschaltet

– Die Ausführung der Methode bank.buchen(44,100) wird fortgesetzt;

auf dem Kontoobjekt wird setzen(150) aufgerufen

(31)

Fazit

In dem soeben beschriebenen Szenario ist das Abbuchen von 20 EUR "verloren gegangen"

Dieser Effekt tritt zwar wahrscheinlich nur selten ein, das Programm ist jedoch fehlerhaft

Weil der Effekt so selten eintrifft, sind solche Fehler vom Programmierer schwer zu finden

Eine Reduzierung der Methode buchen() auf eine einzige Java Anweisung würde das Problem auch nicht lösen

– Eine Java Anweisung wird intern auf mehrere (z.B.

Maschineninstruktionen) Anweisungen abgebildet

(32)

Weiterer Lösungsversuch

Zu einem Zeitpunkt darf nur ein

Bankangestellter die Methode buchen() ausführen

Wir realisieren dies durch ein

Sperrattribut

gesperrt innerhalb der Bank Klasse

Wie sieht es mit dieser Lösung aus?

public class Bank {

private Konto[] konten;

private boolean gesperrt;

public Bank() {

konten=new Konto[100];

for (int i=0; i < konten.length(); i++) konten[i]=new Konto();

gesperrt=false;

}

public void buchen(int kontonr, float betrag) {

while (gesperrt) ; gesperrt=true;

float alterStand=konten[kontonr].abfragen();

float neuerStand=alterStand + betrag;

konten[kontonr].setzen(neuerStand);

gesperrt=false;

} }

(33)

Probleme mit neuer Lösung

Die Parallelität wird unnötig eingeschränkt

– paralleles Buchen auf unterschiedlichen Konten ist unkritisch

Schlechte Effizienz der Lösung

– Durch "aktives Warten" (busy waiting) wird unnötig Rechenzeit verschwendet

Die Lösung ist falsch!

– Wenn die Variable gesperrt false ist, können mehrere Threads

gleichzeitig die Anweisung "while(gesperrt)" passieren, bis die

Variable auf true gesetzt ist - die Schleife ist nicht atomar!

(34)

synchronized Methoden und -Blöcke

public class Bank {

private Konto[] konten;

public Bank() {

konten=new Konto[100];

for (int i=0; i < konten.length(); i++) konten[i]=new Konto();

}

public synchronized void buchen(int kontonr, float betrag) {

float alterStand=konten[kontonr].abfragen();

float neuerStand=alterStand + betrag;

konten[kontonr].setzen(neuerStand);

} }

(35)

Bedeutung von synchronized

Jedes Objekt in Java besitzt eine Sperre

Soll eine synchronized Methode ausgeführt werden, – wird die Sperre gesetzt, wenn sie noch frei ist

– ist die Sperre bereits gesetzt, wird der aufrufende Thread blockiert – der blockierte Thread wird beim Umschalten zwischen Threads nicht

berücksichtigt (passives Warten)

Nach Beendigung der synchronized Methode wird die Sperre wieder freigegeben

– Threads, die auf Freigabe der Sperre warten, werden dabei reaktiviert

Lesen und Setzen der Sperre (falls frei) erfolgt als atomare Operation

Also kann jeweils nur ein Thread die synchronized Methode ausführen

(36)

Zulassung von parallelen Buchungen

1. Variante

– Methode buchen in Klasse Bank ohne synchronized – synchronized-Methode

buchen in Klasse Konto

public class Konto {

private float kontostand;

public synchronized void buchen(float betrag) {

kontostand += betrag;

}

public float abfragen() {

return kontostand;

} }

public class Bank { ...

public void buchen(int kontonr, float betrag) { konten[kontonr].buchen(betrag);

}

(37)

2. Variante: synchronized Block

2. Variante

– Verwendung eines synchronized Block von Code – Objekt mit Sperre ist das konkrete Konto

public class Bank {

private Konto[] konten;

...

public void buchen(int kontonr, float betrag) { synchronized(konten[kontonr])

{

float alterStand=konten[kontonr].abfragen();

float neuerStand=alterStand + betrag;

konten[kontonr].setzen(neuerStand);

} } }

Parameter gibt Objekt an, auf das Sperre gesetzt werden muss, um in geschützten Bereich zu gelangen

(38)

synchronized Methoden und -Blöcke

Folgende Codefragmente sind äquivalent

class K {

public synchronized void m() { ...

} }

class K {

public void m() {

synchronized(this) { ...

} } }

(39)

Aufruf von eigenen Methoden

Der aufrufende Thread blockiert sich nicht selbst

class K {

public synchronized void m1() { m2();

}

public synchronized void m2() { ...

}

public static void main(String[] args) { K kObject = new K();

kObject.m1();

// keine Blockade im obigen Aufruf }

}

(40)

Wann synchronized verwenden?

synchronize Statements kosten auch etwas – Sperrmechanismus kostet Zeit!

– synchronize Statements können zu Verklemmungen führen

Regel:

Wenn von mehreren Threads auf ein Objekt oder eine Klassenvariable

zugegriffen wird und mindestens einer der Threads den Objektzustand oder Variablenwert ändert, dann müssen alle Methoden, die auf den Zustand des Objektes oder den Wert der Variablen zugreifen, mit synchronized

gekennzeichnet werden.

(41)

Alternativen

Manchmal reicht das Schlüsselwort „volatile“

Das java.util.concurrent Package ab Java 1.5 enthält

– Klassen, die einfache atomare Variablen definieren – verschiedene optimierte Lock-Klassen für spezielle

Lock-Anwendungssituationen

– Höherwertige Datenstrukturen, die Thread-safe sind

und intern mit optimierten Locks arbeiten

(42)

Wie wartet ein Thread auf einen anderen?

Warten auf das Ende eines Threads

– Verwendung von t.join() [siehe nächste Folie]

Warten auf eine Benachrichtung von einem (anderen) Thread

– Warten über wait() Methode von Object

– Benachrichtigen über notify() oder notifyAll()

(43)

Warten auf das Ende eines anderen Threads

Wenn t ein Threadobjekt ist, wartet der

Aufruf t.join() auf die Beendigung des Threads t

– Wartender Thread muss hierbei

„InterruptedException“ abfangen

while (t.isAlive()) { try {

t.join();

} catch (InterruptedException ignored) { }

} // After this loop, we know that t is dead

(44)

Benachrichtigung: Beispiel Warteschlange

Ablauf

– Empfänger wartet darauf, dass eine bestimmte Bedingung an einem Objekt (in diesem Fall eine Warteschlange) eintritt (queue.wait())

– Ein anderer signalisiert eine Änderung mit queue.notify()

– Achtung: Empfänger muss immer nach Aufwecken überprüfen, ob Bedingung auch tatsächlich gilt (Guarded Block Pattern)

synchronized (queue) {

while (queue.isEmpty()) { try {

queue.wait();

} catch (InterruptedException ignored) {

} }

elem=queue.removeFirst();

} ...

synchronized (queue) { queue.addLast(elem);

queue.notify();

}

Sender Empfänger

(45)

Thread Pools

Wie führe ich in einem Server parallel

hereinkommende Anforderungen aus?

(46)

Warum Thread Pools?

Server Applikationen müssen oft eine Vielzahl kurzer

paralleler Aktionen auf Anforderung von Clients durchführen – Bsp.: Web-Server, Datenbankserver, Mailserver, etc.

Hierfür jedesmal einen neuen Thread zu erzeugen, hat eine Anzahl von Nachteilen

– Thread-Erzeugung selbst kostet Zeit

– Threads konsumieren Systemressourcen

• Zu viele gleichzeitige Threads könnnen zu Schwierigkeiten führen, z.B. bzgl. CPU oder Hauptspeicherauslastung

• Thread Pools bieten eine einfache Möglichkeit die Auslastung des Systems zu begrenzen

(47)

Einfache Implementierung eines Thread-Pools (1)

public class WorkQueue {

private final int nThreads;

private final PoolWorker[] threads;

private final LinkedList queue;

public WorkQueue(int nThreads) { this.nThreads=nThreads;

queue=new LinkedList();

threads = new PoolWorker[nThreads];

for (int i=0; i < nThreads; i++) { threads[i] = new PoolWorker();

threads[i].start();

}

public void execute(Runnable r) { synchronized(queue) {

queue.addLast(r);

queue.notify();

} }

(48)

Einfache Implementierung eines Thread-Pools (1)

private class PoolWorker extends Thread { public void run() {

Runnable r;

while (true) {

synchronized(queue) {

while (queue.isEmptry()) { try {

queue.wait();

} catch (InterruptedException ignored) { }

}

r=(Runnable)queue.removeFirst();

}

// If we don‘t catch RuntimeException, the pool could leak threads try {

r.run();

} catch (RuntimeException e) {

// we should log error about failed run here!

} } }

}

(49)

Risiken bei der Nutzung von Thread-Pools

Worker-Threads führen „Runnable“ Objekte parallel aus

– Zugriff auf Datenstrukturen, die von den Runnable Objekten gemeinsam genutzt werden

• Können zu Synchronisationsproblemen führen, wie wir bereits vorgestellt haben

– i.e. Zugriff muss evtl. synchronisiert werden

– Aufpassen, dass keine Deadlocks entstehen, wenn Runnable Objekte Ressourcen gegenseitig locken

– Threads aus dem Thread-Pool selbst können blockiert werden, wenn sich die run()-Methoden der Arbeitsobjekte „aufhängen“

• Siehe Diskussion zu Servlets später!

(50)

Maßnahmen gegen solche Risiken

Zugriff auf gemeinsam genutzte Datenstrukturen in den Task-Objekten sichern

– Insbesondere Klassenvariablen (falls alle Task Objekte von einer Klasse sind)

Keine Tasks an Thread-Pools geben, die synchron auf Ergebnisse anderer Tasks warten => potentielle Deadlocksituation

Vorsicht ist geboten, wenn Thread-Pools Tasks abarbeiten müssen, deren run() Methoden sehr lange laufen => sieht fast wie Deadlock aus

– z.B. bei falls sehr-langsame I/O-Vorgänge auftreten können

Analyse der Tasks ist sehr wichtig

– Thread-Pool Größe sollte auf Last angepasst sein

– Evtl. macht es Sinn, mit mehreren getrennten Arbeitswarteschlangen und Pools zu arbeiten

Statt eigener Implementierung eines Thread-Pools z.B. den

ThreadPoolExecutor Service von java.util.concurrent verwenden

(51)

Wie groß sollte Größe des Pools sein?

Nicht zu wenig, nicht zu viel = idealer Weise zwischen min, max Schranke

Möglichst variabel, also anpassbar an Situation

Für Tasks, die nur berechnender Natur sind, reicht ein Thread-Pool, der die Größe der Anzahl der Prozessoren (N) bzw. N+1 hat

Für Tasks, die auf I/O-warten müssen, sollte die Poolgröße um einiges größer als die maximale Anzahl der möglichen parallelen

Tasks sein, da manchmal Tasks im Wartezustand auf I/O längere Zeit festhängen können

– z.B. Web bei ultra-langsamen Clients

– ~ N*(1 + WT / ST), N Prozessoren, WT mittlere Wartezeit, ST mittlere Abarbeitungszeit = Anzahl, um alle Prozessoren im Mittel voll

auszulasten

(52)

Transaktionen

(53)

Einführung

Transaktionen lösen weitergehende Probleme beim Zugriff auf Daten (Resourcen)

– sowohl beim parallelen Zugriff

– als auch bei mehrerer Operationen auf Daten (Resourcen), die

"zusammen" erfolgen müssen

Es gibt mehrere Formen von Transaktionen

– Transaktionen als Bestandteil eines Datenbanksystems (Resourcesystems)

– Verteilte Transaktionssysteme für Transaktionen über Verteilte

Resourcen

(54)

Order # Description Cost

$3200

Total-Sales

1000

2000

3000

4000

5000

6000

FULL

123 1000 400 Baseballs $2400

C-no Order # Description Cost

Customer

Jones $9700

SalesPerson

Name Total-Sales

1000

2000

3000

4000

5000

6000

Order #

Orders

FULL

Motivation für Transaktionen (1)

Neue Bestellung hinzugefügt

Verkaufssumme bei Verkäufer unter „Total- Sales“ addiert

Muss nun noch neue Bestellung in Bestelltabelle (Orders #)

aufnehmen

Problem: Letzte Aktion geht

nicht, da z.B.

Dateisystem voll 123 1000 400 Baseballs $2400

C-no Order # Description Cost

123 7000 250 Footballs $6500

Customer

Jones $3200

SalesPerson

Name Total-Sales

1000

2000

3000

4000

5000

6000

Order #

Orders

FULL

(55)

Motivation für Transaktionen (2)

Was passiert, wenn während der Ausführung des folgenden PL/SQL Programmcodes das Programm oder Betriebssystem abstürzt, z.B. durch Stromausfall, etc.

while c%found loop if v_gehalt > 10000

then update angestellter

set gehalt = gehalt * proz1 where current of c;

else update angestellter

set gehalt = gehalt * proz2 where current of c;

end if;

fetch c into v_gehalt;

end loop;

(56)

Motivation Transaktionen (3)

Was passiert, wenn nach Schritt 3 Programm, Datenbank oder Betriebssystem ausfällt, z.B. wegen Stromausfall, etc.

Überweisung von 50 EUR von Konto A auf Konto B

(1) Lese Kontostand von A in temporäre Variable a: read(A,a);

(2) Reduziere den Kontostand um 50 EUR: a = a – 50;

(3) Schreibe neuen Kontostand auf Konto A in Datenbank: write(A,a)

(4) Lese den Kontostand von B in temporäre Variable b: read(B,b);

(5) Erhöhe den Konstostand um 50 EUR: b = b + 50;

(6) Schreibe neuen Kontostand von Konto B in Datenbank: write(B,b);

(57)

Begriff Transaktion (siehe auch Einführung)

Eine Transaktion ist eine Folge von Daten(bank)operationen, die die Daten von einem logisch konsistenten Zustand in einen neuen

konsistenten Zustand überführt und entweder ganz oder gar nicht ausgeführt wird (Man spricht auch von einer logischen Arbeitseinheit [Logical unit of work], die aus Sicht des Anwenders atomar ist)

Im Fall unseres Kontobeispiels müssen bei der Kontobewegung immer beide Operationen zusammen (Abheben von A und

Draufbuchen auf B) ganz oder gar nicht durchgeführt werden.

Ansonsten „verliert“ man Geld.

(58)

Order # Description Cost

$3200

Total-Sales

1000

2000

3000

4000

5000

6000

FULL

123 1000 400 Baseballs $2400

C-no Order # Description Cost

Customer

Jones $9700

SalesPerson

Name Total-Sales

1000

2000

3000

4000

5000

6000

Order #

Orders

FULL

Prinzipielles Schema für Transaktionskonzept

123 1000 400 Baseballs $2400

C-no Order # Description Cost

123 7000 250 Footballs $6500

Customer

Jones $3200

SalesPerson

Name Total-Sales

1000

2000

3000

4000

5000

6000

Order #

Orders

FULL

Start Transaction Add Customer;

Change

Total-Sales of Sales person;

Insert Order;

If no errors then Commit Transaction;

Else

Rollback Transaction

(59)

Transaktionen und SQL

Relationale Datenbanken unterstützen das Transaktionskonzept über einen Transaktionsmanager, der über die folgenden SQL Anweisungen gesteuert werden kann

START TRANSACTION ( Syntax: start transaction | begin [work] )

Kann explizit oder implizit formuliert sein und markiert den Start einer Transaktion COMMIT TRANSACTION ( Syntax: commit [work]; )

Eine Folge von Aktionen einer Transaktion wird als abgeschlossen markiert und dem Transaktionsmanager die Anweisung gegeben, die gesamte Folge dauerhaft zu speichern

ROLLBACK TRANSACTION ( Syntax: rollback [work]; )

Die Transaktion wird explizit (durch Programm oder Person) oder implizit durch das System (auf Grund eines Fehlers oder einer Konsistenzverletzung) abgebrochen. Dabei werden alle Zustandänderungen im Rahmen der Transaktion wieder zurückgenommen

(60)

ACID-Eigenschaften von Transaktionen

Atomicity: (Atomizität)

– Transaktionen werden entweder ganz oder gar nicht durchgeführt

Consistency: (Konsistenz)

– Transaktionen überführe die Datenbank von einen konsistenten Zustand in einen neuen konsistenten Zustand

Isolation: (Isolation)

– Nebenläufige (gleichzeitige) Transaktionen laufen jede für sich so ab, als würden sie alleine ablaufen

Durability: (Dauerhaftigkeit)

– Die Wirkung einer Transaktion bleibt dauerhaft (auch bei einem Stromausfall) erhalten

(61)

ACID-Eigenschaften - A

Atomicity (Atomizität)

Transaktionen haben atomaren Charakter:

Sie werden ganz oder gar nicht ausgeführt („Alles oder nichts“ Prinzip)

System muss sich merken, welche Aktionen im Rahmen einer Transaktion bereits durchgeführt wurden (Logging).

Im Falle eines Fehlers müssen diese zurückgenommen werden (Rollback)

(62)

ACID-Eigenschaften - C

Consistency (Konsistenz)

Transaktionen bewahren die Konsistenz der Datenbank

Sie überführen die Datenbank stets von einem konsistenten Zustand (bzgl. der Integritätsbedingungen) in den nächsten

Innerhalb einer Transaktion kann der Datenbankzustand temporär

nicht-konsistent sein, z.B. eine Fremdschlüsselbedingung temporär verletzt sein

Aber am Ende der Transaktion müssen alle Integritätsbedingungen erfüllt sein

(63)

ACID-Eigenschaften - I

Isolation (Isolation)

Transaktionen werden bei einem konkurrierenden Zugriff (Concurrency) auf die Datenbank logisch voneinander getrennt

Jede Transaktion läuft in einem simulierten Einzelbenutzer-Zugriff ohne Beeinflussung der jeweils anderen Transaktion(en) ab

Wir werden noch sehen, dass dies nicht immer perfekt handhabbar ist Wesentliche Mechanismen für die Implementierung von Isolation sind

Synchronisationsmechanismen, also Sperrmechanismen (Locks) beim Zugriff

auf Daten sowie eine geeignete zeitliche Serialisierung der Aktionen (Scheduling)

(64)

ACID-Eigenschaften - D

Durability (Dauerhaftigkeit)

Erfolgreiche Datenbank-Updates im Rahmen von Transaktionen (Committed Transactions) bleiben dauerhaft erhalten

Auch bei einem Stromausfall, Absturz der Datenbank, etc.

Durability und Atomicity gehen Hand in Hand – Können nicht die gesamten Aktionen einer Transaktion dauerhaft in der Datenbank gespeichert werden, wird die Datenbank auf den letzten konsistenten Zustand vor der Transaktion oder aber einen anderen Safepoint innerhalb der Transaktion zurückgesetzt

(65)

Beispiel für SQL-Transaktionen

-- Transaktion T1 wird implizit geöffnet

update Konto set balance = balance-50 where KontoID = 'A';

update Konto set balance = balance+50 where KontoID = 'B';

-- T1 wird beendet und die Ergebnisse in der DB festgeschrieben

commit work;

-- neue Transaktion T2 wird implizit geöffnet

insert into Konto (KontoID, Name, balance) values ('C', 'Meyer', 0);

(66)

Transaktionssteuerung

Methoden der Connection Klasse

 commit()

 rollback()

Auto-Commit-Modus

 implizites Commit nach jeder Anweisung

 Transaktion besteht nur aus einer Anweisung

 Umschalten mittels

setAutoCommit(boolean)

Transaktionsisolationsebenen

 Setzen mittels

setTransactionLevel(int)

 Abfragen mit

getTransactionLevel()

try {

// AutoCommit ausschalten con.setAutoCommit(false);

// DML-Anweisungen ...

// COMMIT ausführen con.commit();

} catch (SQLException e) { // Änderungen zurücknehmen con.rollback();

}

TRANSACTION_NONE

TRANSACTION_READ_UNCOMMITTED TRANSACTION_READ_COMMITTED TRANSACTION_REPEATABLE_READ TRANSACTION_SERIALIZABLE

(67)

Problemarten zu Isolationsebenen (1)

Keine Transaktion

– Probleme wie Verlieren von Updates, Inkonsistenzen der Daten, etc.

möglich

– Bei parallelem Zugriff auf gleiche Daten sollten Transaktionen genutzt werden

Dirty Read

– Innerhalb einer Transaktion werden Ergebnisse einer anderen gelesen, die noch nicht committed und daher evtl. nie in der Datenbank sind

– Leseoperationen benötigen keine Sperren

– Anwendung nur, wo Lesen solcher Daten nicht tragisch ist

(68)

Problemarten zu Isolationsebenen

Nonrepeatable Read

– Innerhalb einer Transaktion werden Ergebnisse einer anderen

gelesen, die bei einer zweiten Leseoperation innerhalb der gleichen Transaktion verschwunden sind (gelöscht) oder geändert wurden – Falls die Konsistenz innerhalb der Transaktion von der

Wiederholbarkeit abhängt, Nonrepeatable Reads blockieren

Phantom Read

– Es wurde z.B. im Vorfeld des Auslesens einer Tabelle die Anzahl der Einträge in einer Tabelle ermittelt. Beim Auslesen der Tabelle gibt es auf einmal einen Eintrag, der vorher noch nicht da war (ein Phantom) – Zur Verhinderung müssen Transaktinen komplett serialisiert werden

(69)

Isolationsebenen

Isolationsebene Dirty Read Nonrepeatable

Read Phantom

Read Performance

Read

uncommitted möglich möglich möglich Sehr gut

Read committed

- 

möglich möglich gut

Repeatable read

-  - 

möglich mittel

serializable

-  -  - 

weniger gut

(70)

Concurrency, Isolation Probleme

Beim konkurrierenden Zugriff (Concurrency) im Rahmen mehrerer Transaktionen auf gleiche Daten können

verschiedene Probleme entstehen, für die Datenbanken Lösungen im Rahmen des Transaktionsbegriffes bieten müssen

– „Lost Update Problem“

– „Dirty Read“

– „Nonrepeatable Read“

– „Phantom Read“

(71)

Lost Update Problem

Beispiel Flugbuchungssystem und Tabelle mit Feld, das Anzahl freier Sitzplätze im Flugzeug festhält

Wenn die Aktionen der zwei Transaktionen T1 und T2 in gezeigter Weise zeitlich verschachtelt werden, wird 1 Sitzplatz doppelt

vergeben

Dies muss natürlich ein Transaktionskonzept verhindern!

(72)

Dirty Read – Nicht freigegebene Änderungen

Wenn die Aktionen der zwei Transaktionen T1 und T2 in gezeigter Weise zeitlich verschachtelt werden, kann T2 evtl. den aktualisierten Sitzplatzwert der Transaktion T1 bereits „vor dem Commit“ lesen obwohl T1 danach diese Änderung per Rollback zurücknimmt

Hier würde jetzt die Datenbank einen Sitzplatz als belegt markieren, dessen Buchung aber zurückgenommen wurde (d.h. der Sitz ist frei)

(73)

Nonrepeatable Read – nicht wiederholbares Lesen

Innerhalb einer Transaktion T1 wird zweimal die Anzahl der Sitzplätze gelesen

Eine zweite Transaktion ändert zwischen diesen beiden Leseoperationen die Anzahl freier Sitzplätze

T1 liest damit innerhalb einer Transaktion zwei verschiedene Werte für die Anzahl der Sitzplätze.

(74)

Phantom Read – Lesen von Phantomen

T1 zählt in der Variablen „count“ die Anzahl der Flüge, auf denen noch Plätze frei sind

Eine zweite Transaktion T2 fügt jetzt in die Tabelle der Flüge einen neuen Flug hinzu, der eigentlich berücksichtigt werden müsste

T1 ist aber schon beim Zählen an der Stelle der Tabelle vorbei, wo der neue Flug eingefügt wurde, und berücksichtigt daher diesen Flug nicht mehr

Hätte T2 einen Flug gelöscht, der bereits gezählt worden wäre, wäre ein nicht länger existenter Eintrag (Phantom) bei der Zählung berücksichtigt worden

(75)

Transaktionen auf Ressourcen

Transaktionen machen nicht nur für Datenbanksysteme Sinn

Konzept anwendbar auf beliebige Systeme, die Ressourcen bereitstellen,

– die gemeinsam genutzt werden – Und dabei modifiziert werden

Verallgemeinerter Transaktionsbegriff für solche Ressource-Systeme

– Für Verteilte Systeme braucht man Verteilte Transaktionen

– Transaktionen über mehrere Ressource-Systeme hinweg

(76)

JTA-Transaction Beispielcode

JTA = Java Transaction API

API für Verteilte Transaktionen in Java über mehrere Ressource- Systeme hinweg

Basiert auf Posix-Standard für Verteilte Transaktionen

Implementierung wird über Ressource-Systeme bereitgestellt, die den Transaktionsmanager für JTA-Transaktionen implementieren

UserTransaction ut=context.getUserTransaction();

try {

ut.begin();

updateServer1();

updateServer2();

ut.commit();

} catch (Exception e) {

try { ut.rollback(); } catch (SystemException syex){ ... } }

Referenzen

ÄHNLICHE DOKUMENTE

Und da… (sucht weiter im Buch), der Fritz, der ist auch nicht mehr mein Freund, der hat meinen Stift kaputt gemacht und die Yvonne, die hat eine andere Freundin (Lussy beginnt zu

Finanzinnovation und Vertiefung der Finanzmärkte Für die Länder, die bei den Finanztechnologien führend sind, zeigt sich die Vertiefung in Form er- folgreicher Innovationen

«Wir haben die Erfahrung gemacht, dass diejenigen, die kommen, sehr wissbegierig sind, und daraus entwickeln sich dann sehr gute Gespräche.» Damit alle Besucherinnen und

Planung der pädagogischen Arbeit bedeutet für uns, dass die ErzieherInnen ihre pädagogische Arbeit planen und reflektieren.. Unsere Planungen beziehen sich auf alle Lebens- und

Agroscope freut sich seinerseits, dass das Weingut Reb- halde auch nach über 40 Jahren weiterhin als Meldebetrieb einen konstruktiven Bei- trag für Forschung und Praxis liefern

13:00 Uhr * Nach Ankunft in Chicago O’Hare International um 13:00 Uhr Begrüßung durch Ihre Reiseleitung, Frau Bettina Johae von aplusnyc - architecture and art tours

Der Deutsche Gewerkschaftsbund (DGB) und der Bund für Umwelt und Naturschutz Deutschland (BUND) setzen sich seit vielen Jahren für eine sozial-ökologische Transformation ein..

Oder eine Prinzessin mit ganz hoher Stimme und ganz zart aufstampfen. Man kann verschieden Charakter in diesem