• Keine Ergebnisse gefunden

Theoretical Aspects of Intruder Search

N/A
N/A
Protected

Academic year: 2022

Aktie "Theoretical Aspects of Intruder Search"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16

Geometric Firefighting – Lower Bound and FF Curve

Elmar Langetepe

University of Bonn

December 22nd, 2015

Elmar Langetepe Theoretical Aspects of Intruder Search

(2)

Lower bound construction, spiralling strategies!

Start at the fire!

Spiralling strategies!

Visit four axes in cyclic order Visit axes in increasing distance

A

Theorem 58:Each “spiralling” strategy must have speed v>1.618. . .(golden ratio) to be successful.

(3)

Proof of lower speed bound: suppose v ≤ 1 . 618

x pi1

pi

A A

By induction:

On reaching pi,

interval of lengthA below pi−1 is on fire.

(Induction base!)

Elmar Langetepe Theoretical Aspects of Intruder Search

(4)

Proof of lower speed bound: suppose v ≤ 1 . 618

x pi1

pi

A A pi+1

y

Inductive Step:

After arrivingpi+1 fire moves at least x+A

(5)

Proof of lower speed bound: suppose v ≤ 1 . 618

x pi1

pi

A A pi+1

y

A

Inductive Step:

After arrivingpi+1 fire moves at least x+A

Elmar Langetepe Theoretical Aspects of Intruder Search

(6)

Proof of lower speed bound: suppose v ≤ 1 . 618

x pi1

pi

A A A

x/v

pi+1

y/v

y

A pi3

x/v

On reaching pi+1: 1.A+xv ≤pi ≤x and 2.A+xv +yv ≤pi+1 ≤y

=⇒ v(v−1)1 x+v−11 A≤ yv

=⇒x+A≤ yv fromv2−v ≤1

(7)

FollowFire Strategy for v = 5 . 27!

Logarithmic spiral of excentricityα aroundZ (v1 = cos(α))!

(First Part)

Elmar Langetepe Theoretical Aspects of Intruder Search

(8)

FollowFire Strategy for v = 5 . 27!

Logarithmic spiral of excentricityα aroundp0 (1v = cos(α))!

(Second Part)

(9)

FollowFire Strategy for v = 5 . 27!

Excentricityα around wrapping center Z1 (v1 = cos(α))!

(Third part!)

Elmar Langetepe Theoretical Aspects of Intruder Search

(10)

FollowFire: Free String Wrapping!

v = 5.27 (α= 1.38) Log(p0,p1),Log(p1,p2) Free string: F1(l):

Wrapping around Log(p0,p1)

v = 3.07 (α= 1.24) Wrappingaround Log(p1,p2)

Wrapping aroundwrappings!

(11)

FollowFire: Free String Wrapping!

v = 5.27 (α= 1.38) Log(p0,p1),Log(p1,p2) Free string: F1(l):

Wrapping around Log(p0,p1)

v = 3.07 (α= 1.24) Wrappingaround Log(p1,p2)

Wrapping aroundwrappings!

Elmar Langetepe Theoretical Aspects of Intruder Search

(12)

FollowFire: Free String Wrapping!

v = 5.27 (α= 1.38) Log(p0,p1),Log(p1,p2) Free string: F1(l):

Wrapping around Log(p0,p1)

v = 3.07 (α= 1.24) Wrappingaround Log(p1,p2)

Wrapping aroundwrappings!

(13)

Experimental approach!

(Spiral Generator Appet!)

Elmar Langetepe Theoretical Aspects of Intruder Search

(14)

FollowFire: Successful?

v= 2.69 (α= 1.19):

8 rounds!

v= 2.593 (α= 1.175):

Simulation did not succeed!

Successful for which v∈(1,∞)?

Lower and upper bounds onv! Proofs!

(15)

Upper bound by FollowFire

Theorem 59:FollowFire strategy is successful ifv >vc≈2.6144

Sketch! When gets the free string to zero?

1 Parameterize free strings for coil j (Linkage)

2 Structural properties

3 Successive interacting differential equations

4 Inserting end of parameter interval

5 Coefficients of power series

6 Ph. Flajolet: Singularities

7 Pringsheim’s Theorem and Cauchy’s Residue Theorem

Elmar Langetepe Theoretical Aspects of Intruder Search

(16)

Upper bound by FollowFire

Theorem 59:FollowFire strategy is successful ifv >vc≈2.6144 Sketch! When gets the free string to zero?

1 Parameterize free strings for coil j (Linkage)

2 Structural properties

3 Successive interacting differential equations

4 Inserting end of parameter interval

5 Coefficients of power series

6 Ph. Flajolet: Singularities

7 Pringsheim’s Theorem and Cauchy’s Residue Theorem

(17)

Upper bound: 1. Parameterize the free string

FollowFireWrapping process!

Free stringsFjj parameterized by lenght of starting spirals!

|Log(p0,p1)|=l1

|Log(p0,p1)|+|Log(p1,p2)|=l2

Fj:l ∈[0,l1] φj:l ∈[l1,l2]

Elmar Langetepe Theoretical Aspects of Intruder Search

(18)

Upper bound: 1. Parameterize the free string (Linkage)

FollowFireDrawing backwards tagents!

Free stringsFjj parameterized by lenght of starting spirals!

Fj

Lj−1 Lj

Fj−1

F0

α α

α p

l

Fj:l ∈[0,l1] φj:l ∈[l1,l2]

l1= cos(α)A ·(ecot(α)−1) l2= cosAα(ecotα−1)eαcotα

Fj+1(l1) = φj+1(l1) Fj+1(0) = φj(l2)

(19)

Upper bound: 1. Parameterize the free string (Linkage)

FollowFireDrawing backwards tagents!

Free stringsFjj parameterized by lenght of starting spirals!

p

φ0

φj1

φj

α α

l p0

Fj:l ∈[0,l1] φj:l ∈[l1,l2]

l1= cos(α)A ·(ecot(α)−1) l2= cosAα(ecotα−1)eαcotα

Fj+1(l1) = φj+1(l1) Fj+1(0) = φj(l2)

Elmar Langetepe Theoretical Aspects of Intruder Search

(20)

Upper bound: 1. Parameterize the free string

FollowFireWrapping process!

Free stringsFjj parameterized by lenght of starting spirals!

|Log(p0,p1)|=l1

|Log(p0,p1)|+|Log(p1,p2)|=l2

Fj:l ∈[0,l1] φj:l ∈[l1,l2]

Fj+1(l1) = φj+1(l1) Fj+1(0) = φj(l2)

F0(l) = A+ cos(α)l

(21)

2. Linkage: Structural Properties

Parameterized by lenghtl of starting spirals!

Lj(l) length of the curve!Fj(l) (and φj(l))length of the free string!

Fj

Lj−1 Lj

Fj−1

F0

α α

α p

l

Lemma 60:

Lj−1+Fj = cosαLj Lemma 61:

L0j

L0j−1

=

FFj

j−1

Elmar Langetepe Theoretical Aspects of Intruder Search

(22)

Helping Lemmata

Lemma 60: Lj−1+Fj = cosαLj

Fire and fire fighter, reach endpoint atFj(l) at the same time Unit-speed fire, geodesic distance of Lj−1(l) +Fj(l)

Fighter distance of Lj(l) at speed 1/cosα

(23)

Helping Lemmata

Lemma 61: L

0 j

L0j−1

=

FFj

j−1

Lemma 62: String of lengthF is tangent to point t on smooth curve C. End of string moves distancein direction α. For the curve lengthCtt between t and the new tangent point, t, we have

→0lim Ctt

= rsinα F

where r denotes radius of osculating circle at t.

α

F F

r

t t

C sin(α)

r

a a φ/2

φ

s

Elmar Langetepe Theoretical Aspects of Intruder Search

(24)

Helping Lemmata

r sin(φ/2) =s =acos(φ/2) gives a=r tan(φ/2)

2aapproximates c :=Ctt: c

2a = rφ

2r tan(φ/2) ≈ cos2(φ/2) → 1

sin(α)

sin(φ) = F+a

sin(π/2) gives sin(φ)

= sin(α)

F+a → sin(α) F sin(φ/2)/ → sin(α)/(2F)

α

F F

r

t t sin(α)

r

a a φ/2

φ

s

Referenzen

ÄHNLICHE DOKUMENTE

Course Wintersemester 2015/16 Dynamic strategies on Trees..

Randomization for a strategy Beat the greedy algorithm for trees Randomization as part of the variant Probability distribution for the root Expected number of vertices saved.!.

Course Wintersemester 2015/16 Expected Search Number..

Build linear barriers with speed B , build barriers successively Instance: Simple polygon, fire spreads from s ∈ P with speed 1, m line segment barriers, b i successively

has an infinite, discrete set of conjugate complex zeroes none of which

Leaev the area as soon as possible Lost in a forest Bellman 1956 Escape paths for region R Single deterministic path!. Leave area from any starting point Adversary translates

General strategies, build the path where you want Distibute the speed v to different agents. Lower and

Distance distribution exactly resembles the polygon Analogy to discrete