• Keine Ergebnisse gefunden

Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation

N/A
N/A
Protected

Academic year: 2022

Aktie "Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation

Fei-Yu Jiaand Shun-Li Zhangb

aCollege of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China

bDepartment of Mathematics, Northwest University, Xi’an 710069, China Reprint requests to F.-Y. J.; E-mail:feiyuji@xauat.edu.cn

Z. Naturforsch.68a,621 – 628 (2013) / DOI: 10.5560/ZNA.2013-0058 Received May 17, 2013 / published online October 2, 2013

In this paper, the generalized diffusion equation with perturbationut=A(u,ux)uxx+εB(u,ux)is studied in terms of the approximate functional variable separation approach. A complete classification of these perturbed equations which admit approximate functional separable solutions is presented.

Some approximate solutions to the resulting perturbed equations are obtained by examples.

Key words:Diffusion Equation; Approximate Functional Separable Solutions; Approximate Functional Variable Separation Approach.

PACS numbers:02.30.Jr; 02.20.Sv; 02.30.Ik

1. Introduction

The symmetry group method plays an important role in reducing and finding exact solutions of par- tial differential equations (PDEs). Some of these meth- ods have been employed to seek exact solutions of PDEs for decades, for example, the Lie symmetry method [1–5], the generalized conditional symme- try (GCS) method [6,7], and the potential symme- try method [8], etc. Moreover, some variable sepa- ration approaches were presented, and have been ef- fectively used to construct exact solutions of PDEs, such as the classical method [9], the differential geom- etry method [10], the ansatz-based method [11–13], the formal variable separation approach [14], and the multi-linear variable separation approach [15,16]. As far as the symmetry group and the ansatz of the so- lution form of PDEs are concerned, we point out two types of the approaches, namely, the functional variable separation approach (FVSA) [17] and the derivative-dependent functional variable separation ap- proach (DDFVSA) [18]. Both methods are used to in- vestigate variable separation of the generalized nonlin- ear evolution equations.

On the other hand, in recent years, more and more researchers have been engaging in the study of the nonlinear evolution equations with a small parameter that were arising from science, technology, and en-

gineering. In order to solve such perturbed systems, there are some approximate methods that are com- monly used, for instance, the numerical and the pertur- bation methods [19], the approximate conditional sym- metry method [20], the approximate potential symme- try method [21], the approximate generalized condi- tional symmetry method (AGCS) [22], the approxi- mate homotopy direct reduction method [23], and the approximate direct reduction method [24].

Recently, we introduced the concept of the ap- proximate functional separable solutions (AFSSs), and proposed the approximate functional variable separa- tion approach (AFVSA) that based on AGCS, and it was applied to discuss the perturbed evolution equa- tions [25,26]. In this paper, we consider the approx- imate functional variable separation of the following generalized diffusion equations with perturbation:

ut=A(u,ux)uxx+εB(u,ux), (1) whereA(u,ux)andB(u,ux)are smooth functions of the indicated variables,εis a small parameter.

The outline of the paper is as follows. In Section2, a complete classification to the generalized diffusion equations with perturbation which admit AFSSs is ob- tained. In Section3, some AFSSs to the resulting per- turbed equations are constructed by way of examples.

The last section is reserved for conclusion and discus- sion.

© 2013 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen·http://znaturforsch.com

(2)

622 F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations 2. Classification of (1) Which Admits the AFSSs

Consider akth-order differential system[E], which is perturbed up to the first order in the small parameter ε, viz.

Eβ x,u,u(1), . . . ,u(k)

E0β x,u,u(1), . . . ,u(k) +εE1β x,u,u(1), . . . ,u(k)

=0, β=1, . . . ,q,

(2)

wherex= x1,x2, . . . ,xn

,u= u1,u2, . . . ,um ,Eiβare smooth functions in their arguments, ε is a small pa- rameter,u(i)(i=1, . . . ,k)is the collection ofith-order partial derivatives, and

Di= ∂

xi+uαi

uα+uαi j

uαj +· · ·, i=1, . . . ,n, denotes the operator of total derivative with respect to xi.

Let

V=η ∂

u≡η(x,t,u;ε)

u (3)

be an evolutionary vector field andηits characteristic.

Definition 1. The approximate solutionu=u(x,t;ε) of (2) is said to be an approximate functional separable solution (AFSS) if it satisfies (2) and the ansatz

f(u) +εg(u) =ψ(x) +φ(t) +ε ω(x) +θ(t)

+O ε2

, (4)

where f(u,ux) and g(u,ux) are smooth functions of u and ux, and ψ(x), φ(t), ω(x), and θ(t) are some smooth functions ofxandt.

In particular, with respect to any perturbed (1+1)- dimensional nonlinear evolution equations, we have definition as follows:

Definition 2. The evolutionary vector field (3) is said to be an AGCS of the perturbed nonlinear evolution equation

ut=K(x,t,u;ε) (5)

if and only if

V(k) utK(x,t,u;ε) [W]T

[E]=O ε2

, (6)

wheneverut=K(x,t,u;ε), whereV(k)denotes thekth- order prolongation to (3),K andη are differentiable

functions oft,xandu,ux,uxx, . . . ,[W]indicates the set of all differential consequences ofη=O ε2

with re- spect tox, that is,Dxjη=O ε2

,j=0,1,2, . . . ,and[E]

denotes the solution manifold of (5).

Considering to the results in [26], we have the fol- lowing theorem.

Theorem 1. Equation (5) possesses AFSS (4) if and only if it admits the AGCS

V=η ∂

u

uxt+

p(u) +εq(u) uxut

u, (7) where

p(u) = ln(f0)0

, q(u) = g0

f0 0

, (8)

where ff(u), g≡g(u), and the prime denotes the corresponding order derivative with respect to u.

Next we classify to (1) that admits AGCS (3) by means of AFVSA. By Definition2and Theorem1, we know that classification of (1) which possesses the AF- SSs is equivalent to obtaining the AGCS of (3) satisfy- ing

V(2)

utA(u,ux)uxx−εB(u,ux) [W]T

[E]

=

Dtη−(Auη+AuxDxη)uxx

−ε(Buη+BuxDxη)−AD2xη

[W]T[E].

(9)

Using expressions Dixη=0, i=0,1,2, . . . ,and (1), and excluding the higher-order derivative of u in (9), we obtain an expression of independent derivative of u, which is

Dtη|[W]T[E]

Ξ1u3xx2u2xx3uxx4

5u3xx6u2xx7uxx=O ε2 ,

(10) where

Ξi≡Ξi(u,ux) =O(ε), i=1,2,3,4, Ξj≡Ξj(u,ux) =O ε2

, j=5,6,7. (11)

Since the expressions for Ξj (j=1,2, . . . ,7) are lengthy, we omit them here.

By solving over-determined system of differential equations (11), we obtain the classification theorem as follows:

(3)

F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations 623 Theorem 2. Suppose A(u,ux)6=0 and B(u,ux)6=

constant, the perturbed equation ut=A(u,ux)uxx+εB(u,ux)

admits AFSS of the (4) if and only if it is equivalent to one of the following equations, up to first order inε:

(1) ut=c21uαuαxuxx

F1

ux

u

+c3

u2α+1+c2u

, (12)

η=uxt−1

uuxut; (13)

(2) ut=c1eγuuαxuxx

c1c2(2α+1) α+2 +c1c3eγ(α−1)u/α

uα+2x +F2(ux)eγu γ +c4

, η=uxt

c2e−γu+c3e−γu/α uxut, α |c2|+|c3|

6=0 ; (3) ut=c1eαu

u2x uxx

F2(ux)eαu

α −3c1c2ln(ux) +c1c3e3αu/2+c4

, η=uxt

h

c2eαu/2+c3e−αui uxut,

|c2|+|c3| 6=0 ; (4) ut=c1uαxuxx

2c1c2(α+1)uα+2x α+2 +c4

u+F2(ux)

,

(14)

η=uxt+ε(c2u+c3)uxut, α |c2|+|c3|

6=0 ; (15)

(5) ut=c1

u2xuxx+εh

c4−2c1c2ln(ux)

u+F2(ux)i , η=uxt+ε(c2u+c3)uuxut, |c2|+|c3|

6=0 ; (6) ut=c1eαuuxx

1

2c1c2u2x+F2(ux)eαu+c3

, η=uxt+εc2e−αuuxut, c2α6=0 ;

(7) ut=c1uxx

uF3(u)− Z u

ξF3(ξ)dξ

u2x +F2(ux) +c2u

,

η=uxt

uF3(u)−RuξF3(ξ)dξ c1

uxut;

(8) ut=c1uαuxx

F1

ux

u

+c4

uα+1 +

c1c2(α−6)u2x 2(α−2) +c3

u

,

(16)

η=uxt+

−1

u+εc2u1−α

uxut; (17) (9) ut=c1u2uxx

F1

ux u

+c3

u3 +

2c1c2ln(u)u2x+c4 u

,

η=uxt+

−1 uc2

u

uxut; (10) ut=uα

u2xuxx

"

F1

ux u

+c5

uα−1

−3c1c3uln(ux) +c1c2αu2−2c4u α−2

# ,

η=uxt+

−1 u

c2u12α−2+c3u1−α

uxut,

|c2|+|c3| 6=0 ;

(11) ut=c1(u−c)αuβxuxx+εB(u,ux), c1β(β+2)6=0,

η=uxt+

− 1 uc

c2(u−c)1−α +c3(u−c)

α+2β β

uxut, where B=B(u,ux)satisfies Bu+c1

c3α(u−c)

α β−α−3β β

β

+ c2h

α(2β+1)−6(β+1)i β+2

uβ+2x

+Buxux−(1+α+β)B−(α+β)H+K

uc +L=0,

where H=H(u), K=K(u), and L=L(u)satisfy (u−c)K0K−(α+β)

(u−c)H0H

−(u−c)2L0=0.

(12) ut=A(u,ux)uxx+εB(u,ux), η=uxt+

p(u) +εq(u) uxut,

where A=A(u,ux), B=B(u,ux), p=p(u), and q= q(u)satisfy

(4)

624 F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations A(p0p2) +c1ucx2=0, c16=0,

h

2Ap2+pAu−2Ap0

Au−ApAuuxi ux

−2A2 p0p2

A(pAu−Auu)−A2u=0, Ah

qAu+4Apq−2Aq0

AuxqAAuuxi u2u

x

+h

(4pq−2q0)−A2(pBuxux+qAu) +A pAuxBux

pBAuxux

+pBA2uxi

uxBAux(pA+AuAux) +A ABuuxAuBux+BAuux

=0, A2h

(2pq−q0)Au−A q00−2pq0−2p0qi u3x +

B

pAu−2p0A+3p2A

+pABu Aux

A

A(Buxp0+Buuxp) +pBAuux u2x +h

A2Buu+A(pA−Au)Bu+

A2 2p2p0 +A(Auu−2pAu)−A2u

Bi ux=0 ;

whereα,β,γ, c, and ci(i∈Z)are arbitrary constants in their sets of definition when not specified.

3. Construction of AFSSs for the Resulting Equations

Using the AFVSA, we present some AFSSs of the resulting equations by the following some examples.

Example 1. Equation (12) enjoys the following AF- SSs,

u=

1+ε ω(x) +θ(t) a2+a3

·exp

ψ(x) +φ(t)−a1a4 a2+a3

, a26=0, whereψ(x),φ(t),ω(x), andθ(t)satisfy

(1) α=0. ψ(x) =−

√ λ c1 x+ a2

2c1

·ln

"

c21

b1exp 2√ λx c1a2

!

−b2

!2# ,

φ(t) =λt a2+b3, a22c21

a22ω00(x) +2a2ψ0(x)ω0(x)−a3(ψ(x))2

+a52

F1

ψ0(x) a2

+c3

1=0, θ(t) = c2a52−λ1

t

a42 +b4, |b1|+|b2| 6=0

; (2) α=0, λ<0.

ψ(x) =a2 2 ln

"

c21 λ

b1sin

−λx c1a2

b2cos √

−λx c1a2

2# ,

φ(t) =λt a2+b3, a22c21

a22ω00(x) +2a2ψ0(x)ω0(x)−a3(ψ(x))2 +a52

F1

ψ0(x) a2

+c3

1=0, θ(t) = c2a52−λ1

t

a42 +b4, |b1|+|b2| 6=0

; (3) α=1, λ6=0.

Z ψ(x) c1a2eξ/a2 r

a2

h

2λe2a1/a2ln(ξ)+h1a2c21i

dξ=±x+h2,

φ(t) =1 2a2ln

a32 2λ(t+h3)

, a22

c21 ψ(x)

a22ω00(x) +2a2ψ0(x)ω0(x)

a30(x))2 +a42

F1

ψ0(x) a2

+c3

·e2(ψ(x)−a1)/a2+a32λ(ψ0(x))−1ω0(x) +a2λ

h

2a2 ω(x)−a4

−2a3 ψ(x)−a1

a2a3

i

1=0, θ(t) =1

2a3

ln

a32 λ(t+h3)

+1

+ a2c2t2 2(t+h3) +

2a22c2h3λ−a22a3λln(2) +λ1

t+2h4a22λ 2a22λ(t+h3) . (4) α6=0,1, λ 6=0.

Z ψ(x)(

c1(α−1)eξ/a2

a5c21(α−1)2

− λ ξα

2(α−1)ξ a2

α/2

exp2a1α−(α−1)ξ a2

(5)

F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations 625

·H(ξ) 12)

=±x+a6,

φ(t) = 1 2αln

"

aα+22 2λ α(t+a7)

# ,

a22

c21 ψ(x)α

a22ω00(x) +2a2ψ0(x)ω0(x)

−a3 ψ0(x)2 +aα+32

F1

ψ0(x) a2

+c3

·e2α(ψ(x)−a1)/a2+a32λ α ψ0(x)−1

ω0(x) +a2λ α

h

2a2(ω(x)−a4)−2a3(ψ(x)−a1)

−a2a3i

1=0, aα+42 θ0(t)−a2c2

e2α φ(t)/a2

−2a2α λ a2θ(t)−a3φ(t)

1=0, where

H(ξ) =WhittakerM

−α 2,1−α

2 ,2(α−1)ξ a2

, whereα,λ,λ1,ai, andbj (i=1, . . . ,7,j=1, . . . ,4) are arbitrary constants in their sets of definition when not specified. where and hereafter the prime denotes the corresponding order derivative with respect to x ort.

Example 2. Some AFSSs to (14) is given by (4), with f(u) =d2u+d1, d26=0,

g(u) =1

6c2d2u3+1

2c3d2u2+d3u+d4, whereψ(x),φ(t),ω(x), andθ(t)are expressed by (1) α6=−1,−2, c1c2α ρ6=0.

ψ(x) =

d2α/(α+1)ρ1/(α+1)

h(α+1)

·(x−d5)i(α+2)/(α+1)

c1/(α+1)1 (α+2) 1

2

+ ρ2

2c2d2α ρ(α+2)+ c4d22 c2α ρ−d2c3

c2 +d1, φ(t) =ρt+d6,

2c1d21−α0(x))αh

d2(α+2)

d2ω00(x)−c30(x))2

−c2α(d1−ψ(x))(ψ0(x))2i

+2d23(α+2)

"

d2F2 ψ0(x)

d2

+ρ α(ψ0(x))−1ω00(x)

#

c2d2α ρ(α+2)ψ2(x) +2d2(α+2)h

α ρ(c2d1

c3d2) +c4d22i

ψ(x)−d2(α+2)h

d1(c2d1α ρ +2c4d22)−2d2ρ α(d1c3d3)i

1=0, θ(t) =−c2α ρ3t3

6d22 −ρ

2c2d2d6ρ α(α+2) +ρ2 t2 4d32(α+2)

c2d2d26ρ α(α+2) +d6ρ21 t 2d32(α+2) +d7. (2) α=−1, c1c2ρ6=0.

ψ(x) =k1eρx/(c1d2)−2d22(d2c4+c3ρ) +ρ2

c2d2ρ +d1, (k16=0)

φ(t) =ρt+k2, 2d22

"

ψ0(x)−1

c1d2ω00(x)−ρ ω0(x) +d2F2

· ψ0(x)

d2 #

+c2ρ ψ(x)2

+2c1d2 c2d1d2c3

c2ψ(x)

ψ0(x) +2

c3d2ρ−c2d1ρ+c4d22 ψ(x)

−2d2(c4d1d2d3ρ+c3d1ρ)+c1d21+d2−1ρ1=0, θ(t) =c2ρ3t3

6d22 +

ρ 2c2d2k2ρ−ρ2 t2−2h

ρ1

+k2 ρ2−c2d2k2ρi t

4d23

−1

+k3. (3) α6=−1,−2, c2=0, c1ρ6=0.

ψ(x) =

d

α (α+1)

2 ρ

1 (α+1)h

(α+1)(x+r1)i(α+2)(α+1)

·

c1/(α+1)1 (α+2) −1

+r2, φ(t) =ρt+r3,

2c1d22−α(α+2)(ψ0(x))α d2ω00(x)−c30(x))2 +2d32(α+2)

d2F2

ψ0(x) d2

+ρ α(ψ0(x))−1

·ω00(x)

+2d22(α+2)(c4d2−α ρc3)ψ(x)

−2d22(α+2)

c4d1d2−ρ α(d1c3d3)

1=0, θ(t) =ρ(d2c4−c3α ρ)t2

2d2

(6)

626 F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations

2r3d22(α+2)(c3ρ α−c4d2) +ρ1 t 2d23 α+2 +r4. (4) α=−1, c2=0, c1ρ6=0.

ψ(x) =h2eρx/(c1d2)+h1, (h26=0) φ(t) =ρt+h3,

d2 ψ0(x)−1

c1d2ω00(x)−ρ ω0(x)

−d2

c1c3ψ0(x)−d2F2 ψ0(x)

d2

+ (c4d2+c3ρ)(ψ(x)−d1)+ρd3+2−1d−22 ρ1=0, θ(t) =ρ(c3ρ+d2c4)t2

2d2 +

2d22h3(c4d2+c3ρ)−ρ1

t 2d32 +h4,

whereα, ρ, ρ1, di, kj, rn, and hn (i=1, . . . ,7,j= 1, . . . ,3,n=1, . . . ,4) are arbitrary constants in their sets of definition.

Example 3. Some AFSSs to (16) is determined by (4), with

f(u) =s2ln(u) +s1, s26=0, g(u) =c2s2u2−α

(α−2)2 +s3ln(u) +s4,

whereψ(x),φ(t),ω(x), andθ(t)are determined by (1) α6=0,1,2, c1c2λ6=0.

Z ψ(x)(

c1c2s2α(α−2)e−s1)/s2

c1c2α(2−α)

2c2s22α λexp

(s1−ξ)(α−2) s2

2 12)

dξ =±x+s5, φ(t) =s2

α ln

s22 α λ(t+s6)

, 2s2

s22

c1ω00(x) +s2F1 ψ0(x)

s2

+c1

2s2ω0(x)

−s3ψ0(x)

ψ0(x) +c4s32

eα(ψ(x)−s1)/s2+2α λh s2

·(ω(x)−s4)−s3(ψ(x)−s1)i

−λ1(α−2)−2=0, θ(t) =s3

α ln

s22 α λ(t+s6)

+ λ2s

4−3α α

2

α(t+s6)α−2α 4(−λ)α2(α−1)(α−2)2

+ c3s2t2 2(t+s6)+s3

α

+

2c3s22λ α(α−2)2s6−λ1

t+2s2s7λ α(α−2)2 2s2λ α(α−2)2(t+s6) . (2) α=0, c26=0.

(i) c1λ>0. ψ(x) =−

s λ c1x+1

2s2

·ln

c1

k1exp 2 s2

s λ c1

x

! +k2

!2

,

φ(t) =λt s2

+k3, s22

c1ω00(x) +s2F1 ψ0(x)

s2

+c1 2s2ω0(x)

s3ψ0(x)

ψ0(x) +c4s32−8−1s−12 λ1=0, θ(t) = 8c3s421

t 8s32 +k4; (ii) c1λ <0.

ψ(x) =1 2s2ln

(

c1 λ

"

h1sin q

−c−11 λx s2

!

−h2cos q

−c−11 λx s2

!#2) ,

φ(t) =λt s2+h3, s22

c1ω00(x) +s2F1

ψ0(x) s2

+c1

2s2ω0(x)

s3ψ0(x)

ψ0(x) +c4s32−8−1s−12 λ1=0, θ(t) = 8c3s421

t 8s32 +h4. (3) α6=0,2, c2=0, c1λ6=0.

Z ψ(x)(

c1(α−2)

c1(α−2)h

b1/s2 2e−2ξ/s2

−2λeα(s1−ξ)/s2i12)

dξ =±x+b3, φ(t) =s2

α ln

s22 α λ(t+b1)

, 2s2

s22

c1ω00(x) +s2F1 ψ0(x)

s2

+c1 2s2ω0(x)

(7)

F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations 627

−s3ψ0(x)

ψ0(x) +c4s32

eα(ψ(x)−s1)/s2+2α λh s2

·(ω(x)−s4)−s3(ψ(x)−s1)i

−λ1(α−2)−2=0, θ(t) =s3

α ln

s22 α λ(t+b1)

+ s2c3t2 2(t+b1)+s3

α

+

2b1c3s22α λ(α−2)2−λ1

t+2b4s2λ α(α−2)2 2s2λ α(α−2)2(t+b1) . (4) α=1, c1c2λ 6=0.

Z ψ(x) c1c2s2e−s1)/s2 q

c1c2

2c2s22λe−s1)/s22

dξ=±x+a1,

φ(t) =s2ln

s22 λ(t+a2)

, 2s2

s22

c1ω00(x) +s2F1

ψ0(x) s2

+c1(2s2ω0(x)

−s3ψ0(x))ψ0(x) +c4s32

e(ψ(x)−s1)/s2 +2λh

s2(ω(x)−s4)−s3(ψ(x)−s1)i

−λ1=0, θ(t) =1

2

2s3s2λ2 λ2(t+a2)

ln

s22 λ(t+a2)

+ a3

t+a2+1

2s2c3(t+a2)− λ1

2s2λ +s3. (5) α=1, c2=0, c1λ 6=0.

ψ(x) =s2ln

λes1/s2x2−2c1s2v2x+2c1s2v3

2c1s22

,

φ(t) =s2ln

s22 λ(t+v1)

, 2s2

s22

c1ω00(x) +s2F1 ψ0(x)

s2

+c1

2s2ω0(x)

−s3ψ0(x)

ψ0(x) +c4s32

e(ψ(x)−s1)/s2

+2λh

s2(ω(x)−s4)−s3(ψ(x)−s1)i

−λ1=0, θ(t) =s3ln

s22 λ(t+v1)

+s3 +s22c3λt2+ 2s22c3v1λ−λ1

t+2s2v4λ 2s2λ(t+v1) , where α, λ, λ1, λ2, si, kj, bj, vj, hj, and an (i= 1, . . . ,7,j =1, . . . ,4,n =1, . . . ,3) are arbitrary con- stants in their sets of definition.

4. Conclusion and Discussion

In summary, by utilizing the AFVSA, we have clas- sified the generalized diffusion equations with per- turbation which admit AFSSs. AFSSs of some re- sulting equations are constructed. In general, these AFSSs cannot be obtained by other approximate methods. Other types of perturbed nonlinear evolu- tion equations may be studied by the AFVSA, and some interesting results will be presented sooner or later.

There are still two interesting topics to be investi- gated later: (i) How to apply the AFVSA to other types of nonlinear evolution equations, such as the higher di- mensional equations, and the system of equations with perturbation? (ii) How to extend the AFVSA so as to obtain more accurate approximate solutions?

Acknowledgement

The work is partly supported by the National NSF of China (No. 11371293), the Youth Science and Tech- nology Fund of Xi’an University of Architecture and Technology (No. QN1328), and the Talent of Science and Technology Fund of Xi’an University of Architec- ture and Technology (No. DB12077).

[1] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York 1993.

[2] G. W. Bluman and S. C. Anco, Symmetry and Integra- tion Methods for Differential Equations, Springer, New York 2004.

[3] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston 1982.

[4] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York 1982.

[5] S. F. Shen, C. Z. Qu, Q. Huang, and Y. Y. Jin, Sci. China Math.54, 2553 (2011).

[6] C. Z. Qu, Stud. Appl. Math.99, 107 (1997).

[7] H. Wan, Acta Phys. Sin.62, 90203 (2013).

[8] G. W. Bluman, G. J. Reid, and S. Kumei, J. Math. Phys.

29, 806 (1988).

[9] W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading 1977.

[10] P. W. Dolye and P. J. Vassiliou, Int. J. Nonlin. Mech.33, 315 (1998).

[11] R. Z. Zhdanov, J. Math. Phys.38, 1197 (1997).

[12] S. H. Ma, J. P. Fang, Q. B. Ren, and Z. Yang, Chin.

Phys. B21, 50511 (2012).

[13] S. H. Ma and J. P. Fang, Z. Naturforsch. 64a, 37 (2009).

(8)

628 F.-Y. Ji and S.-L. Zhang·Approximate Functional Separable Solutions to Generalized Diffusion Equations [14] S. Y. Lou and L. L. Chen, J. Math. Phys. 40, 6491

(1999).

[15] S. Y. Lou, Phys. Lett. A277, 94 (2000).

[16] S. F. Shen, Acta Phys. Sin.55, 1011 (2006).

[17] C. Z. Qu, S. L. Zhang, and R. C. Liu, Physica D144, 97 (2000).

[18] S. L. Zhang, S. Y. Lou, and C. Z. Qu, J. Phys. A: Math.

Gen.36, 12223 (2003).

[19] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer, New York 1980.

[20] F. M. Mahomed and C. Z. Qu, J. Phys. A: Math. Gen.

33, 343 (2000).

[21] A. H. Kara, F. M. Mahomed, and C. Z. Qu, J. Phys. A:

Math. Gen.33, 6601 (2000).

[22] S. L. Zhang and C. Z. Qu, Chin. Phys. Lett.23, 527 (2006).

[23] X. Y. Jiao, R. X. Yao, and S. Y. Lou, Chin. Phys. Lett.

26, 40202 (2009).

[24] X. Y. Jiao and S. Y. Lou, Chin. Phys. B 18, 3611 (2009).

[25] F. Y. Ji and S. L. Zhang, Acta Phys. Sin. 61, 80202 (2012).

[26] F. Y. Ji, Z. Naturforsch.68a, 391 (2013).

Referenzen

ÄHNLICHE DOKUMENTE

Migda, J., Migda, M., Zb¸aszyniak, Z.: Asymptotically periodic solutions of second order difference equations.. Migda, J., Nockowska-Rosiak, M.: Asymptotic properties of solutions

For decades, quite a few methods for tackling per- turbed nonlinear evolution equations have been devel- oped, such as the approximate Lie group theory [17], the approximate

Secondly, by selecting a suitable initial ap- proximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg- Landau-Higgs system is derived.

In summary, with the aid of the homotopy pertur- bation method, an approximate solution with arbitrary order of the GGLH equation is derived.. The homotopy perturba- tion method is

Using the standard and nonstandard Painlev´e truncation methods and the Jacobi elliptic function expansion approach, some types of new exact solutions are obtained. Key words:

Other gauge equivalent integrable equations are obtained by use of the equivalence between inte- grable equations for the curvature and graph of the curves.. In particular, we

The local existence and uniqueness of solutions was shown in [2] for a one-dimensional setting with insulating boundary conditions, and for the case of higher dimensions with

It is a particular case of a thermoelastic system given by a coupling of a plate equation to a hyperbolic heat equation arising from Cattaneo’s law of heat conduction.. In a