• Keine Ergebnisse gefunden

nitrogen deficiency and pathogen infection in winter wheat Use and of blue–green chlorophyll fluorescence measurements for differentiationbetween Journal of Plant Physiology

N/A
N/A
Protected

Academic year: 2022

Aktie "nitrogen deficiency and pathogen infection in winter wheat Use and of blue–green chlorophyll fluorescence measurements for differentiationbetween Journal of Plant Physiology"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Journal of Plant Physiology

j o ur na l hom e p a g e :w w w . e l s e v i e r . d e / j p l p h

Use of blue–green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat

Kathrin Bürling, Mauricio Hunsche

, Georg Noga

UniversityofBonn,InstituteofCropScienceandResourceConservation(INRES)-HorticulturalScience,AufdemHügel6,D-53121Bonn,Germany

a r t i c l e i n f o

Articlehistory:

Received10November2010

Receivedinrevisedform26March2011 Accepted28March2011

Keywords:

Leafrust Mineralnutrition Powderymildew Sensorapplication Stressdifferentiation

a b s t r a c t

Inrecentyears,severalsensor-basedapproacheshavebeenestablishedtoearlydetectsingle plant stresses,butthechallengeofdiscriminatingbetweensimultaneouslyoccurringstressorsstillremains.

Earlierstudiesonwheatplantsstronglyaffectedbypathogensandnitrogendeficiencyindicatedthat chlorophyllfluorescencemightbesuitedtodistinguishbetweenthetwostressors.Nevertheless,thereis lackofinformationonthepre-symptomaticdetectionofsynchronizedoccurrenceofslightN-deficiency andtheearlystagesofpathogeninfection.Theusefulnessoftheblue,green,andyellowfluorescence signalsinthiscontexthasnotyetbeenexplored.Wehypothesizedthatdifferentiationbetweenwheat plants’physiologicalreactionduetoN-deficiencyandleafrust(Pucciniatriticina)aswellasN-deficiency andpowderymildew(Blumeriagraminisf.sp.tritici)mightbeaccomplishedbymeansofUVlaser-induced fluorescencespectralmeasurementsbetween370and620nminadditiontochlorophyllfluorescence (640–800nm).PlantswereprovidedwitheitheranormaloramodifiedHoaglandnutrientsolutionin ordertoinduceaslightNdeficit.Pathogeninoculationwascarriedoutonthesecondfullydeveloped leaf.Fourexperimentalgroupswereevaluated:(a)N-full-supply[N+];(b)N-deficiency[N−];(c)N- full-supply+pathogen[N+/LR]or[N+/PM];(d)N-deficiency+pathogen[N−/LR]or[N−/PM].Theresults revealedthat,inadditiontotheamplituderatioofR/FRfluorescence,B/Gfluorescencealsofacilitated reliableandrobustdiscriminationamongthefourexperimentalgroups.Thediscriminationamongthe experimentalgroupswasaccomplishedasearlyasoneandtwodaysafterinoculationforpowdery mildewandleafrustinfection,respectively.Duringthe3daysevaluationperiod,thedifferencesamong thetreatmentgroupsbecamemoreevident.Moreover,severalotheramplituderatiosandhalf-bandwidth ratiosprovedtobesuitedtoearlydetectfungalinfection,irrespectiveofthenitrogenstatusoftheplant.

© 2011 Elsevier GmbH. All rights reserved.

Introduction

Theincidenceofdiseaseanddeficiencyofnutrientsrepresent- ingbioticandabioticstresses,respectively,arethelimitingfactors forcropproductionworldwide.Asestimated,thepotentialofyield lossofwheatduetofungalpathogensmightamountto15%under specificconditions(OerkeandDehne,2004).Duringwheat’slife cycle,wheatplantsareofteninfectedbythebiotrophicfungiPuc- ciniatriticinaandBlumeriagraminisf.sp.tritici,causingleafrustand powderymildew,respectively.Ontheotherhand,nitrogenisakey

Abbreviations:A,absorbance;AOTF,acusto-optictunablefilter;B,blue;B.grami- nis,Blumeriagraminis;Chlt,totalchlorophyll;dai,dayafterinoculation;DMSO, dimethylsulfoxide;F,fluorescence;FR,far-red;FW,freshweight;G,green;hai, hoursafterinoculation;hbw,half-bandwidth;LR,leafrust;N−,N-deficiency;N+, Nfull-supply;P.triticina,Pucciniatriticina;PAR,photosyntheticactiveradiation;

PM,powderymildew;PMT,photomultiplier;R,red;RD,resistancedegree;SVM, SupportVectorMachines;UV,ultra-violet;UV–VIS,ultra-violet–visible.

Correspondingauthor.Tel.:+49228736540;fax:+49228735764.

E-mailaddress:MHunsche@uni-bonn.de(M.Hunsche).

elementinplantnutrition(Marschner,2005),anditsadequatesup- plyisthemostimportantnutritionalprocessafarmercanmanage incultivatedcrops(McMurtreyetal.,1994).

Inrecentyears,withadvancedtechnology,sensingofstress- induced alterations of metabolism and crop physiology have becomeincreasingly ofinterest todetectmodificationsat early stagesbeforeextensiveplantdamageoccurs.Forthispurpose,sev- eralnon-destructiveapproaches,e.g.fluorescence,reflectance,and thermal-imagingmeasurements,havebeenevaluatedandadopted for thefast and early detection of individual stresses, suchas diseases(e.g.Bodriaet al.,2002;Bravoetal.,2003;Frankeand Menz,2003;Lindenthaletal.,2005;Kuckenbergetal.,2009b)and mineraldeficiency, and especially the nitrogenstatus of plants (e.g.Bredemeieretal.,2003;Schächtletal.,2005;Subhashand Mohanan,1994;TartachnykandRademacher,2003;Buschmann, 2007).Inadditiontopromisingresults,thespecificityofthemea- suring system and theparticularities of the experiments must beconsideredwhenevaluatingorcomparingsuitabletechniques.

As recently shown, the chlorophyll fluorescence imaging tech- niquesappeartobemoresensitivethanthermalimagingforearly 0176-1617/$seefrontmatter© 2011 Elsevier GmbH. All rights reserved.

doi:10.1016/j.jplph.2011.03.016

(2)

detectionofpathogeninfectionandnutrientdeficiency(Chaerle etal.,2007a).Bothnitrogendeficiencyandpathogeninfectionare accompaniedbyadecreaseinchlorophyllcontent(Tartachnykand Rademacher,2003).

Ingeneral,reliabledetectionofstresscanbeachievedwhen evaluatingbioticandabioticstressesassinglefactors.However,it isnotunusualthatseveralstressesinfluencetheplantphysiology simultaneously.Despiteconsiderableadvances,reliablediscrimi- nationbetweenbioticandabioticstressesusingnon-destructive techniquesremainsachallenge.Tartachnyketal.(2006).showed that discrimination betweenstrong N-deficiency and pathogen infectionatadvancedstagescanbeaccomplishedonthebasisof fluorescencepeakratioF690/F730.However,asshownforacross- validation analysis of chlorophyll fluorescence, diseased leaves couldbemisidentified as N-deficiency and vice versa, whereas theclassificationwasimprovedwhenthestandard deviationof themeanwasalsoconsideredasaparameterfordiscrimination (Kuckenbergetal.,2009a).Unfortunately,theseconclusionswere basedonpathogeninfectionandN-deficiencyevaluatedondiffer- entleaves,whereasresearchstudyingbothstressorsconcomitantly onthesameplantsisscarce.

When exposed to stresses, specific pigments and other moleculesmightbesynthesized,accumulatedordegraded,hav- inganindirectordirectinfluenceonthefluorescencesignature.In general,nitrogendeficiencyleadstolesschlorophyllinthetissues (Ciompietal.,1996).Furthermore,nitrateavailabilityinfluences notonlythechlorophyllconcentrationandthereforechlorophyll fluorescence,but also phenol and lignin production, which are reducedinwheatshootsbyhighnitratelevels(Brownetal.,1984).

Wheninfected withfungalpathogens,plants mightaccumulate specificsubstances, suchas salicylicacid and phenylpropanoid compounds(e.g.cinnamicacid,stilbens,coumarinsandflavonoids) as the most important substances in plant disease resistance (Chaerle et al.,2007b; Lenket al.,2007).Accordingly,the fluo- rescenceintheblue–greenspectralrangemightyieldpromising results, since it hasbeen proven to bevery sensitive tosingle stresseventsreflecting,amongothers,accumulationofsecondary metabolites(LichtenthalerandMiehé,1997;Cerovicetal.,1999;

Buschmannetal.,2009).However,thesuitabilityofthefluores- cenceoutcomeintheblue,green,andyellowspectral rangefor discriminatingstressorsisnotyetproven.Therefore,wehypoth- esized that differentiation betweenwheat plants’ physiological reactionsduetoN-deficiencyandleafrust(Pucciniatriticina)as wellasN-deficiencyandpowderymildew(Blumeriagraminisf.sp.

tritici)mightbeaccomplishedbymeansofUVlaser-inducedflu- orescencespectral measurementsintheblue,greenandyellow range(370–620nm)in additiontothechlorophyllfluorescence (640–800nm).WefocusedonaslightN-deficiencyandtheearly stages of pathogen infection, based on the need of sensors to detectpre-symptomaticstresssignals.Ofprimaryinterestwasthe basicsuitabilityofcombinedspectralinformationbyevaluationof severalfluorescenceratiosforconsiderationinfuturefieldexperi- mentsrequiringmorecomplexanddevelopeddetectionsystems.

Materialsandmethods

Plantmaterial

Experiments were conducted in a controlled-environment cabinetsimulatinga14-hphotoperiodwith200␮Mm−2s−1pho- tosyntheticactive radiation (PAR;Philips PL-L36W fluorescent lamps,Hamburg,Germany),day/nighttemperatureof20/15±2C andrelativehumidityof75/80±10%.Winterwheat(Triticumaes- tivum L. emend. Fiori.et Paol.)seeds of the leaf rust(LR) and powderymildew(PM)susceptiblecultivarRitmoweresownin individualpots(5seedsperpot)filledwithperlite.Accordingto

thedescriptive varietylistof theGermanFederal Plant Variety Office(2008),Ritmoisclassifiedwitharesistancedegree(RD)of 8forleafrustandRD=5forpowderymildew,inaclassification rangefromone(resistant)tonine(susceptible).Inoculationofsin- gleleaveswitheitherleafrustorpowdery mildewwascarried outonthesecond fullydeveloped leaf,twentydays aftersow- ing. Experiments with combined nitrogen supply and leafrust orpowderymildewinoculationwereconductedseparately and repeatedatleasttwice.Accordingly,theexperimentalsetupwas asfollows:(a)N-full-supply[N+];(b)N-deficiency[N−];(c)N-full- supply+pathogen[N+/LR]or[N+/PM];(d)N-deficiency+pathogen [N−/LR]or[N−/PM].Ineachexperiment,thenumberofreplications wasn=12forthenitrogentreatments,and n=16forthenitro- gen+pathogentreatments.Pathogeninoculationwasperformed ontwoplantsperpot.

Fertilizationandchlorophylldetermination

Emerging plants were provided with either a standard or a modified Hoagland nutrient solution; the first contained all mineralnutrientsforoptimalplantgrowthanddevelopment,and thesecond wasadjusted toinducenitrogen deficiency. Several pre-experiments with defined amounts of nitrogen were con- ductedinordertodeterminetheappropriateNconcentrationto induceaslightNdeficitthatisnotevidentbyvisualobservation.

The full nitrogen supply solution (N+) contained 236.16gL1 Ca(NO3)2·4H2O, 57.54gL−1 NH4H2PO4, and 67.74gL−1 KNO3 whereastheN-deficiencysolutioncontained68.05gL−1KH2PO4, 74.55gL1 KCl, 126.12gL1 Ca(NO3)2·4H2O, and 13.2gL1 (NH4)2SO4.Consequently,thedeficiencysolution(N−)contained 40% of the N-amount of the standard solution. The content of micronutrientswassimilarinbothfertilizationsolutions.

Leavesatthesamedevelopmentalstageasthoseusedinthe main experiments were sampled and the nitrogen status was evaluatednon-destructivelywithachlorophyllmeter(SPAD502, KonikaMinolta, Langenhage, Germany) on theadaxial sides of theleavesbymeasuringred(∼650nm)andinfra-red(∼940nm) lighttransmission.Fromthesameleaves,chlorophyllcontentwas extractedfrom1cm2leafpieceswithdimethylsulfoxide(DMSO) andanalyticallydeterminedasdescribedelsewhere(Blanke,1992).

Theabsorbanceofextractswasevaluatedat665nm(A665)and 647nm(A647)withaUV–VISspectrophotometer(Perkin-Elmer, Lambda5,Massachusetts,USA).Totalchlorophyll(Chlt)concen- tration was calculated on fresh-weight basis according to the equation:Chlt=17.9×A647+8.08×A665.

Pathogeninoculation

InoculationofPucciniatriticina

Inoculationwascarriedoutwithanon-specificmixtureofPuc- ciniatriticinasporesproducedonwheatwithoutknownresistance genes(INRES-Phytomedicine,Universityof Bonn).Beforeeach experiment, fresh P.triticinaspores were suspended in a solu- tionofdistilledwater+Tween20(0.01%,w/v;Merck-Schuchardt, Hohenbrunn,Germany). Thesporeconcentrationwasestimated microscopically with a Fuchs-Rosenthal counting chamber and adjustedto1×104sporesmL−1.Oneach leaf,themiddleofthe leaflengthwasmarkedontheadaxialsidewithafelttippen,and seven6-␮Ldropletsofsporesuspensionwereappliedinarowon oneleafhalf(Fig.3).Priortotheapplication,leaveswerefixedhor- izontallyonasampleholdertopreventdropletrun-off.Duringthe inoculationperiod(22h),plantsweremaintainedintheclimate chamberatalmostwatervaporsaturatedatmosphereensuredby aplasticcover.Thereafter,theplasticcoverwasremovedandthe leaveswerereleasedfromtheirhorizontalfixation.Plantsofthe groupswithoutpathogeninoculationwerehandledsimilarlybut

(3)

treatedwithwaterdroplets+Tween20(0.01%,w/v).Fluorescence measurementswereperformedonthecentralofthesevendroplet applicationsites.Thedevelopmentofdiseasespotswasevaluated visuallyovertheexperimentalperiodinsituandondigitalpho- tographstakeninparalleltothefluorescencereadings.

InoculationofBlumeriagraminis

Similarto themethods described for theinoculation ofleaf rust,thetargetleaveswereselectedandthemiddleofleaflength wasmarkedwithafelttippen.Markedleaveswerehorizontally fixedbeforeinoculationwithconidiaofanon-specificmixtureof Blumeriagraminisf.sp.triticiproducedonwheatwithoutknown resistancegenes(INRES-Phytomedicine,UniversityofBonn).Stock plantsinoculatedwiththepathogenensuredthesupplyoffresh conidiawhenneeded.Forinoculationofexperimentalplants,coni- diawerecarefullyremovedfromthestockplantswithafinebrush anddirectlyappliedontheleafsurfaceofthetargetplants.Appli- cationsite(3×5mm)waslocatedattheleaflengthmiddleinthe centreofaleafhalf.Twenty-twohoursafterinoculation(hai),visi- bleconidiawereremovedbygentlyblowingandbrushingoverleaf surface.LeavesoftheplantgroupsN+andN−werehandledina similarwaywithoutconidia.

Fluorescencemeasurements

Fluorescence measurements were carried out using a com- pactfiber-opticfluorescencespectrometerwithnanosecondtime resolution and employing the boxcar technique (IOM GmbH, Berlin,Germany). ApulsedN2 laser(MNL100, LTBLasertechnik BerlinGmbH,Berlin,Germany) withanemissionwavelengthof 337nm and a repetition rateof 20Hz served asthe excitation source.The fiber-optic probe for detection of fluorescence sig- nals consistedof a central excitationfiber and six surrounding emissionfibers,eachwitha200-␮mdiameter.Thepulseenergy attheprobe exitwasadjusted tobein therangeof 1.5–3.0␮J witha pulselengthof approximately2.5ns resultingin a den- sityof7.5–15×1015photonspercm2andpulse.Fluorescencewas recordedwithanacousto-optictunablefilter(AOTF)monochroma- tor,whichenablesaminimalstepwidthof1nm.Aphotomultiplier (PMT,H5783-01,Hamamatsu,HamamatsuCity,Japan)wasusedas detector.ThesensitivityofthePMTwasadjustedtooptimizethe signalintensityduringthespectralmeasurements.Timeresolution wasaccomplishedusingagatedintegratorwitha2-nshalf-width;

positioningofthegateallowedanaccuracyof0.1ns.

Detectionof fluorescence spectra wascarried out on leaves fixedhorizontallyonaplatewithintegratedsampleholder.The fiber-opticprobe was positionedat a 90 angleto theleaf. By employing a laser-based rangefinder (OptoNCDT 1300; Micro- EpsilonMesstechnikGmbH&Co.KG,Ortenburg,Germany)fixed besidetheprobe,thedistancebetweenleafandprobesurfacewas adjustedto3.95mmatthepointofmeasurement.Thestandard distanceenabledfluorescenceintensitiesinanarrowdatarange, providingaminimumofsignalintensityandavoidingsignalsat- uration.Spectraweremeasuredat21–23Cunderambientlight conditions(about 18␮Mm2s1 PAR) attwo tofourdaysafter pathogeninoculation(dai)forleafrustexperiments,and oneto threedaiforpowderymildewexperiments.Priortofluorescence measurements,plantswereadaptedfor0.5htoroomconditions.

Foroptimizationoffluorescencesignals,equipmentsettingswere adjustedasfollows.Spectralanalysiswasaccomplishedatawave- lengthintervalof2nmbetween370and800nmwithagateposi- tionat5ns(inthetemporalsignalmaximum).Measurementswere donewithapulsecountof32,whichisthenumberoflaserpulses averagedforeachsingledatapoint.ThePMTsensitivitywassetto 600Volt.Fluorescencepeaksweredeterminedat451nm(blue,B), 522nm(green,G),689nm(red,R),and737nm(far-red,FR).

Fig.1. Exampleoffluorescencespectra(370–800nm)recordedfromahealthy wheatleafoftheN-full-supplytreatmentgroupwithafluorescencespectrometer withnanosecondtimeresolutionusingapulsednitrogenlaser(337nm)asexcita- tionsource.Thetrianglesindicatethemeasuredfluorescenceemissionspectrum, thedottedlinesdisplaytheindividualGaussianspectralcomponentsofthefitted spectrum,andthesolidlineshowsthefittedspectrum.

Dataprocessingandstatistics

The measured laser-induced fluorescence spectra were pro- cessed by Gaussian curve fitting using the freeware Gnuplot (version4.2patchlevel4,http://www.gnuplot.info,GeeknetInc., MountainView,CA,USA),asindicatedinFig.1.Position,ampli- tudesaswellashalf-bandwidths(hbw)ofpeaksweredetermined tocalculatetheratiosbetweenamplitudes,half-bandwidths,and amplitudes-to-half-bandwidths(*)forindividualpeaks.Thepro- cessed experimentaldata were subjected to statistical analysis usingtheSPSSpackage(SPSSInc.,Chicago,USA)version18.0.The relationbetweenSPADandchlorophyllcontentwasestablished withalinearregression.Foreachdayandevaluationgroup,the meanswerecomparedbyANOVA(p≤0.05)andmeansseparated withtheDuncan’smultiplerangetest.Graphs(mean±SD)were drawnwithSigmaPlot 8.02(SystatSoftwareInc.,Richmond,CA, USA).

Results

ValidationofN-deficiency

ThechlorophyllcontentofplanttreatmentswithN+andN− wasevaluatedtoshowthattheN− treatmentgroupwasnitro- gendeficientevenifvisualsymptomswerenotevident.On the basisofSPAD-valuesandchlorophyllextraction,alinearfunction expressedasChl[␮gg−1FW]=53.34×SPAD−248.024(r2=0.93) wasestablished(Fig.2).However,theusefulnessoftheproposed linearfunctionmightbelimitedtoourexperimentalconditions (hydroponiccultivationofthewheatcultivarRitmoreceivingeither fullN-supplyor40%ofN),whereas forawide rangeofchloro- phyll concentrationsand SPADvalues, non-linear curves seems tobe more appropriate (Uddling et al., 2008).On average, leaf chlorophyll concentrations of N+ plants were 2311␮gg−1FW, whereas the leavesof the N− treatmentgroup had a mean of 1698␮gg1FW.Asidefromthissignificantdifference,thevisual assessmentofN-deficiencyleavesrevealednodistinctstresssymp- toms(Fig.3A).

(4)

Fig.2.CorrelationbetweenSPADvaluesandchlorophyllcontentofwheatleaves asaffectedbytwolevelsofnitrogensupply(n6).

Fig.3.Digitalphotographsofwheatleavesaffectedbyabioticorbioticstressfactors:

(A)influenceofnitrogenfertilization,N-full-supply(N+)andN-deficiency(N−);(B) leavesinfectedbyleafrust,fourandeightdaysafterinoculation(dai);(C)infection ofpowderymildewatfourandeightdaysafterinoculation.

Combinednitrogendeficiencyandleafrustinfection

Visualevaluationsofleafrustdevelopmentindicatedsmalland loomchloroticspots4dai(daysafterinoculation)ontheadaxialleaf laminainbothnitrogenfullsupply(N+)andnitrogendeficient(N−) leaves(Fig.3B).Twodayslater(6dai),smallred-brownpustules appearedontheleafsurfaceandbecamelargerandmoredistinct inthefollowingdays.After8dai,diseasesymptomswereevident (Fig.3B).

The spectrally resolved fluorescence measurements and the identificationofpeakmaximaat451nm(B),522nm(G),689nm (R),and737nm(FR)(Fig.1)allowedustocalculatesixamplitude

Table1

Influenceofnitrogensupply(N+,full-supply;N−,40%offull-supply)andleafrust (LR)inoculationonselectedfluorescenceratios,determinedfromtwotofourdays afterinoculation(dai).

Fluorescenceratio Experimentalgroup 2dai 3dai 4dai

B/R

N+ 2.98a 2.55a 2.24a

N+/LR 3.53b 3.09b 2.91b

N− 3.01a 2.55a 2.29a

N−/LR 3.37b 3.04b 3.00b

B/FR

N+ 2.81a 2.34a 2.06a

N+/LR 3.50b 3.22b 3.38b

N− 2.90a 2.44a 2.20a

N−/LR 3.49b 3.37b 3.80b

G/R

N+ 0.77a 0.68a 0.62a

N+/LR 0.96b 0.93b 1.00b

N− 0.80a 0.71a 0.65a

N−/LR 0.96b 0.97b 1.09b

G/FR

N+ 0.72a 0.62a 0.57a

N+/LR 0.95b 0.97b 1.17b

N− 0.77a 0.67a 0.63a

N−/LR 1.00b 1.07b 1.39b

B/Ghbw

N+ 1.07b 1.06b 1.05b

N+/LR 1.06a 1.03a 1.01a

N− 1.08b 1.06b 1.06b

N−/LR 1.06a 1.03a 1.01a

G/FRhbw

N+ 1.52a 1.52a 1.53a

N+/LR 1.55b 1.58b 1.59b

N− 1.51a 1.52a 1.52a

N−/LR 1.54b 1.56b 1.58b

R/FRhbw

N+ 0.79a 0.78a 0.78a

N+/LR 0.80b 0.79b 0.79b

N− 0.79a 0.79a 0.78a

N−/LR 0.79b 0.79b 0.79b

FR*

N+ 923b 956b 975b

N+/LR 796a 784a 739a

N− 920b 933b 941b

N−/LR 788a 753a 694a

Meansofthefluorescenceparametersforeachevaluationdayfollowedbythe sameletterdonotdiffersignificantlyaccordingtoDuncan’smultiplerangetest (p0.05;n=12forN+andN−;n=16forN+/LRandN−/LR).hbw=half-bandwidth,

*=amplitude-to-half-bandwidthratio.

and sixhalf-bandwidths ratios(B/G, B/R, B/FR,G/R,G/FR, R/FR) aswellasfouramplitudes-to-half-bandwidthratios(B,G,R,FR).

However,notallratiosareappropriatetodetectN-deficiencyand pathogeninfectiononthesameleaves.Wethereforefocusedon themostpromisingones.AsshowninTable1,severaloftheexam- inedfluorescenceratiosfacilitatedreliablediscriminationbetween healthyandinoculatedleavesfrom2to4dai,irrespectiveofnitro- genfertilization.AmplituderatiosofB/R,B/FR,G/RandG/FRwere significantlyhigherininoculated thaninnon-inoculatedleaves.

Twodai,valuesforB/Rwere2.98and3.01forN+andN−,and3.53 and3.37forN+/LRandN−/LR,respectively(Table1).Inasimilar trend,valuesoftheG/Rratiowere0.77and0.80forN+andN− and0.96forbothnitrogenvariantsinoculatedwiththeleafrust pathogen.Inaddition,thepathogeninoculationreducedtheB/G andincreasedtheG/FRhbwandR/FRhbwratios(Table1).Ofall theevaluatedamplitude-to-half-bandwidthratios,acleardiffer- encebetweenthetreatmentgroupswasobservedfortheFR*peak, showingvaluesof923(N+),920(N−),796(N+/LR)and788(N−/LR) attwo daysafter inoculation(Table1).The differencebetween healthyandinoculatedleavesbecameslightlygreaterduring3days ofmeasurements,asindicatedbyvaluesofB/R(Table1).

Todistinguishamongthefourexperimentalgroups,twofluo- rescenceratioswereconsideredaspromisingparameters.Onall thethree measuringdays(2–4dai)theamplituderatioB/Gwas significantlydifferentamongthefourgroups(Fig.4A).Atthe2nd dai,leavesofN+plantshadthehighestvalues(3.89),followedby N−(3.75),N+/LR(3.68),andN−/LR(3.50)(Fig.4A).Inalltreat- ments,valuesdecreased overtime due toleafaging andatthe 4th dai, one daybeforefirstvisible symptoms appeared, ratios

(5)

Fig.4. Influenceofnitrogensupply(N+,full-supply;N−,40%offull-supply)anddiseasedevelopmentontheratiosoffluorescenceamplitudesB/GandR/FR.(AandB)Leaf rust(LR)infectionmeasuredfromtwotofourdaysafterinoculation(left);(CandD)powderymildew(PM)infection,measuredfromonetothreedaysafterinoculation (right).Means(±SD)oftheexperimentalgroups(withineachevaluationday)followedbythesameletterdonotdifferstatisticallyaccordingtoDuncan’smultiplerangetest (p0.05;n=12forN+andN−;n=16fortheothertreatmentgroups).

reached3.64forN+,3.50forN−,2.93forN+/LRand2.77forN−/LR (Fig.4A).Consequently,thedifferencebetweenN+andN−aswell asbetweenN+/LRandN−/LRremainedthesame,butthedifference betweeninoculated and non-inoculatedleavesbecame greater.

MeasurementsofthechlorophyllfluorescenceintheRandFRpeaks indicatedslightlyhigheramplituderatiosR/FRininoculated(N+, 0.94;N−,0.96)thaninnon-inoculated(N+/LR,0.99;N−/LR,1.04) (Fig.4B)leaves.ValuesforN+andN−remainedalmostconstant, whiletheinoculatedleavesshowedastrongincrease(Fig.4B).

Combinednitrogendeficiencyandpowderymildewinfection Visual evaluations of powdery mildew development first revealedsmallpatchesof whitishmyceliumontheleafsurface atfourdaysafterinoculation(Fig.3C).Duringthefollowingdays the patches increased in size, and new mycelia were formed.

Aswithleafrust,alargenumberofamplitude,half-bandwidth, andamplitude-to-half-bandwidthratioswerecalculated,butwe focused onthose parameters showing robustness for detection anddifferentiationoftheevaluatedstressfactors.Astheresults of the fluorescence measurements show, irrespective of nitro- gen level, only a small number of the evaluated fluorescence ratiosweresuitedtodiscriminatebetweenhealthyandinoculated

leaves(Table2).Duringthe3 dayperiod ofmeasurements,the half-bandwidthratiosB/G,G/RandG/FRrevealedconstantdiffer- encesbetweeninoculated andnon-inoculatedleaves.Asshown for theB/Ghbwat1dai,powdery mildewloweredtheratio to

Table2

Impactofnitrogensupply(N+,full-supply;N−,40%offull-supply)andpowdery mildew(PM)inoculationonselectedfluorescencehalf-bandwidthratios,deter- minedfromonetothreedaysafterinoculation(dai).

Fluorescenceratio Experimentalgroup 1dai 2dai 3dai

B/Ghbw

N+ 1.07b 1.06b 1.05b

N+/PM 1.00a 0.95a 0.94a

N− 1.07b 1.05b 1.04b

N−/PM 0.99a 0.96a 0.94a

G/Rhbw

N+ 1.95a 1.97a 1.97a

N+/PM 2.08b 2.16b 2.19b

N− 1.94a 1.97a 1.97a

N−/PM 2.09b 2.14b 2.16b

G/FRhbw

N+ 1.51a 1.52a 1.52a

N+/PM 1.60b 1.68b 1.70b

N− 1.51a 1.52a 1.53a

N−/PM 1.61b 1.67b 1.69b

Meansofthefluorescenceratiosforeachevaluationdayfollowedbythesameletter donotdiffersignificantlyaccordingtoDuncan’smultiplerangetest(p0.05;n=12 forN+andN−;n=16forN+/LRandN−/LR).hbw=half-bandwidth.

(6)

1.00(N+/PM)and0.99(N−/PM)ascomparedto1.07inthenon- inoculated leaves (Table 2). In contrast, ratios of G/Rhbw and G/FRhbwwerehigherinB.graminisinoculatedleavescompared tonon-inoculatedleaves.TheG/RhbwratioforN+andN−leaves at1daiwereof1.95and1.94,respectively,contrastingto2.08and 2.09intheinoculatedleaves(Table2).Duringthefollowingtwo days,thedifferencebetweenhealthyandinoculatedleavesbecame morepronounced,andonedayaheadoffirstvisibleinfectionsymp- toms(3dai),theG/Rhbwratioincreasedto1.97forbothN+and N−,2.19forN+/PMand2.16forN−/PM(Table2).

Fig.4CandDdisplaysthetime-coursedevelopmentoftheB/G andR/FRamplituderatiosofthefourexperimentalgroups(N+,N−, N+/PM,N−/PM).Duringthewholeevaluatedperiod,plantssup- pliedwithadequatenitrogenshowedthehighestvaluesforthe B/Gratio,followedbytheN−group,N+/PM,andfinallyN−/PM.

Onthefirstmeasuringday(1dai)amplituderatiosofB/GforN+

andN−wereof3.73and3.55respectively,whereasN+/PMand N−/PM leaves indicated significantly lower values of 3.19 and 3.06,respectively(Fig.4C).Duringthefollowingtwodaysvalues decreasedinallexperimentalgroupsbutthedifferencebetween inoculatedandnon-inoculatedleavesremainedalmostconstant.

Onthelastevaluationday(3dai)valuesonN+andN−were3.48 and3.31andforinoculatedones,N+/PMandN−/PM,2.76and2.66, respectively(Fig.4D).Similarly,valuesoftheratioR/FRonhealthy leavesremainedat acomparable level,whereas infectedleaves showedasignificantincrease.Alreadyat1dai,significantdiffer- encesbetweentreatmentgroupswerenoted,andvalueswereof 0.98and1.02 forN+andN−,and1.07 and1.15forN+/PMand N−/PM(Fig.4D).At3daivaluesforN+andN−werestillat0.96 and1.00,whereasthegroupsN+/PMandN−/PMindicatedratios of1.09and1.19,respectively(Fig.4D).

Discussion

Theobjectiveofthecurrentstudywastoevaluatethefeasibil- ityofspectralresolvedfluorescenceforsimultaneousdetectionof slightN-deficiencyandpathogeninfectiononthesameleavesat apre-symptomaticstage.Basedonthefluorescencepeaksinthe blue,green,redandfar-redregionsasdisplayedinFig.1,ampli- tude, half-bandwidth, and amplitude-to-half-bandwidth ratios wereestablished.Theoutcomewasthatseveralfluorescenceratios mightbeconsideredfordetectionanddifferentiationbetweenthe stressors.However,incontrasttothedifferentiationbetweenN- deficiencyandleafrust(Table1andFig.4A,B),onlyafewratios are suitable to differentiate N-deficiency and powdery mildew (Table2andFig.4C,D).Inadditiontotheearlydetectionofleaf rustandpowderymildewinfectionandslightnitrogendeficiency withthechlorophyllfluorescence,theamplituderatioR/FRisalso suited for simultaneous detection of both factorson the same leaves. Moreover, the blue–green fluorescence amplitude ratio (B/G)yieldsmorepreciseresultswhendistinguishingamongthe fourexperimentalgroupsN+,N−,N+/pathogen,andN−/pathogen.

Asobservedinbothpathosystems,leafrustandpowderymildew, thedifferencebetweenvaluesofthehealthyandinoculatedplants became morepronounced in the time-courseof the infection’s development.

Itis wellknownthatwheatplants grownunderreduced N- supplyexhibitlowerchlorophylllevelscomparedtoplantsgrown underfullNsupply(Cartelatetal.,2005),whereasthechlorophyll contentcanbeestimatedbyhandheldchlorophyllmeters(Uddling etal.,2008).Ourresultsrevealedareductionofchlorophyllcon- tent(Fig.2)and anassociated increaseoftheR/FRfluorescence ratio(Fig.4),whichisaninverseindicatorofthechlorophyllcon- tent(Buschmann,2007).Astrongnegativecorrelationcoefficient (r2=−0.86) betweenthechlorophyllcontentandtheamplitude

ratioR/FRwasestablished(datanotshown).Moreover,ouranal- yses showed a strong positive correlation coefficient (r2=0.90) betweenthechlorophyllcontentandtheB/Gamplituderatio(data not shown).Lichtenthaleret al. (1997)associated a decrease in theF440/F520ratiowiththechangeofchlorophyllcontentper leafarea,whereastheincreaseofbluefluorescencewithdecreas- ingchlorophyllandcarotenoidcontentwasdiscussedintermsof reducedre-absorptioneffects.

ExperimentswithbarleyandwheatgrownunderN-deficiency revealed close relations between the accumulationof phenolic metabolitesand changes of chlorophyll content, and modifica- tionsinUV-inducedfluorescencesignature(Mercureetal.,2004;

Cartelatetal.,2005).AsaconsequenceoflowerNsupplyinbar- ley, the amount of total soluble phenolic compounds and the blue–greenfluorescenceincreased(Mercureetal.,2004).In our study,theB/Gfluorescenceamplituderatiodecreasedwithless Nsupply(Fig.4).Thisisconsistentwiththefindingsof(Belanger etal.,2006)who pointedoutthattheratioF440/F520revealed differencesbetweenpotatoplantsfertilizedwithseveralnitrogen levels.Inourstudy,thedecreaseofB/Gvaluesforplantsgrown underN-deficientconditionsisexplainedbya combinationofa smallincreaseinbluefluorescence(2–3%)andamorepronounced increaseingreenfluorescence(6–7%).

Generalassociationsoftherelationshipbetweennitrogensta- tusandfungal infectionsuggestthat higherN supplyincreases the susceptibility of cereals to pathogens such as mildew and rusts(WaltersandBingham,2007).Alternatively,lownitrogenlev- elswereassociatedwithhigheramountsofphenolsandreduced disease intensity (Cartelat et al., 2005), as phenols are known toplay animportantrole in diseaseresistance(e.g. Hermsand Mattson,1992;NicholsonandHammerschmidt,1992;Vermerris and Nicholson,2006).In addition,thesynthesis and accumula- tion of suchcompounds depends onthe time scale. As shown previously,slightlyincreasedlevelsofboundandunboundhydrox- ycinnamicacidduetopowderymildewinfectionunderlowand mediumN-supplyweremeasuredalready20hafterinoculation (Sander and Heitefuss, 1998). In the present studies with leaf rustandpowderymildew, thedifferences inB/Gratiobetween healthy and infected leavesbecame larger when infection was furtherdeveloped (Fig.4).Nevertheless,thedifferencebetween N−/pathogenandN+/pathogenleavesremainedatthesamelevel.

Asobservedin ourstudies,absoluteintensitiesof rustinfected leavesincreasedonaveragefrom4%(dai2)to23%(dai4)forthe blueandfrom11%(dai2)to55%(dai4)forthegreenfluorescence ascomparedtothenon-inoculatedtissue,irrespectiveofnitrogen supply.

Alternatively,re-absorption effects ofblue fluorescencelight bychlorophyll(Langetal.,1991),aswellasapossibleshielding effectoftheexcitationlightbyphenolicslocatedintheepider- mis(ChaerleandVanDerStraeten,2000)shouldbeconsidered.

TheobservedincreaseoftheR/FRratioinourexperiments(Fig.4) indicatesadecreasein chlorophyllcontentinplants inoculated withleafrustorpowderymildew(Buschmann,2007),which is inaccordancewithLorentzenandJensen(1989)andOweraetal.

(1981).

Asreportedbyseveralauthors(McMurtreyetal.,1994;Heisel et al., 1996; Mercure et al., 2004), several computed fluores- cenceratiostheF440/F685,F440/F740,F525/F685andF740/F685 revealeddifferencesbetweenmaizeplantsfertilizedwith100%or with75%or lessnitrogen. TheratiosF440/F690and F440/F740 proved to be more sensitive to nutrient deficiencies than the F690/F740ratio(Heiseletal.,1996;Lichtenthaleretal.,1997).Our resultsdidnotconfirmthisforplantsgrownunderN-deficiency foracomparativelyveryshortperiod.Thesefluorescenceparam- etersseemtobemoresuitedtorevealearlypathogeninfection irrespectiveofthenitrogenstatus oftheplants,asobservedfor

(7)

amplitudeandhalf-bandwidthratiosintheleafrustexperiment (Table1),andofhalf-bandwidthratiosinthepowderymildewtrials (Table2).Intheexperimentwithleafrust,especiallytheamplitude ratiosG/RandG/FRaswellastheFR*amplitudetohalf-bandwidth ratioshowedastrongeffectofpathogeninfectionduringtwoto fourdaysafterinoculation(Table2).Nevertheless,changesinthese ratiosinresponsetonitrogendeficiencyareexpectedunderpro- gressedandmorepronouncedlimitationsascomparedtotheslight deficiencyconditionsinourexperiment.

Comparingbothleafrustandpowderymildewpathosystems, thedifferencebetweeninfectedandhealthyleavesfortheparam- etersB/GandR/FRamplituderatioweresmallerforleafrustthan forpowderymildew(Fig.4).Inaddition,thetime-coursedevel- opmentofthefluorescencesignalswasmorepronouncedforleaf rust.Nevertheless,both fluorescenceparameters alloweddiffer- entiationamong theexperimentalgroupsN+,N−,N+/LRorPM, andN−/LRorPM.Goingforward,improvedstatisticsandrawdata analysisunderconsiderationofclassificationalgorithmssuchas DecisionTrees,NaiveBayes,ArtificialNeural Networks,Logistic RegressionandSupportVectorMachines(SVMs)mightrendera morepreciseclassification.PreliminaryresultsindicatethatSVMs yieldaprecisediscriminationofhealthyandinfectedleaves(Römer etal.,2010).Ongoingstudieswillclarifywhethersuchdataevalua- tiontoolscansupportandimproverobustdifferentiationbetween simultaneousoccurringofbioticandabioticstresses.

Conclusion

Thefluorescencesignaturemeasuredbetween370and800nm isausefultoolwhenaddressingthechallengeofdiscrimination betweenbioticandabioticstressfactors.Thefocusonblue–green fluorescenceyieldsimportantadditionalinformationfor amore precisediscriminationascomparedtopreviousapproacheswith chlorophyllfluorescence.TheamplituderatioB/GaswellasR/FR revealedtobewellsuitedtodistinguishamongN-full-supply,N- deficiency,N-full-supply+pathogen,andN-deficiency+pathogen.

Inaddition,severalfluorescenceratiosfacilitatedearlydetection ofleafrustorpowderymildewinfectionirrespectiveoftheplants’

nitrogenstatus.

Acknowledgements

We acknowledge the German Research Foundation (DFG- research training group 722) for financial support, Dr. U.

Steiner-StenzelandDr.E.-C.Oerke(INRES-Phytomedicine,Uni- versityof Bonn) forthe Blumeriagraminisand Pucciniatriticina inoculum,andProf.Dr.H.Scherer(INRES-PlantNutrition)forthe kindsupportinadjustingthenutritionsolution.

References

BelangerM,ViauA,SamsonG,ChamberlandM.Near-fieldfluorescencemeasure- mentsfornutrientdeficienciesdetectiononpotatoes(SolanumtuberosumL.):

effectsoftheangleofview.IntJRemoteSens2006;19:4181–98.

Blanke M. Determination of chlorophyll using DMSO. Wein-Wissenschaft 1992;47:32–5.

BodriaL,FialaM,ObertiR,NaldiE.Chlorophyllfluorescencesensingforearlydetec- tionofcrop’sdiseasessymptoms.In:ProceedingsASAEAnnualInternational MeetingandCIGRXVthWorldCongress,2002.St.Joseph,Michigan:American SocietyofAgriculturalandBiologicalEngineers;2002.p.1–15,Papernumber 021114.

BravoC,MoshouD,WestJ,McCartneyA,RamonH.Earlydiseasedetectioninwheat fieldsusingspectralreflectance.BiosystEng2003;84:137–45.

BredemeierC,SchmidhalterU,StaffordJ,WernerA.Non-contactingchlorophyll fluorescencesensingforsite-specificnitrogenfertilizationinwheatandmaize.

In:StaffordJV,WernerA,editors.PrecisionAgriculture’03:Proceedingsof4th EuropeanConferenceonPrecisionAgriculture.TheNetherlands:Wageningen AcademicPublishers;2003.p.103–8.

BrownP,GrahamR,NicholasD.Theeffectsofmanganeseandnitratesupplyonthe levelsofphenolicsandlignininyoungwheatplants.PlantSoil1984;81:437–40.

BuschmannC.Variabilityandapplicationofthechlorophyllfluorescenceemission ratiored/far-redofleaves.PhotosynthRes2007;92:261–71.

BuschmannC,LangsdorfG,LichtenthalerHK,Fluorescence:.Theblue,green,redand far-redfluorescencesignaturesofplanttissuestheirmulticolourfluorescence imagingandapplicationforagrofoodassessment.In:ZudeM,editor.Optical monitoringoffreshandprocessedagriculturalcrops.BocaRaton:CRSPress, Taylor&FrancisGroup;2009.p.272–319.

CartelatA,CerovicZ,GoulasY,MeyerS,LelargeC,PrioulJ,etal.Opticallyassessed contentsofleafpolyphenolicsandchlorophyllasindicatorsofnitrogendefi- ciencyinwheat(TriticumaestivumL.).FieldCropRes2005;91(1):35–49.

CerovicZG,SamsonG,MoralesF,TremblayN,MoyaI.Ultraviolet-inducedflu- orescence for plant monitoring: present state and prospects. Agronomie 1999;19:543–78.

ChaerleL,VanDerStraetenD.Imagingtechniquesandtheearlydetectionofplant stress.TrendsPlantSci2000;5:495–501.

ChaerleL,HagenbeekD,VanrobaeysX,VanderStraetenD. Earlydetectionof nutrientandbioticstressinPhaseolusvulgaris.IntJRemoteSens2007a;28:

3479–92.

ChaerleL,LenkS,HagenbeekD,BuschmannC,VanDerStraetenD.Multicolourflu- orescenceimagingforearlydetectionofthehypersensitivereactiontotobacco mosaicvirus.JPlantPhysiol2007b;164:253–62.

CiompiS,GentiliE,GuidiL,SoldatiniGF.Theeffectofnitrogendeficiencyonleaf gasexchangeandchlorophyllfluorescenceparametersinsunflower.PlantSci 1996;118:177–84.

FrankeJ,MenzG.Multi-temporalwheatdiseasedetectionbymulti-spectralremote sensing.PrecisAgric2003;8:161–72.

GermanFederalPlantVarietyOffice[Bundessortenamt].BeschreibendeSortenliste Getreide,Mais,Ölfrüchte,LeguminosenundHackfrüchteaußerKartoffeln.

Hannover:DeutscherLandwirtschaftsverlagGmbH;2008.

HeiselF,SowinskaM,MiehéJA,LangM,LichtenthlerHK.Detectionofnutrient deficienciesofmaizebylaserinducedfluorescenceimaging.JPlantPhysiol 1996;148:622–31.

HermsD, MattsonW.Thedilemmaofplants:togrowordefend.QRevBiol 1992;67:283–335.

KuckenbergJ,Tartachnyk I,NogaG.Detection anddifferentiationofnitrogen- deficiency,powderymildewandleafrustatwheatleafandcanopylevelby laser-inducedchlorophyllfluorescence.BiosysEng2009a;103:121–8.

KuckenbergJ,TartachnykI,NogaG.Temporalandspatialchangesofchlorophyll fluorescenceasabasisforearlyandprecisedetectionofleafrustandpowdery mildewinfectionsinwheatleaves.PrecisAgric2009b;10:34–44.

LangM,StoberF,LichtenthalerHK.Fluorescenceemissionspectraofplantleaves andplantconstituents.RadiatEnvironBiophys1991;30:333–47.

LenkS,ChaerleL,PfündelEE,LangsdorfG,HagenbeekD,LichtenthalerHK,etal.Mul- tispectralfluorescenceandreflectanceimagingattheleaflevelanditspossible applications.JExpBot2007;58:807–14.

LichtenthalerHK,MiehéJA.Fluorescenceimagingasadiagnostictoolforplantstress.

TrendsPlantSci1997;2:316–20.

LichtenthalerHK,SubhashN,WenzelO,MiehéJA.Laser-inducedimagingofblue/red andblue/far-redfluorescenceratiosF440/F690andF440/F740,asameans ofearlystressdetectioninplants.In:GeoscienceandRemoteSensing,1997.

IGARSS’97.RemoteSensing-AScientificVisionforSustainableDevelopment, 1997IEEEInternational4;1997.p.1799–801.

LindenthalM,SteinerU,DehneH-W,OerkeEC.Effectofdownymildewdevelopment ontranspirationofcucumberleavesvisualizedbydigitalinfraredthermography.

Phytopathology2005;95:233–40.

LorentzenB,JensenA.Changesinleafspectralpropertiesinducedinbarleybycereal powderymildew.RemoteSensEnviron1989;27:201–9.

MarschnerH.Mineralnutritionofplants.London/SanDiego:ElsevierAcademic Press;2005.

McMurtreyIIIJ,ChappelleE,KimM,MeisingerJ.Distinguishingnitrogenfertilization levelsinfieldcorn(ZeamaysL.)withactivelyinducedfluorescenceandpassive reflectancemeasurements.RemoteSensEnviron1994;47:36–44.

MercureS,DaoustB,SamsonG.Causalrelationshipbetweengrowthinhibition, accumulationofphenolicmetabolites,andchangesofUV-inducedfluorescences innitrogen-deficientbarleyplants.Botany2004;82:815–21.

NicholsonR,HammerschmidtR.Phenoliccompoundsandtheirroleindiseaseresis- tance.AnnuRevPhytopathol1992;30:369–89.

OerkeE,DehneH.Safeguardingproduction-lossesinmajorcropsandtheroleof cropprotection.CropProt2004;23:275–85.

OweraS,FarrarJ,WhitbreadR.Growthandphotosynthesisinbarleyinfectedwith brownrust.PhysiolPlantPathol1981;18:79–90.

RömerC,BürlingK,RumpfT,HunscheM,NogaG,PlümerL.Earlyidentification ofleafrustonwheatleaveswithrobustfittingofhyperspectralsignatures.In:

Proceedingsof10thInternationalConferencePrecisionAgriculture;2010.

SanderJ,HeitefussR.SusceptibilitytoErysiphegraminisf.sptriticiandphenolic acidcontentofwheatasinfluencedbydifferentlevelsofnitrogenfertilization.

JPhytopathol1998;146:495–507.

SchächtlJ,HuberG,MaidlF,StickselE,SchulzJ,HaschbergerP.Laser-inducedchloro- phyllfluorescencemeasurementsfordetectingthenitrogenstatusofwheat (TriticumaestivumL.)canopies.PrecisAgric2005;6:143–56.

SubhashN,Mohanan C.Laser-inducedredchlorophyllfluorescencesignatures asnutrientstressindicatorinriceplants.RemoteSensEnviron1994;47:45–

50.

TartachnykI,RademacherI.Estimationofnitrogendeficiencyofsugarbeetand wheatusingparameters oflaserinducedandpulseamplitude modulated chlorophyllfluorescence.JApplBot2003;77:61–7.

(8)

TartachnykI,RademacherI,KühbauchW.Distinguishingnitrogendeficiencyand fungalinfectionofwinterwheatbylaser-inducedfluorescence.PrecisAgric 2006;7:281–93.

UddlingJ, Gelang-Alfredsson J, PiikkiK, PleijelH.Evaluating the relationship betweenleafchlorophyllconcentrationandSPAD-502chlorophyllmeterread- ings.PhotosynthRes2008;91:37–46.

VermerrisW,NicholsonR.Theroleofphenolsinplantdefense.In:VermerrisW, NicholsonR,editors.Phenoliccompoundbiochemistry.Dordrecht:Springer;

2006.p.222–34.

WaltersDR,BinghamIJ.Influence ofnutritionondiseasedevelopmentcaused byfungalpathogens:implicationsforplantdiseasecontrol.AnnAppl Biol 2007;151:307–24.

Referenzen

ÄHNLICHE DOKUMENTE

In addition to the Baseline scenario (as described in the previous sections) we defined scenarios to assess the potential for improving the N efficiency of the EU food system

Mock infected samples were used as controls and comparison of gene expression levels of A549 cells treated with IFN for 24 hours with those of TSV01 infected A549 cells (also

Apparent N retranslocation and apparent N uptake directly allocated to the pods from full flowering to maturity of the winter oilseed-rape line-cultivars Apex and Capitol as affected

The described profiles of volatile markers in hybrid maize and in summer wheat offered the possibility to distinguish between infected and non-infected ears and

This work aims to determine the functional activity of BXL4 with regards to cell wall modifications through expression in Arabidopsis seed coat epidermal cells of the bxl1

Lindsey Rustad, Northern Research Station, USDA Forest Service, Durham, NH, United States; Lourdes Morillas, Centre for Ecology, Evolution and Environmental Changes, Faculdade

A LightCycler-based PCR protocol was developed which targets the ospA gene for the identification and quantification of the different Borrelia burgdorferi sensu lato species in

Figure 1.2 The 5 th percentile (left), 50 th percentile (centre) and 95 th percentile (right) critical load of nutrient nitrogen (CLnutN) of the European critical loads database