• Keine Ergebnisse gefunden

Supporting information: Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science

N/A
N/A
Protected

Academic year: 2022

Aktie "Supporting information: Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Supporting information:

Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science

Manuel Beckera, Kyujin Ahna,c, Markus Bacher a, Chunlin Xub, Anna Sundbergb, Stefan Willförb, Thomas Rosenaua,b, Antje Potthasta*

a Department of Chemistry, Institute of Chemistry of Renewables University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria

b Johan Gadolin Process Chemistry Centre, c/o Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland

c National Archives of Korea, 30 Daewangpangyo-ro 851beon-gil, Sujeong-gu, Seongnam-si, Korea

* Corresponding author, antje.potthast@boku.ac.at

Content:

Table S1: Crystallinity index of cellulose samples from CPMAS

Figure S1: Signals of spectral fitting of the cellulose C4-region obtained from 13C CP-MAS NMR spectra of eucalyptus and hemp paper pulps and rag paper (from above to bottom), before (left) and after electronic beam (e-beam) treatment (right). The red line shows the experimental spectra. The colorized solid lines represent the deconvoluted signals/fractions: Iα and Iβ – Crystalline cellulose Iα

and Iβ; Para – Paracrystalline cellulose; AFS – Accessible fibril surfaces; IAFS – Inaccessible fibril surfaces; Hemi – Hemicellulose.

Solid state NMR data.

The spectral fitting results of the NMR C4-region spectra obtained from eucalyptus and hemp paper pulps and rag paper before and after e-beam treatment are shown in Figure S1.

(2)

Figure S1: Signals of spectral fitting of the cellulose C4-region obtained from 13C CP-MAS NMR spectra of eucalyptus and hemp paper pulps and rag paper (from above to bottom), before (left) and after electronic beam (e-beam) treatment (right). The red line shows the experimental spectra. The colorized solid lines represent the deconvoluted signals/fractions: Iα and Iβ – Crystalline cellulose Iα

and Iβ; Para – Paracrystalline cellulose; AFS – Accessible fibril surfaces; IAFS – Inaccessible fibril surfaces; Hemi – Hemicellulose.

(3)

Table S1: Crystallinity index of cellulose samples from CPMAS

Sample CRI

Wheat bran 4.17

TMP Spruce 20.86

Paper sample (1912, F13) 32.87

Birch Sulfat 38.32

Avicel 42.04

Mulberry tree paper 44.33

Beech sulfite pulp 48.63

Encell 49.16

Softwood Kraft 53.97

Softwood - Sulfite 56.47

Hempcell 61.49

Rag paper (historical) 64.48

Cotton linters 65.78

Rag paper (modern) 67.61

Detailed data from CPMAS

Cotton linters

(ppm)86 85 84 83 82 81 80

87 88 89 90

91 92 93

File : C:\BRUKER\TOPSPIN3.1\DATA\SOLID STATE\KYUJIN-F1-COTTON LINTER\1\PDATA\1\1R

(4)

 [ppm]

width [ppm]

integral /

%

I

89.56

0.41 2.78

I

 88.81

0.43 16.64

I

87.98

0.70 13.87

paracrystalline

88.43

1.81 27.57

accessible fibril surface

84.21

1.20 6.12 accessible fibril surface

83.22

0.74 3.45 inaccessible fibril surface

83.37

7.93 28.30

hemicellulose

82.27

0.96 1.28

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.47

peak fitting result: crystalline : amorphous = 1 : 0.64 (with hemicellulose) crystalline : amorphous = 1 : 0.62 (without hemicellulose)

Hempcell

(ppm)86 85 84 83 82 81 80

87 88 89 90

91 92 93

File : c:\bruker\topspin3.1\data\solid state\kyujin-f3-hempcell\1\pdata\1\1r

(5)

 [ppm]

width [ppm]

integral /

%

I

89.54

0.63 4.10

I

 88.79

0.53 19.35

I

87.97

0.91 21.78

paracrystalline

88.48

1.91 14.01

accessible fibril surface

84.25

0.95 3.50 accessible fibril surface

83.23

0.77 2.77 inaccessible fibril surface

82.93

5.86 33.15

hemicellulose

81.93

0.98 1.34

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.64

peak fitting result: crystalline : amorphous = 1 : 0.69 (with hemicellulose) crystalline : amorphous = 1 : 0.67 (without hemicellulose)

Encell

(ppm)86 85 84 83 82 81 80 79

87 88 89 90 91 92 93

File : C:\BRUKER\TOPSPIN3.1\DATA\SOLID STATE\KYUJIN-F4-ENCELL\1\PDATA\1\1R

(6)

 [ppm]

width [ppm]

integral /

%

I

89.50

0.71 3.26

I

 88.80

0.56 7.28

I

87.86

0.84 2.68

paracrystalline

88.40

1.92 26.15

accessible fibril surface

84.27

1.19 5.19 accessible fibril surface

83.22

0.69 2.90 inaccessible fibril surface

83.17

6.72 42.93

hemicellulose

81.94

1.74 9.61

crystallinity index:

manual integration: crystalline : amorphous = 1 : 1.20

peak fitting result: crystalline : amorphous = 1 : 1.54 (with hemicellulose) crystalline : amorphous = 1 : 1.30 (without hemicellulose)

(7)

Birch sulfate

(ppm)86 85 84 83 82 81 80 79

87 88 89 90 91 92

File : c:\bruker\topspin3.1\data\solid state\kyujin-f5-birch sulfat\1\pdata\1\1r

 [ppm]

width [ppm]

integral /

%

I

89.51

0.71 2.43

I

 88.82

0.56 4.30

I

87.72

0.72 1.02

paracrystalline

88.49

2.03 27.03

accessible fibril surface

84.22

1.31 5.05 accessible fibril surface

83.20

0.76 3.15 inaccessible fibril surface

82.96

6.77 14.92

hemicellulose

81.90

1.89 42.09

crystallinity index:

manual integration: crystalline : amorphous = 1 : 1.47

peak fitting result: crystalline : amorphous = 1 : 1.87 (with hemicellulose)

(8)

crystalline : amorphous = 1 : 0.66 (without hemicellulose)

modern rag

( p p m )8 5 8 4 8 3 8 2 8 1 8 0 7 9

8 6 8 7 8 8 8 9 9 0 9 1 9 2

F i le : c : \ u s e r s \ m a b a \ d e s k t o p \ n m r - d a t a \ s s - n m r \ k y u j in - f 7 - m o d e r n r a g \ 1 \ p d a t a \ 1 \ 1 r

 [ppm]

width [ppm]

integral /

%

I

89.58

0.54 2.93

I

 88.83

0.46 14.88

I

87.99

0.75 13.67

paracrystalline

88.49

1.79 20.53

accessible fibril surface

84.25

1.15 5.98 accessible fibril surface

83.24

0.76 3.53 inaccessible fibril surface

82.79

9.18 35.44

hemicellulose

82.09

1.30 3.04

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.65

peak fitting result: crystalline : amorphous = 1 : 0.92 (with hemicellulose)

(9)

crystalline : amorphous = 1 : 0.86 (without hemicellulose)

historical rag

( p p m )8 5 8 4 8 3 8 2 8 1 8 0 7 9

8 6 8 7

8 8 8 9

9 0 9 1

9 2

F ile : c : \ u s e r s \ m a b a \ d e s k t o p \n m r - d a t a \s s - n m r \ k y u j in - f 8 - h i s t o ri c a l r a g \ 1 \ p d a t a \ 1 \ 1 r

 [ppm]

width [ppm]

integral /

%

I

89.59

0.52 2.70

I

 88.84

0.49 14.36

I

88.00

0.71 10.09

paracrystalline

88.49

1.89 27.54

accessible fibril surface

84.29

1.12 6.64 accessible fibril surface

83.26

0.87 4.42 inaccessible fibril surface

83.45

8.35 33.06

hemicellulose

82.20

1.06 1.19

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.58

peak fitting result: crystalline : amorphous = 1 : 0.81 (with hemicellulose)

(10)

crystalline : amorphous = 1 : 0.78 (without hemicellulose)

historical book paper 1912 F13

( p p m )8 5 8 4 8 3 8 2 8 1 8 0 7 9

8 6 8 7

8 8 8 9

9 0 9 1

9 2

F i le : c : \ u s e r s \ m a b a \ d e s k t o p \ n m r - d a t a \ s s - n m r \ k y u j in - f 9 - h is t o r i c a l p a p e r \ 1 \ p d a t a \ 1 \1 r

 [ppm]

width [ppm]

integral /

%

I

89.54

0.56 2.34

I

 88.82

0.54 8.39

I

87.98

0.80 4.30

paracrystalline

88.55

2.01 29.29

accessible fibril surface

84.25

1.20 7.32 accessible fibril surface

83.24

0.79 3.89 inaccessible fibril surface

83.18

6.95 39.99

hemicellulose

81.94

1.59 4.47

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.97

peak fitting result: crystalline : amorphous = 1 : 1.26 (with hemicellulose)

(11)

crystalline : amorphous = 1 : 1.16 (without hemicellulose)

Beech sulfite pulp

( p p m )8 5 8 4 8 3 8 2 8 1 8 0

8 6 8 7

8 8 8 9

9 0 9 1

9 2

F i le : c : \ u s e r s \ m a b a \ d e s k t o p \ n m r - d a t a \ s s - n m r \ k y u j in - f 1 0 - b k z 0 3 \ 1 \ p d a t a \ 1 \ 1 r

 [ppm]

width [ppm]

integral /

%

I

89.51

0.55 1.68

I

 88.81

0.54 8.27

I

87.80

0.66 1.55

paracrystalline

88.49

1.86 29.81

accessible fibril surface

84.28

1.14 10.01 accessible fibril surface

83.24

0.80 6.00 inaccessible fibril surface

83.88

7.30 40.24

hemicellulose

82.08

1.14 2.44

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.97

peak fitting result: crystalline : amorphous = 1 : 1.42 (with hemicellulose)

(12)

crystalline : amorphous = 1 : 1.36 (without hemicellulose)

softwood kraft pulp

( p p m )8 5 8 4 8 3 8 2 8 1 8 0 7 9

8 6 8 7

8 8 8 9

9 0 9 1

F i le : c : \ u s e r s \ m a b a \ d e s k t o p \ n m r - d a t a \ s s - n m r \ k y u j in - f 1 1 - s o f t w o o d k r a f t \ 1 \ p d a t a \ 1 \ 1 r

 [ppm]

width [ppm]

integral /

%

I

89.57

0.23 0.39

I

 88.79

0.57 10.17

I

87.87

1.09 9.69

paracrystalline

88.61

2.05 26.94

accessible fibril surface

84.25

0.98 5.65 accessible fibril surface

83.22

0.69 3.66 inaccessible fibril surface

82.74

6.39 42.17

hemicellulose

81.84

1.07 1.34

crystallinity index:

manual integration: crystalline : amorphous = 1 : 1

peak fitting result: crystalline : amorphous = 1 : 1.12 (with hemicellulose)

(13)

crystalline : amorphous = 1 : 1.09 (without hemicellulose)

softwood sulfite pulp

( p p m )8 5 8 4 8 3 8 2 8 1 8 0 7 9

8 6 8 7 8 8 8 9 9 0 9 1 9 2

F i le : c : \ u s e r s \ m a b a \ d e s k t o p \ n m r - d a t a \s s - n m r \ k y u j in - f 1 2 - s o ft w o o d s u l f it e \ 1 \p d a ta \ 1 \ 1 r

 [ppm]

width [ppm]

integral /

%

I

89.57

0.43 1.21

I

 88.81

0.49 6.98

I

87.67

1.14 4.73

paracrystalline

88.58

1.82 34.33

accessible fibril surface

84.28

1.03 7.48 accessible fibril surface

83.28

0.85 6.34 inaccessible fibril surface

83.85

7.10 38.07

hemicellulose

82.18

0.93 0.85

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.78

peak fitting result: crystalline : amorphous = 1 : 1.12 (with hemicellulose)

(14)

crystalline : amorphous = 1 : 1.10 (without hemicellulose)

Mulberry paper MB (Hanji paper H)

(ppm)85 84 83 82 81 80

86 87

88 89

90 91

92

File : c:\bruker\topspin3.1\data\solid state\myung-hanji paper h\1\pdata\1\1r

 [ppm]

width [ppm]

integral /

%

I

89.60

0.63 3.00

I

 88.82

0.49 14.15

I

87.99

0.80 11.92

paracrystalline

88.48

1.78 20.94

accessible fibril surface

84.24

1.24 7.21 accessible fibril surface

83.26

0.77 3.61 inaccessible fibril surface

83.25

8.90 35.78

hemicellulose

82.33

1.63 3.37

(15)

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.73 peak fitting result: crystalline : amorphous = 1 : 0.93

wheat bran - No fitting possible

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

TMP spruce - No fitting possible

(16)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Hempcell _ e-beam

(ppm)86 85 84 83 82 81 80

87 88 89 90

91 92 93

File : C:\BRUKER\TOPSPIN3.1\DATA\SOLID STATE\KYUJIN-HEMPCELL I-E BEAM\1\PDATA\1\1R

(17)

 [ppm]

width [ppm]

integral /

%

I

89.51

0.76 4.09

I

 88.78

0.66 17.13

I

87.97

0.97 14.07

paracrystalline

88.29

1.91 19.49

accessible fibril surface

84.25

0.95 3.30 accessible fibril surface

83.23

0.96 3.35 inaccessible fibril surface

83.19

6.16 36.84

hemicellulose

81.93

0.99 1.72

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.71

peak fitting result: crystalline : amorphous = 1 : 0.83 (with hemicellulose) crystalline : amorphous = 1 : 0.79 (without hemicellulose)

Rag paper - e-beam

(18)

(ppm)85 84 83 82 81 80 79 86

87 88 89 90 91 92

File : c:\bruker\topspin3.1\data\solid state\kyujin-rag-e beam\1\pdata\1\1r

 [ppm]

width [ppm]

integral /

%

I

89.56

0.61 2.59

I

 88.82

0.54 14.05

I

87.98

0.82 12.60

paracrystalline

88.52

1.87 19.96

accessible fibril surface

84.20

1.30 7.03 accessible fibril surface

83.22

0.76 2.78 inaccessible fibril surface

83.29

10.30 36.71

hemicellulose

82.14

1.53 4.28

crystallinity index:

manual integration: crystalline : amorphous = 1 : 0.70

peak fitting result: crystalline : amorphous = 1 : 1.03 (with hemicellulose) crystalline : amorphous = 1 : 0.95 (without hemicellulose)

(19)

Encell I e-beam

(ppm)85 84 83 82 81 80 79

86 87 88 89 90 91 92

File : C:\BRUKER\TOPSPIN3.1\DATA\SOLID STATE\KYUJIN-ENCELL I-E BEAM\1\PDATA\1\1R

 [ppm]

width [ppm]

integral /

%

I

89.48

0.68 2.15

I

 88.78

0.62 6.64

I

88.00

1.10 3.98

paracrystalline

88.45

2.10 25.77

accessible fibril surface

84.26

0.93 3.38 accessible fibril surface

83.23

0.81 3.07 inaccessible fibril surface

82.95

6.10 49.91

hemicellulose

81.87

1.30 5.10

crystallinity index:

manual integration: crystalline : amorphous = 1 : 1.25

(20)

peak fitting result: crystalline : amorphous = 1 : 1.59 (with hemicellulose) crystalline : amorphous = 1 : 1.46 (without hemicellulose)

Referenzen

ÄHNLICHE DOKUMENTE

In the former, single fiber properties were measured, and the relative water absorption of the different types of viscose fibers was very similar.. All viscose fiber samples

implications of catastrophe theory are discussed for the combustion phase when oxygen partial pressure and external cooling are used as control variables.. Nomenclature

The apparent activation energies of the reorientation of the phenyl group for the chloride and bromide were estimated from the temperature dependence of the linewidth of the

The glucose yield stayed nearly constant (except a yield loss of 4.2% in eucalyptus), and also the xylose yield remained largely unchanged. The outcome was drastically different for

4 Values of a diffusion coefficient, D, and b relaxation constant, b, obtained by the best fitting of experimental data of moisture absorption tests, performed at different values

2 Department of Architecture, Built environment and Construction engineering Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy.. *Corresponding Author

Parametric study by the analytical model (Error: Reference source not found) to elucidate the effect of each single parameter on the concentration evolution in time.. For this

The extraction of fibers from harvested flax and hemp stems begins with ‘‘retting’’ for an initial weakening of interactions between the fiber bundles and the woody core