• Keine Ergebnisse gefunden

The D3-D7 Model of AdS/CFT with Flavour (with Special Feature)

N/A
N/A
Protected

Academic year: 2022

Aktie "The D3-D7 Model of AdS/CFT with Flavour (with Special Feature)"

Copied!
52
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The D3-D7 Model of AdS/CFT with Flavour

(with Special Feature)

René Meyer

Max-Planck-Institute for Physics Munich, Germany

November 13, 2008

Lot’s of known stuff (Review: hep-th/0711.4467 ) +

JHEP 0712:091,2007 (with J. Erdmenger & J. P. Shock)

(2)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 2 / 43

(3)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

(4)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 2 / 43

(5)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

(6)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 3 / 43

(7)

Introduction to AdS/CFT

Motivation

New tools for strongly coupled gauge theories?

QCD in the infrared is strongly coupled (Conformal window?)

[Deur, Korsch et. al: hep-ph/0509113]

0.05 0.06 0.07 0.08 0.090.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91 2

10-1 1

Q (GeV) αs(Q)/π

αs,g1/π world data

αs,τ/π OPAL Burkert-Ioffe

pQCD evol. eq.

αs,g1/π JLab αs,F3

GDH constraint

QGP produced at strong coupling (T >≈ Λ QCD )

(8)

Our new tool: AdS/CFT Holography

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 5 / 43

(9)

Introduction to AdS/CFT

Our new tool: AdS/CFT Holography

The Original Correspondence (weakest form)

IIB Supergravity on AdS 5 × S 5 with (R/` s ) 4 = 2λ 1

ds AdS 2

5

×S

5

= R 2

dx µ2 + du 2 u 2 + dΩ 2 5

large N c limit of N = 4 SU(N c ) Super Yang-Mills with λ = g 2 YM N c

1

Strong-Weak Coupling Duality: G N ∝ g s 2 = g YM 4

2

Gubser-Klebanov-Polyakov-Witten relation:

he i R d

4

xJ

O

O i = e iS

IIB,onshell

[J

O

]

3

Operator-Field Dictionary:

φ m

2

=∆(∆−4) ' u 4−∆ J O + u hOi

(10)

A short look at string theory

Basic Objects:

Open and Closed Strings, D- Branes

Strings have length: ` s

Strings have tension: T

s

=

2πα10

=

1

2π`2s

“Minimal Surface” action principle: Nambu-Goto Action

S

NG

= 1 2π`

2s

Z

dτdσ p

− det P[G]

ab

P[G]

ab

= G

µν

∂X

µ

∂σ

a

∂X

ν

∂σ

b

[Becker, Becker, Schwarz]

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 7 / 43

(11)

Introduction to AdS/CFT

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

1 st Quantized Strings:

Open String: “Gauge Theory”

A

µ

, Φ

I

, Fermions Closed String: “Gravity”

G

µν

, B

µν

, Φ , Fermions

[hep-ph/0701201]

(12)

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

D-Branes Curve Spacetime:

Open-Closed String Duality

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 8 / 43

(13)

Introduction to AdS/CFT

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

D-Branes Curve Spacetime:

“Graviton” Absorption/Emission

(14)

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

Dp-Branes Have Tension:

T

p

= 1 (2π)

p

`

(p+1)s

g

s

g

s

. . . string coupling

“Graviton” Absorption/Emission

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 8 / 43

(15)

Introduction to AdS/CFT

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

Dp-Branes Have Tension:

T

p

= 1 (2π)

p

`

(p+1)s

g

s

g

s

. . . string coupling String Splitting/Merging

[“D-Branes”, C. V. Johnson]

(16)

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

Dp-Branes are “Minimal Hypersurfaces”: (α 0 = ` 2 s )

S Dp = S DBI + S CS

S DBI = −T p Z

d (p+1) ξ p

− det (P[G + B] ab + 2πα 0 F ab )

S CS = +T p g s X

p

Z

topform

P[C (p+1) ∧ e B ] ∧ e 2πα

0

F

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 8 / 43

(17)

Introduction to AdS/CFT

A short look at string theory

D-Branes: Dirichlet boundary conditions for the string (e.g.

X 1 (σ, τ ) = 0 for σ = 0, π)

Dp-Branes carry Gauge Theories:

e.g. flat D3-Brane in flat space in the limit α 0 << 1

S

DBI,p=3

= − 1

(2π)

3

α

02

g

s

Z d

4

ξ p

− det (P[G]

ab

+ 2πα

0

F

ab

)

≈ −T

3

Z

d

4

ξ p

− det P[η] − 1 8πg

s

Z d

4

ξ p

− det P[η]F

ab

F

ab

= −T

3

Vol( R

4

)− 1 8πg

s

Z

d

4

ξF

ab

F

ab

(18)

N = 4 d = 4 Super-Yang-Mills-Theory

More precisely: The gauge theory on a stack of N

c

D3-branes is the unique maximally supersymmetric gauge theory in 4D,

N = 4 Super-Yang-Mills Theory (SYM)

SUSYs: 16 Poincaré + 16 Conformal =

642

real supercharges =

12

BPS Fields: N = 4 Vector Multiplet in 4D = (A

µ

, λ

αA

, φ

i

) = (V , Φ

I

)

L = tr (

− 1

2g

YM2

F

µν2

+ Θ

I

2

F

µν

F ˜

µν

− i

4

X

A=1

¯ λ

A

σ ¯

µ

D

µ

λ

A

6

X

i=1

D

µ

φ

i

D

µ

φ

i

+ g

YM2

2

X

i,j

i

, φ

j

]

2

+ g

YM

X

A,B,i

C

iAB

λ

A

i

, λ

B

] + h.c .

Global Symmetries: SO(4, 2) × SU(4)

R

(β(g

YM

) = 0 !)

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 9 / 43

(19)

Introduction to AdS/CFT

D3-Branes in IIB Supergravity

Have seen:

1

D3-Branes carry SU(N

c

) N = 4 SYM theory

2

D3-Branes curve space in a supersymmetric way

D3-Branes are solitonic

12

BPS solutions to IIB Supergravity

[Horowitz, Strominger Nucl.Phys.B360(1991)]

ds

2

= H(r )

12

dx

µ2

+ H(r)

12

(dr

2

+ r

2

dΩ

25

)

C

4

= H(r )

−1

dt ∧ dx ∧ dy ∧ dz , H(r ) = 1 + R

4

r

4

, R

4

α

02

= 4πg

s

N

c

Asymptotically flat

Killing Horizon: g

tt

= 0 = H(r)

12

at r = 0

Near horizon geometry: AdS

5

× S

5

(w. N

c

units of 5-form flux on S

5

) ds

AdS2 5×S5

= r

2

R

2

dx

µ2

+ R

2

r

2

dr

2

+ R

2

dΩ

25

Q: Connection between these two descriptions of D3-Branes, i.e.

between open and closed string physics?

(20)

Maldacena’s Decoupling Argument

[Juan Maldacena ’98]

1

Field Theory Perspective: D3-Branes in flat space, G

N

= g

s2

`

8s

= κ

2

<< 1 (backreaction ∼ G

N

)

S

eff

= S

IIB

|{z}

1 2κ2

R

|g|R+...

+ S

D3

|{z}

κ1

+ S

int

|{z}

∼κ#>0

→ Low Energy Limit `

s

→ 0, g

s

, N

c

, . . . fixed :

Free IIB SUGRA & N = 4 SYM Theory

2

Soliton Perspective: Observer at Infinity sees (ω << 1/`

s

)

1

Low-Energy Bulk Modes σ

D3

∼ ω

3

R

8

≈ 0

→ Decoupling of Near-Horizon Region→ Free IIB SUGRA

2

Redshifted modes of arbitrary (!) energy from near the horizon

→ IIB STRING THEORY on AdS

5

× S

5

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 11 / 43

(21)

Introduction to AdS/CFT

AdS/CFT Forte, Mezzo & Piano

1

SU(N

c

) N = 4 SYM ⇔

IIB String Theory on AdS

5

× S

5

(N

c

units of five-form flux,

R

4AdS

5/S5

= 4πα

02

g

s

N

c

= 2α

02

g

YM2

N

c

)

’t Hooft Limit: N

c

→ ∞, λ = g

2YM

N

c

fix

2

Planar SU(N

c

= ∞)

N = 4 SYM ⇔ Semiclassical Strings on AdS

5

× S

5

2πg

s

= g

YM2

→ 0

Strong Coupling Limit:

R`44 s

= 2λ >> 1

3

Planar SU(N

c

= ∞) N = 4 SYM at

strong ’t Hooft coupling

⇔ IIB Supergravity on AdS

5

× S

5

(22)

The AdS/CFT Correspondence

The Original Correspondence (weakest form)

IIB Supergravity on AdS 5 × S 5 with (R/` s ) 4 = 2λ 1

ds AdS 2

5

×S

5

= R 2

dx µ2 + du 2 u 2 + dΩ 2 5

large N c limit of N = 4 SU(N c ) Super Yang-Mills with λ = g 2 YM N c

1

Strong-Weak Coupling Duality: G N ∝ g s 2 = g YM 4

2

Gubser-Klebanov-Polyakov-Witten relation:

he i R d

4

xJ

O

O i = e iS

IIB,onshell

[J

O

]

3

Operator-Field Dictionary:

φ m

2

=∆(∆−4) ' u 4−∆ J O + u hOi

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 13 / 43

(23)

Introduction to AdS/CFT

The AdS/CFT Correspondence

closed string sector AdS x S geometry

open string sector large N D3

stack at bottom of throat

5 5

(24)

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 15 / 43

(25)

The D3-D7 model: Adding Flavour to AdS/CFT

Adding Flavour to AdS/CFT

[Karch & Katz ’02]

N = 4 Vector Multiplet (V , Φ

I

), I = 1, 2, 3: All Adjoint

How to introduce “Quarks” = fundamental degrees of freedom ?

→ Open String Sector in Gravity Dual → Probe Branes N

c

D3-N

f

D7 Intersection:

0000 1111

00 11

L

N D3s D7s

7−7

3−3 3−7

7−3

D3:(x

0

, x

1

, x

2

, x

3

)

D7:(x

0

, x

1

, x

2

, x

3

, y

4

, y

5

, y

6

, y

7

) N = 2 Supersymmetric

Field Content:

3-3: N = 4 vector multiplet 7-3: N

c

-N

f

chiral multiplet Q

I

3-7: N ¯

c

- N ¯

f

chiral multiplet Q ˜

I

7-7: U(N

f

) DBI theory

“Quark” masses: m

q

= LT

s

=

2παL0

(26)

Adding Flavour to AdS/CFT

[Karch & Katz ’02]

How to A) Not spoil Maldacenas argument?

B) Decouple 7-7 U(N f ) theory from the field theory?

’t Hooft Limit = Probe Limit N c → ∞, N f = fix

1

Field Theory

Decoupling limit still holds: T

7

1

(gs`8s)

=

κgs2

U(N

f

) becomes global : λ

8

= g

YM,82

N

f

∼ g

s

`

4s

N

cNNf

c

∼ λ`

4sNNf

c

→ 0

→ Quenched Approximation!

2

Gravity Side:

V Newton = G N N f T 7 ∼ N f g s ∼ λ N N

f

c

→ 0

→ Neglect D7 backreaction on D3 soliton background

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 17 / 43

(27)

The D3-D7 model: Adding Flavour to AdS/CFT

Adding Flavour to AdS/CFT

[Karch & Katz ’02]

Extended Correspondence: N

f

D7 Branes in AdS

5

× S

5

4d N = 4 SU(N) Super

Yang-Mills theory coupled to

4d N

f

N = 2 hypermultiplets in the

Quenched Approximation

λ>>1

type IIB SUGRA on AdS

5

× S

5

+

Dirac-Born-Infeld & Chern-Simons theory on D7

with

Neglected Backreaction

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111

89 0123

4567

D3 N

R

4

AdS

5

open/closed string duality

7−7

AdS

5

brane

flavour open/open

string duality conventional

3−7

quarks

3−3

SYM

N probe D7

f

(28)

D3/D7-Model: Field Theory

N = 4 Glue & N

f

N = 2 Quarks

L = = h τ

Z

d

2

θd

2

θ ¯

tr( ¯ Φ

i

e

V

Φ

i

e

−V

) + Q

I

e

V

Q

I

+ ˜ Q

I†

e

−V

Q ˜

I

+ +τ

Z d

2

θ

tr(W

α

W

α

) + tr(

ijk

Φ

i

Φ

j

Φ

k

) + ˜ Q

I

(m

q

+ Φ

3

)Q

I

i , Φ

1

= φ

1

+ i φ

2

+ . . . , Φ

2

= φ

3

+ i φ

4

+ . . . , Φ

3

= φ

5

+ iφ

6

+ . . . ;

τ = θ

2π + i 4π g

ym2

1

Field Content:

N = 4 “Glue” Vector Multiplet: V , Φ

i

, i = 1, 2, 3 N = 2 “Quark” Hypermultiplet: Q

I

, Q ˜

I

2

Conformal in the N

c

→ ∞ limit: β (λ) = N

c

β(g

ym2

) ∝ λ

2NNf

c

→ 0

3

Global Symmetries (m

q

= 0, VEVs=0):

SO(4, 2) × SU(2)

Φ

× SU(2)

R

× U(1)

R

× U(N

f

)

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 19 / 43

(29)

The D3-D7 model: Adding Flavour to AdS/CFT

D3/D7-Model: Field Theory

N = 4 Glue & N

f

N = 2 Quarks

L = = h τ

Z

d

2

θd

2

θ ¯

tr( ¯ Φ

i

e

V

Φ

i

e

−V

) + Q

I

e

V

Q

I

+ ˜ Q

I†

e

−V

Q ˜

I

+ +τ

Z d

2

θ

tr(W

α

W

α

) + tr(

ijk

Φ

i

Φ

j

Φ

k

) + ˜ Q

I

(m

q

+ Φ

3

)Q

I

i , Φ

1

= φ

1

+ i φ

2

+ . . . , Φ

2

= φ

3

+ i φ

4

+ . . . , Φ

3

= φ

5

+ iφ

6

+ . . . ;

τ = θ

2π + i 4π g

ym2

components spin SU(2)Φ×SU(2)R U(1)R ∆ U(Nf) U(1)f Φ12 Φ1234 0 (12,12) 0 1 1 0

λ1, λ2 12 (12,0) −1 32 1 0

Φ3,Wα Φ56 0 (0,0) +2 1 1 0

λ3, λ4 12 (0,12) +1 32 1 0

vµ 1 (0,0) 0 1 1 0

Q,Q˜ qm= (q,¯˜q) 0 (0,12) 0 1 Nf +1

ψi= (ψ,ψ˜) 12 (0,0) ∓1 32 Nf +1

→ U(1)

R

acts like a chiral symmetry: . . . m

q

(i ψψ ˜ + h.c.) . . .

(30)

Supersymmetric Embeddings (N f = 1)

Rewrite AdS

5

× S

5

:

r2= (y4)2+ (y5)2+ (y6)2+ (y7)2+ (z8)2+ (z9)22+L2 ds2AdS

5×S5 = r2

R2dxµ2+R2

r2dr2+R2dΩ25

= ρ2+L2

R2 dxµ2+ R2 ρ2+L2

22dΩ23

| {z } d~y2

+dL2+L22

| {z } d~z2

Match Geometric Symmetries :

SO(4, 2) SU(2)

Φ

SU(2)

R

U(1)

R

U(N

f

) Iso(AdS

5

) SU(2)

L,~y

SU(2)

R,~y

U(1)

~z

U(N

f

) Embedding: ξ

α

= (x

µ

, ρ, S

3

), L = L(ρ), Φ = 0

Constant L: L

DBI

∝ ρ

3

1 + L

02

ρ3L0

1+L02

0

= 0 ⇒ L = 2πα

0

m

q

N = 2 SUSY?:

∂S∂monshell

q

= 0 (or check κ-symmetry)

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 21 / 43

(31)

The D3-D7 model: Adding Flavour to AdS/CFT

Supersymmetric Embeddings (N f = 1)

Dual Operator: Φ 3 = φ + . . .

O m

q

= i( ˜ ψψ + ψ ψ ˜ ) + m q (˜ q q ˜ + q q) +

2(˜ qφ˜ q + q φq + h.c.)

| {z }

∂1

2(|Fq|2+|F˜q|2)

∂mq

Why no VEV in AdS 5 × S 5 ? A Priori:

ρ 3 L 0

√ 1 + L 02

0

= 0 ⇒ L(ρ) ρ→∞ ' 2πα 0 m q + (2πα 0 ) 3 hO m

q

i ρ 2 Reason 1: O m is an F-Term R

d 2 θ Q(m ˜ q + Φ 3 )Q Reason 2: Embeddings not well-behaved

ρ

3

L

0

1+L

02

= c 1 ⇒ L 0 = √ c

1

ρ

6

−c

21

ρ→c

1+

→ ∞ , unless c 1 = 0 !

(32)

Flavour at Finite Temperature

Flavour Physics at Finite Temperature

AdS-Schwarzschild × S

5

(Black brane) , T = T

Hawking

∝ r

s

Picture: [hep-th/0611099]

1

Embedding: L(ρ) ρ→∞ ∼ 2πα 0 m q + (2πα ρ

20

)

3

hO m

q

i

2

No “Spontaneous CSB”: hO m

q

i(m q = 0) = 0

3

Fluctuations: Mesons → Meson Melting Transition

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 23 / 43

(33)

The D3-D7 model: Adding Flavour to AdS/CFT

D7 in AdS-Schwarzschild

-1 1 2 3 4 5 6

Ρ

-2

-1

1

2

L

(34)

1 st order Phase Transition in AdS-Schwarzschild

0.5 1 1.5 2 2.5 3 Quark mass

-0.4 -

0.3

-0.2 -

0.1

-Quark condensate

1.32 1.33 1.34 1.35 1.36 Quark mass

-0.24

-

0.23

-0.22 -0.21 -Quark condensate

F (m q , T ) = −S D3,onshell (m q , T ) ⇒ −hO m

q

i = ∂F (m q , T )

∂m q

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 25 / 43

(35)

Electric and Magnetic Field Backgrounds

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

(36)

Electric/Magnetic B-Field

[see also 0709.1547, 0709.1554 (hep-th)]

Ansatz for the Kalb-Ramond Field

B el = Bdt ∧ dx , B mag = Bdy ∧ dz

dB = 0 ⇒ No deformation of AdS-Schwarzschild

− T 7 g 2

p −det (P[G + B] + 2πα 0 F ) + X

p

P[C p ∧ e B ] ∧ e 2πα

0

F

Affects Brane (Flavour) physics: D7 embeddings , thermodynamics, phase transitions , meson spectra ...

Effect: Background for U(1) F gauge field, mimics constant U(1) ∈ U(N c ) field strength

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 27 / 43

(37)

Electric and Magnetic Field Backgrounds Magnetic Field

Magnetic B µν

Magnetic Field

B mag = Bdy ∧ dz

Zero Temperature: [Filev etal.hep-th/0701001]

CSB, Goldstone Boson with M ∝ √

m q for small m q , Zeeman splitting

Finite Temperature:

Small B: Meson Melting Transition

No molten phase & CSB above a critical magnetic field strength (GMOR)

Phase diagram

Spectrum of Pseudoscalar Mesons

(38)

Magnetic Finite Temperature Embeddings

2 4 6 8

Ρ

-2 -1

1 2 L@ΡD

B Ž

=0

2 4 6 8

Ρ

-2 -1

1 2 L@ΡD

B Ž

=5

2 4 6 8

Ρ

-2 -1

1 2 L@ΡD

B Ž

=10

2 4 6 8

Ρ

-2 -1

1 2 L@ΡD

B Ž

=17

χSB : B ˜ crit ≈ 16 , B ˜ ∝ B T 2

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 29 / 43

(39)

Electric and Magnetic Field Backgrounds Magnetic Field

Phase Diagram

m˜=2mq/(√

λT),T˜= ˜m−1

Melted phase

Mesonic phase

0 5 10 15

BŽ

0.0 0.2 0.4 0.6 0.8 1.0 1.2

mŽ

Melted phase Mesonic phase

0 20 40 60 80 100

TŽ

0 5 10 15

BŽ

Meson Melting Transition below B ˜ crit

No molten phase and spontaneous CSB above B ˜ crit

Magnetic KR-Field acts repells the D7s from the origin

(40)

Φ Meson Spectrum (Upper Branch,

M˜= M

√ λ πmq

)

0 1 2 3 4 5

mŽ 10

20 30 40 MŽ

BŽ

=0

0 2 4 6 8

mŽ 10

20 30 40 50 60 MŽ

BŽ

=5

0 2 4 6

mŽ 10

20 30 40 50 60 MŽ

BŽ

=10

0 2 4 6 8

mŽ 10

20 30 40 50 60 MŽ

BŽ

=17

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 31 / 43

(41)

Electric and Magnetic Field Backgrounds Magnetic Field

Goldstone Boson ( B ˜ = 16)

0.01 0.02 0.03 0.04 0.05

mŽ

0.2 0.4 0.6 0.8 1.0

MŽ

M ˜ = 5

√ m ˜

(42)

Electric B µν

B el = Bdt ∧ dx Problem: Zero Locus of DBI action

p − det P[G + B] = 0 for ρ 2 IR + L(ρ IR ) 2 = BR 2

2

+ 1 2 p

4r s 4 + B 2 R 4

Zero Locus

L

rho

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 33 / 43

(43)

Electric and Magnetic Field Backgrounds Electric Field

Electric B µν

B el = Bdt ∧ dx

Solution: U(1) f gauge field A x (ρ), A t (ρ) [hep-th:0705.3890]

a δL

D7

δ∂

a

A

b

= 0 ⇒ Two Conserved Quantities A t (ρ) ' µ − ρ D

2

↔ finite baryon number density hJ t i = D A x (ρ) ' B

ρ

2

↔ baryon number current in x-direction hJ x i = B

⇒ A 0 x (ρ) = f 0 (D, B, ρ) , A 0 t (ρ) = g 0 (D, B, ρ) ⇒ Legendre transform ⇒

Require S ˜ D7 [L(ρ), D, B] to be well-defined :

B = B(ρ IR , T , B, D)

⇒ Well-defined EOMs for L(ρ)!

(44)

Electric Embeddings at T = 0: No CSB, Phase Transition

-1 1 2 3 4 5 6

Ρ Ž

-1.0 -0.5 0.5 1.0 1.5 2.0 L Ž

→ Dissociation of Mesons?

→ Conical singularities?

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 35 / 43

(45)

Electric and Magnetic Field Backgrounds Electric Field

Condensate vs. Mass

1 2 3 4

mŽ

-0.30 -

0.25

-0.20 -0.15 -0.10 -0.05

0.00

cŽ

(46)

Condensate vs. Mass: Phase Transition

1.3160 1.3165 1.3170 1.3175 1.3180 1.3185 1.3190

mŽ -0.225

-0.224 -0.223 -0.222 -0.221 -0.220 cŽ

Area∝ F

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 37 / 43

(47)

Electric and Magnetic Field Backgrounds Electric Field

Φ (l=0) Meson Spectrum at T = 0: ∆M < 0

1 2 3 4 5 m Ž

10 20 30 40 50 M Ž

Incoming Wave Boundary Conditions → Dissociation of Mesons!

(48)

Electric B µν : Finite Temperature

What to expect at Finite Temperature?

Meson melting enhanced by dissociation

Any nonzero electric field will decrease the melting temperature No SCSB

Finite T: One or two transitions?

Open Questions

Fate of the conically singular solutions? They are either physical → What creates the singularity?

unphysical → What happens in that mass range?

Energy of the system is time-dependent → Is this still equilibrium physics?

Thermodynamics in the presence of external currents?

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 39 / 43

(49)

Summary

Outline

1 Introduction to AdS/CFT

2 The D3-D7 model: Adding Flavour to AdS/CFT

3 Electric and Magnetic Field Backgrounds Magnetic Field

Electric Field

4 Summary

(50)

Summary: Electric/Magnetic Background Fields

Magnetic Background Induced SCSB

Magnetic Field Stabilizes Mesons

Mesons don’t melt for large enough B (SCSB) Zeeman splitting

Electric Background No SCSB

Dissociation (& Meson Melting) Stark shift

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 41 / 43

(51)

Summary

Backup Slides

(52)

Condensate vs. Mass

1 2 3 4 5 6

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05

BŽ

=0

1 2 3 4 5 6

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05

BŽ

=0.5

1 2 3 4 5 6

-0.3 -0.2 -0.1 0.1 0.2

BŽ

=1

1 2 3 4 5 6

1 2 3 4 5

BŽ

=5

1 2 3 4 5 6

4 6 8 10

BŽ

=10

1 2 3 4 5 6

0 2 4 6 8 10 12

BŽ

=12

1 2 3 4 5 6

5 10 15

BŽ

=15

1 2 3 4 5 6

0 10 15 20

BŽ

=17

-2 0 2 4 6

10 15 20 25 30

BŽ

=20

-4 -2 0 2 4 6

20 30 40 50 BŽ

=30

-4 -2 2 4 6

40 60 80 100 120 140 BŽ

=60

-10 10 20 30

2000 4000 6000 8000 10 000

BŽ

=1000

René Meyer (MPI Munich) Flavour AdS/CFT November 13, 2008 43 / 43

Referenzen

ÄHNLICHE DOKUMENTE

The parametric Nikiforov–Uvarov (pNU) and asymptotic iteration method (AIM) are applied to study the approximate analytic bound state eigensolutions (energy levels and wave

Institut f¨ur Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universit¨at M¨unster, Corrensstraße 30, D-48149 M¨unster, Germany.. Reprint requests

The small degree of Ru/Cd mixing leads to a drastic decrease of the Curie temperature from 258 K (GdCd) to 63.6 K (GdRu 0.2 Cd 0.8 ) in a Vegard-type manner.. Magnetic properties

For changes in the background risk, conditions (23), (25) and (28) apply: the bank will take in more risky assets in response to a higher expected background income if its

нового статуса участник нашей модели руководствуется тем, что при выборе статуса продавца его новая цена должна быть больше средней цены рынка, определенной в результате

Trajectories u(t) in cases when all sellers prefer the risky choice of price and all buyers prefer careful choice of price in one interval of time(it is similar to go to bull).If

The AdS/CFT correspondence according to this suggestion may be seen as a two- step procedure: Starting from the correlation functions in the large N expansion of the conformal

Chiral symmetry measure (O) and the average thermal Wilson loop (O), calculated on an 83 ×3 lattice in the fourlh-order hopping parameter expansion... ~elic