• Keine Ergebnisse gefunden

urg an der Lahn g.de

N/A
N/A
Protected

Academic year: 2022

Aktie "urg an der Lahn g.de"

Copied!
85
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)Astroteilchenphysik – interdisziplinäre Forschung zwischen Quarks und Kosmos Johannes Blümer Karlsruher Institut für Technologie.

(2) Einführung.

(3) Titelseite: Wikipedia Commons NASA/Ames Research Center/C. Henze. urg an der Lahn g.de. Quantenphysik. an der Schule. Ein Workshop der Heisenberg-Gesellschaft Fr., 22.06. bis So., 24.06.2018· Schlosshotel Weilburg an der Lahn. Quantenphysik bestimmt das Universum Astroteilchenphysik ⬅ {Astrophysik, Elementarteilchenphysik, Astronomie, Kosmologie}.

(4)

(5)

(6) Meine Historie der Astroteilchenphysik Explosion der Supernova SN1987a.

(7) Meine Historie der Astroteilchenphysik 20 Neutrinos von 1050+x. Ke ik. ys. ph. rn.

(8) n. fans. .. Stem. ,. BH. Fy T. Steve. Kemkollops. w. q. ten. ↳. Fusion.

(9) Kosmologie. n. fasy. -. Stem. By. ,. /. T Steve. Kemkollops. y. µ. q. ↳. FY Fusion. \. four Phy. Kosin. .. Stalling. .. q CR. Swab. #. .. Besdleun. aission. v.. %\ r. '. Oscill. Mr. .. Der. .fi. pitfall. ..

(10) .Oqlbn= .. .name#amn.. Myth The GZK ?. ~. (. n%gn§ kemkollop.MY ". ply. T. .. Jang. Steve. q. µ. ↳. ago. msn.name. f. swab. Fusion. Besdlum. \Det /. Oscill. Mr. .. anisiion. v.. Fd. CR. .. .fi. pitfall. ..

(11) .. ~. (. Oqelbn. .. =. GZK ?. usage €?pY 'm. phs. far. T. snah. CR. Besdlum. kemkollg.MY / µ. f fy.q@hsepvmaqhjmmus.4nFqP.nTh.mm.s y. solaev. .. .. Steve. q. ↳. Fd. Fusion. anission. v.. \Der. osciu. .. .fi. pitfall. > smashing mv. SM. ?.

(12) wise. go.ae?.i-i0Tm_ ,. fmsskahie Stmhtw. ,. msn.name. Anger. tanager jeweled > plus. ↳. q. ftp.kjqp.qykmog.ie .fi#Eimmnm*.. @ *. §. .. www.go#fr-Besdlem q. Y. aission. v.. Lin. ↳. Fy. Fusion. ktaer.ae Osce 'll. mv. .. pitfall SM.

(13) wise. go.ae?.i-i0Tm_ ,. fmsskahie Stmhtw. ,. msn.name. Anger. tanager jeweled > plus. ↳. q. ftp.kjqp.qykmog.ie .fi#Eimmnm*.. @ *. §. .. www.go#fr-Besdlem q. Y. aission. v.. Lin. ↳. Fy. Fusion. ktaer.ae Osce 'll. mv. .. pitfall SM.

(14) Astroteilchenphysik.

(15) wise. go.ae?.i-i0Tm_ ,. fmsskahie Stmhtw. ,. msn.name. Anger. tanager jeweled > plus. ↳. q. ftp.kjqp.qykmog.ie .fi#Eimmnm*.. @ *. §. .. www.go#fr-Besdlem q. Y. aission. v.. Lin. ↳. Fy. Fusion. ktaer.ae Osce 'll. mv. .. pitfall SM.

(16) BIG BANG. ♒♒♒ ♒♒♒ ♒♒♒ ♒♒♒ ♒ Big Bang. Unified Forces. Time. 10-43 s. Inflationary Expansion (?) 10-35 s. Energy. 1016 TeV. 1013 TeV. Theory ⇶. Forces separate 10-10 s. Nucleons form 10-5 s. Atoms form. Stars form. Today. 4 00 000 years. 109 years. 14 x 109 years. 1 TeV. 150 MeV. 1 eV. 1 meV. 0.2 5 meV. Antimatter???. γ ν p Fe GW!. Nuclei ➡ Stars ➡ Elements ➡ Materials …. reaching back to the Early Universe. neutrinos cosmic radiations Dark Matter LHC… e+e– precision tests !16.

(17) Multi-wavelength astronomy.

(18)

(19) Kosmische Strahlung.

(20) Daten von Kohlhörster Victor Victor Hess 1912Hess.

(21) Pierre Auger 1938. 22 cm bis 75 m. Signale/Stunde. Die Koinzidenzen verschwinden nicht!. Abstand der Zähler.

(22) John Linsley Volcano Ranch ..1960’s...

(23)

(24) "Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV" in Physical Review Letters 10.4, 1963.

(25) Häufigkeit (Fluss) der Kosmischen Strahlung. 0.1 Teilchen / m2 Min.. 10 Teilchen / km2 Min.. 10 Teilchen / km2 Tag LHC Strahlenergie 10 Teilchen / km2 Jahrhundert.

(26) Tycho Brahe 1572.

(27) HEUTE Tycho Brahe 1572. CAS A Kann dies ein kosmischer Beschleuniger sein?.

(28) Basic conditions for electromagnetic acceleration. er en. log (magnetic field). gy. Hillas condition and diagram: Emax ~ ß Z B R. x26. Pr. oto. Pr. oto. Iro. n1. n1. 0 15. log (accelerator typical size). eV. 0 20. n1. eV. 0 20. eV.

(29) Basic conditions for electromagnetic acceleration 1 pc. 15. 1 kpc. Neutron Stars. Hillas condition and diagram: Emax ~ ß Z B R. 10. log(B/G). Gamma Ray Bursts 5. Active Galactic Nuclei. White Dwarfs. Iro. others –5. –10 5. Radio Lobes. Pro to. 0. n. 1 Mpc. ns. Galaxy Clusters. SNR Galactic Galactic Disk Halo 10. 15. log(R/cm). 20. 10. 0T eV. 25. 10. 0E. eV. 30.

(30) Irdische Technologie für 1020 eV ??? LHC-Beschleunigerring müsste den Umfang der Merkur-Umlaufbahn haben!. Large Hadron Collider (LHC), CERN, Genf; 27 km Umfang, supraleitende Magnete. !29.

(31) Radio galaxies. D ~ 30 Mpc MBH ~ 5 x 108 Msolar.

(32) CEN A. CEN A.

(33) Luftschauer.

(34) Luftschauer. p. π0 γ e+ γ e+. ee-. p π+. e+. µπ+. e+ p. πµ-. γ. n. n µ+. π-. eγ. π-. γ. γ. e-. Proton 1015 eV: am Erdboden 106 Teilchen 80% Photonen 18% Elektr./Positr. 1.7% Myonen 0.3% Hadronen. typ. 20 km. n p p π-. Maximum. n. e+ eeelektromagnetische hadronische myonische Schauerkomponente. hier haben wir Teilchendetektoren !33.

(35) SIMULATION im COMPUTER. Teilchenzahl ▶. Teilchenzahl ▶. Abstand von der Achse ▶.

(36) SIMULATION im COMPUTER. Teilchenzahl ▶. Teilchenzahl ▶. Abstand von der Achse ▶.

(37) SIMULATION im COMPUTER. Teilchenzahl ▶. Teilchenzahl ▶. Abstand von der Achse ▶.

(38) SIMULATION im COMPUTER. Teilchenzahl ▶. Teilchenzahl ▶. Abstand von der Achse ▶.

(39)

(40) KASCADE (Grande).

(41)

(42) Kascade Cosmic Ray Data Center KCDC offener Zugang zu den Forschungsdaten https://kcdc.ikp.kit.edu.

(43) Pierre Auger-Observatorium.

(44)

(45) 4 x 6 Teleskope. 55 M$ Plan 1999 50 M$ Ist 2009 500 Teilnehmer aus 80 Instituten in 16 Ländern 350 Doktorarbeiten fertig, 110 laufende KIT stärkste Gruppe, Sprecher, Management, intl. ‘Bank’. 1600 Wassertank-Detektoren auf 3000 km2. Betriebskosten 2 M$/a.

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64) !57.

(65) !58.

(66) 2016. Ex ampl eUUBt i met r ace !59. A r s tgl oba.

(67)

(68) Die wichtigsten Ergebnisse 1.Die Intensität variiert auf interessante Weise mit der Energie. 2.Es sind noch keine Objekte als Quelle der kosmischen Strahlung zu erkennen, aber bei bestimmten Energien gibt es bevorzugte Richtungen. 3.Die energiereichsten Teilchen im Universum sind eher schwere Atomkerne und nicht Wasserstoffkerne..

(69) Combined Energy Spectrum E /eVauf interessante Weise mit der Energie. 1. Die Intensität variiert 1018. 1019. 1020. Energiebegrenzer:. ~10. 1038. 1. =3 . 293 ±0 . 002 ±0 . 05. 2. =. ± 3 2.5. 2 0.0. ±. 0.1. GZK-Effekt Protons. Rescale A. Eankle = (5.08 ± 0.06 ± 0.8) EeV. CMB. Photodisintegration. 3 E J ( E)/. 2. eV km. 2 sr 1 yr 1. Syst. unc.: ΔE/E = 14%. skalierte Intensität (Häufigkeit). Spe (Auger-TA. 1037. Nuclei Es = (39 ± 2 ± 8) EeV E1/2 = (23 ± 1 ± 4) EeV. Auger (ICRC 2017). 17.5. 18.0. 18.5. 19.0. lg( E/eV) Sys. uncertainty. Auger. 19.5. 20.0 Energie. DE/E = 14%. •. Ankle at CMB ~3 EeV, cutoff at ~40 t. •. ~10% energy scale difference ar oder die kosmischen Large discrepancy in shape at Beschleuniger eben uncertainties, re • schaffen Systematic nicht mehr… • Anisotropies?. • [9 of 30]. !62.

(70) 0.38. 0.42. )% at (↵, ) = (100 , 24 ) 0.9. -180. (l, b) = (233 , 13 ). 360. 0. 2MRS. -180. -90. [2. 180. 0.38 -90 !63. 90. gal. coordinates. 0.42. 0.38. at (↵, ) = (100 , 24 ). 0.42. 2 E eV. 2MRS. +1.3 (6.5 0.9 )%. km-2 sr-1 yr-1. 90. 3-d dipole above 8 EeV:. km -2 sr -1 yr -1. -90 5 E eV. -180. 240 180 120 60 Right Ascension [deg]. 2 EeV. 300. 2 EeV. data E>8 EeV first harmonic. 0.46. 5 EeV. 2MRS. 90. 0.46. (6.5. 180. 0.46. 2. Es gibt bevorzugte Herkunftsrichtungen +1.3. 5 EeV. 1.08 1.06 1.04 1.02 1 0.98 0.96 0.94 0.92 0.9 360. km-2 sr-1 yr-1. 0. Normalized Rate. 1.1 3-d dipole above 8 EeV:.

(71) 3. Die energiereichsten Teilchen sind schwere Kerne. [. [ [ [. [. [. [ [ [. [. [. [ [. [. [. [. [. [. [ [. [ [. [. [ [. [ [. [ [. [ [. [ [. [. [. [. [. [. [. [. [. [. [. s (Xmax). [ [. 30. [. [ [. [ [. [. [ [. 40. [. [. hXmaxi. 50. [. 20.0. [. lg(E/eV). 19.5. [. 19.0. [. 18.5. [. 18.0. [. 17.5. [ [ [. 17.0. Preliminary. [. 600. EPOS-LHC Sibyll2.3 QGSJetII-04. 10. [. [. 650. [. [ [ [ [ [ [ [ [ [ [. 700. n o r i. 60. [ [. [ [ [ [ [ [ [ [. [ [ [. 750. [. [. 800. 70. [. ± syst.. [. 2 [g/cm ]. p. n o t ro. 10. 20 10. [. data ± sstat. 10. 2 [g/cm ]. 850. 10. [. 10. E[eV] 17 18 der Eindringtiefe 19 Fluktuationen. 20 10. [. 10. E[eV] 17 18 in die Atmosphäre 19 Eindringtiefe. 20 10 17.0. Preliminary 17.5. 18.0. 18.5. 19.0. 19.5. lg(E/eV). !64. 20.0.

(72) “Das könnte die Entdeckung des Jahrhunderts sein... hängt natürlich davon ab, wie tief es geht...”.

(73) www.auger.org. Home. News. Observatory. Collaboration. Science. Cosmic Rays. Edu & Outreach. Auger Visitor Center. The public event display of the Pierre Auger Observatory is hosted at CNEA in Argentina (please note that it does take a while to to load up).. Event Display FAQ. The Pierre Auger Collaboration agreed on making 1% of its data available to the public. The CNEA website allows browsing over the events collected. Games Google Earth. since 2004, and is updated daily. You. James Cronin School. can enter an event Id in the search. Journey to Auger. window, search for an event with the event selection menu, or display an event already in cache. You can also download an ascii file with all events.. Display #. 10. Read On Guide To Downloading and Formatting Pierre Auger Observatory Data Guide To Making an Energy Histogram Using Pierre Auger Observatory Surface Detector. Home. Internal. Edu & Outreach. The Public Event Explorer. Data. Gallery. Science Fair VISPA.

(74) KCDC.

(75) Offene Nachnutzung von Forschungsdaten Eur. Phys. J. C manuscript No. (will be inserted by the editor). The KASCADE Cosmic-ray Data Centre KCDC: Granting Open Access to Astroparticle Physics Research Data 2 A Haungs1,a , D Kang1 , S Schoo1,b , D Wochele1 , J Wochele1 , W D Apel1 , J C Arteaga-Velázquez2 , K Bekk1 , M Bertaina3 , J Blümer1,c , H Bozdog1 , I M Brancus4,d , E Cantoni3,e , A Chiavassa3 , F Cossavella1,f , K Daumiller1 , V de Souza6 , F Di Pierro3 , P Doll1 , R Engel1 , B Fuchs1,g , D Fuhrmann7,h , A Gherghel-Lascu4 , H J Gils1 , R Glasstetter7 , C Grupen8 , D Heck1 , J R Hörandel9 , D Huber1 , T Huege1 , K H Kampert6 , H O Klages1 , K Link1 , PŁuczak 10 , H J Mathes1 , H J Mayer1 , J Milke1 , B Mitrica3 , C Morello5 , J Oehlschläger1 , S Ostapchenko11 , M Petcu4 , T Pierog1 , H Rebel1 , M Roth1 , H Schieler1 , F G Schröder1 , O Sima12 , G Toma4 , G C Trinchero5 , H Ulrich1 , A Weindl1 , J Zabierowski10 1. Institut für Kernphysik & Institut für Experimentelle Teilchenphysik, KIT - Karlsruher Institut für Technologie, Germany 2 Universidad Michoacana, Instituto de Fisica y Matemáticas, Mexico 3 Dipartimento di Fisica, Università degli Studi di Torino, Italy 4 National Institute of Physics and Nuclear Engineering, Bucharest, Romania 5 Istituto di Fisica dello Spazio Interplanetario, INAF Torino, Italy 6 Universidade São Paulo, Instituto de Fı́sica de São Carlos, Brasil 7 Fachbereich Physik, Universität Wuppertal, Germany 8 Fachbereich Physik, Universität Siegen, Germany 9 Dept. of Astrophysics, Radboud University Nijmegen, The Netherlands 10 National Centre for Nuclear Research, Department of Astrophysics,Ł ódź, Poland 11 Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany 12 Department of Physics, University of Bucharest, Bucharest, Romania Received: date / Revised version: date. Fig. 1 Logo of KCDC (https://kcdc.ikp.kit.edu).. We describe shortly the evolution of KCDC and give finally.

(76)

(77)

(78) Fig. 1 Logo of KCDC (https://kcdc.ikp.kit.edu).. 15. 20. 25. We describe shortly the evolution of KCDC and give finally an outlook on possible use-case analyses for the available data set and on the future of the KCDC project itself. A first release [1] of KCDC is running since November 2013 with a positive response from the community and public users. Motivated by this success, we had several KCDC updates, the last major release, called NABOO 1.0, in February 2017 and NABOO 2.0 and 2.1 in October 2017 and March 2018, respectively. Presently we provide in different formats data from more than 433 million events from the three detector components KASCADE (representing the original KASCADE Array), the Central Hadron Calorimeter, and the array of the extension KASCADE-Grande. With the latest updates we provide as well simulations, separately for the three detector components for direct download as ROOT 6 files and the data points of 88 published spectra. !"#$%"&'!%"(#)*+ '()*+"!,$'%+!")%$&' -$%.,"$!,/&*+)(*+. ."#!&'$) )"0)"#+ !"#$"%$&'. Fig. 6 The all-particle energy spectrum [10 and KASCADE-Grande (based on the Q '()*+"!,1!"2/+'%0 $,-.#)')-$/-.+.( 1%2"-.#)' +*+)("-$%3.+(#) ded, i.e. corrected for the reconstruction .+,("#.-0 )-$/-.+.( )-$/-.+.(.

(79) 4. = -3.25 0.05. = -3.24 0.05. 4. 5. 6. 19. ATIC. 10 18. RHIC (p-p) HERA ( -p). Tevatron (p-p). 7 TeV 14 TeV LHC (p-p). HiRes I HiRes II Auger ICRC 2013 TA SD 2013. PROTON. Open Access as described e.g. by the Berlin Declara tion [17] includes free unlimited access toKASCADE scientific (SIBYLL 2.1) data col 10 KASCADE-Grande 2012 lected with financial aid from public institutions. under Tibet ASg (SIBYLL One 2.1) IceTop ICRC 2013 10 lying notion behind Open Access is that research data wa paid from tax payers money and therefore the tax payer ha 10 the right to have free access to it. This also implicitly in cludes a permanent nature of this access such that the dat 10 source and access conditions do not vary or change ove 10 time. Therefore once published data can not be revoked and have to10remain accessible. 10 10 10 10 10 10 10 10 RUNJOB. 17. 16. )-1. = -3.24 0.08. 3. 2. -2.918. 230. s pp (GeV). 10 quality 10 10 years of 10collected knowledg 10 internal tests and 20 10 HiRes-MIA and experience gathered by the KASCADE collaboration.. 15. I/(A x E. dI/dE xE. 2.7. 10 19. 2.5. -2. J(E) (m. = -2.95 0.05 = -2.76 0.02. ) -2. all-particle electron-poor sample electron-rich sample. Scaled flux E. -1 -1. KASCADE-Grande. 10 eV. 225 1.5. 10 eV. 18. s -1 sr -1 eV. 17. 10 20. 1.7. (m sr s eV ). Equivalent c.m. energy. KASCADE-Grande. 0.4 0.2 0. -0.2. 14. -0.4 -0.6. 13. 235. PRD 87(2013)081101 PRL 107(2011)171104. -0.8. 16. 13. = -2.79 0.08. 18. 1017. 10. 14. 10. primary energy [eV]. 15. 16. 17. 18. 19. Energy. 20. (eV/particle). 21. KCDC also wants to contribute to the development o Fig. 6 The all-particle energy spectrum [10] obtained with KASCADE 16 17 18 16.5 17.5 general principles in the reuse of scholarly data. Here we fol log 10 (E/eV) and KASCADE-Grande (based on the QGSJet-II model and unfolthe guidelines of the FAIRuncertainties). Data Principles ded,low i.e. corrected for the reconstruction Shown[18], are wher Fig. 7 All-particle, electron-poor, and electron rich energy spectra240the spectra comparison with resultsAccessible, of other experiments. In addi- Reusa FAIR in stands for: Findable, Interoperable, from [10] tion, the corresponding interaction energy at accelerators are indicated. Fig. 5KASCADE-Grande The Grande Array layout. ble. . The inlet shows a zoom to the all-particle spectrum from KASCADEGrande. In case of scientific work, where frequently the evalu ation and interpretation of collected data changes in ligh.

(80) 690. 695. 700. air shower data from CORSIKA as input delivering simulated detector signals. The data structure of the CRES output is the same as from the KASCADE measurements, which means that both are analysed using the same reconstruction program KRETA. Unlike for measured data where we have Spectra calibration parameters like Air Temperature and event spePublication Doku &here Data Shop cific information like Date and EventTime, we have Manual some additional information on the shower properties like true primary energy and particle IDTutorial derived directly from the air shower simulation CORSIKA or from the detector FAQs simulation CRES. Bug Report From about 200 observables obtained in Announce the analysis of the simulated data we choose 34 to be published in KCDC. Ten of these parameters are representing the true shower information. These Values are summed up Simulations in ‘Monte Carlo Information’. It was one of our main goals to publish the simulation data in the same format as the measured data published with the release NABOO, to make it as easy as possible for the users.. KCDC. 705. Web portal. and continuing compliance reby grants to you a limited,. Data Shop Monitoring. Data Shop Download Preselect Download. Tutorials Download. Web Page Administr. From all available observables taken directly from the simulations we choose 10 to be published in KCDC called ‘Monte Carlo Information’: Users Users True Primary Energy TheAdministr energy of the particle inducing 710 DB the air shower is an input for the CORSIKA air shower simulation code. In our case we simulated showers with a primary energy between 1014 and 3.16 ⇤ 1017 eV eV following a power law spectrum with an index of ‘-2’. Fig.71513True Features the KCDC Primary of Particle ID The IDWeb of the portal. particle inducing. KASCADE DB.

(81) Portal für Lehrer und Schüler switch to english version. Auf dieser Seite sind interessante Aufgaben zusammengestellt rund um den Bereich kosmische Strahlung, die mit Hilfe der Daten des KASCADE Experimentes einige der Vorgänge ausserhalb und innerhalb unserer Erdatmoshäre veranschaulichen sollen. Diese Aufgabensammlung soll in Zusammenarbeit mit interessierten Lehrern und Schülern stetig erweitert werden und so zum Verständnis der kosmischen Strahlung beitragen. Die Rahmenfarben geben einen Hinweis auf den Schwierigkeitsgrad der Aufgaben: rot bedeutet 'ziemlich schwierig', gelb bedeutet 'mitteschwer' und grün 'ziemlich einfach' während blau als 'Fingerübung' zu betrachten ist.. Wie schwer ist ein kosmisches Teilchen?. Was sieht KASCADE am Himmel?.

(82)

(83) Ausblick.

(84)

(85) Wo geht die Astroteilchenphysik hin? •. Multi-messenger Astroteilchenphysik:. • • • •. Gravitationswellen! Einstein-Teleskop ET ? Cherenkov Teleskope Array CTA Hochenergie-Neutrinoastronomie mit IceCube(-Gen2) GCOS wenn Auger mit AugerPrime Quellen entdeckt. •. Neutrinomasse und -hierarchie; CP-Verletzung bei Neutrinos; kompakte Neutrinodetektoren, Geoneutrinos…. •. Dunkle Materie bis zum Neutrinountergrund: DARWIN u.a. … von meV-Axionen bis Schwarzen Löchern…. Was sagen uns LHC, HL-LHC, Belle-II, … ?.

(86)

Referenzen

ÄHNLICHE DOKUMENTE

tatsächlich Fahrten mit dem Auto oder dem öffentlichen Verkehr ersetzt werden, jedoch nicht, wenn dadurch Fahrten mit dem normalen Velo wegfallen.. Zum Glück gibt es auch

Abstract: The redesign of business process models is up to now mainly limited to the improvement of their semantic quality.. Conformance is checked between statements that are used

In addition to per- formance considerations, ontology learning tools need to be fully integrated into the knowledge engineering life-cycle, working in the background and providing

A trained sensory panel (n=12) evaluated the samples using 11 aroma and taste attributes.. All samples were presented

Such a strategy is still in the earliest stage of discussion in Austria and the present program is designed to pro- mote this process (Part C). The specific case study presented

• All our rules can only be applied if the functions id, map, mapi, foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ..!. are provided by a standard library:

The emergence of network studies in public administration research, then, was playing catch up to the structures already put in place—from complex contracting structures, to

Twenty minutes of exercise at vigorous intensity exert the same beneficial effects on all-cause mortality as 80 minutes of exercise at low-to-moderate intensity (17)..