• Keine Ergebnisse gefunden

Prof. Broccoli, USA: 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.34 Modelle

N/A
N/A
Protected

Academic year: 2022

Aktie "Prof. Broccoli, USA: 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.34 Modelle"

Copied!
103
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

2.34 Modelle

2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele

2.343 Virtueller Gastvortrag von Prof. Broccoli, USA:

Atmospheric General Circulation Modeling Coupled General Circulation Modeling 2.344 Übersicht über komplexere Modelle

2.34

GHG= Greenhouse Gas

(2)

Goto spielen

(3)

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

T a

F S = 1370 [W/m^2] solar constant F 0 = 1/4 * (1-A)* F S

A simple model of the greenhouse effect

Ground T g

Atmosphere F 0

s *F 0

F a

F at *F g

F g

Solar

transmittance  s

thermal

transmittance  t

thermal emittance = (1- t )

F a = (1-  t )*  T a

4

F g =  T g

4

2.341

(4)

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

Ground T g

Atmosphere T a

F 0

s *F 0

F a

F at *F g

F g

Solar

transmittance  s

thermal

transmittance  t

thermal emittance = (1- t )

[Kirchhoff‘s law]

A simple model of the greenhouse effect:

Bilance at the top of the atmosphere:

F 0 = F a +  t *F g (1)

Bilance at the ground:

s *F 0 + F a = F g (2)

(5)

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

A simple model of the greenhouse effect:

Bilance at the top of the atmosphere: (1) F 0 = F a + t *F g

Bilance at the ground: (2) F g = F a +  s *F 0

F a aus (1) in (2) einsetzen : F g = [F 0 - t *F g ]+  s *F 0

F g = F 0 * (1+ s ) / ( 1+  t ) andererseits gilt: F g =  T g

4

Also :  T g

4

= F 0 * (1+ s ) / ( 1+  t )

(6)

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

A simple model of the greenhouse effect:

Also :  T g

4

= F 0 * (1+ s ) / ( 1+  t )

Zahlenwerte: s = 0,9 ;  t = 0,2 ; Albedo A=0,3

ferner: F 0 = 1/4 * (1-A)* F S = 0,7* 1370/ 4 = 0,7* 340 = 240 [W/m

2

]



= 5,67 *10

- 8

[Wm

-2

K

-4

]

T g = 286 [K]

The close agreement with T g = 288 [K] is partly fortuitous, since in

reality non radiative processes also contribute to the energy balance

(7)

Goto spielen

(8)

2.342 Komplexere Modelle

Komplexere Modelle

(9)

Geographic resolution characteristic of climate Models of the generations of climate models used in the IPCC Assessment Re-ports:

FAR (IPCC, 1990), SAR (IPCC, 1996), TAR (IPCC, 2001a), and AR4 (2007).

The figures above show how successive generations of these global models increasingly resolved northern Europe.

These illustrations are representative of the most detailed horizontal resolution used for short-term climate simulations.

The century-long simulations cited in IPCC Assessment Reports

after the FAR were typically run with the previous generation’s resolution.

Vertical resolution in both atmosphere and ocean models is not shown, but it has increased comparably with the horizontal resolution, beginning

typically with a single-layer slab ocean and ten atmospheric layers in the FAR and progressing to

about thirty levels in both atmosphere and ocean.

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

(10)

Geographic resolution characteristic of climate Models

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

(11)

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

aktueller Stand (2007):

30 levels in both atmosphere and ocean.

(12)

Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre

nach Raumdimensionen geordnet

(13)

Erläuterungen zur Tabelle 2.1 (Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre ):

Die Richtung der Dimensionen ist in Klammern spezifiziert:

(lat = latitude, long = longitude, z = vertikal);

2.5d = mehrere 2-dimensionale Ozeanbecken, die im südlichen Ozean verbunden sind;

Weitere viel verwendete Abkürzungen :

EBM = energy balance model,

AGCM = atmospheric general circulation model, OGCM = ocean general circulation model .

QG = für quasi-geostrophisch, SST = sea surface temperature.

In kursiv sind einige Modellbeispiele genannt (entweder Autoren oder Modellbezeichnung).

EMICS:

Das grau schattierte Gebiet enthält Klimamodelle reduzierter Komplexität (auch Earth System Models of Intermediate Complexity, EMICs genannt), mit denen lange Integrationen durchgeführt werden können

(mehrere 10^3 – 10^6 Jahre, oder grosse ensembles).

Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

(14)

Klimamodelle sind gar nicht so einfach zu verstehen und zu beurteilen (hmm…..- was tun?)

Daher :

1. Hinweis auf ausführliche Vorlesungen im www und auf gedruckte Publikationen.

2. Virtueller Gastvortrag :

Prof. Broccoli, Rutgers University, New Jersey, USA

(15)

1. Ausgewählte Internetquellen

(16)

http://www.climate.unibe.ch/

~stocker/papers/skript0203.pdf zum Original

Prof. Stocker, Bern

(17)

Inhalt der Vorlesung von Prof. Stocker

1 Einführung... ...1

1.1 Ziel der Vorlesung und weiterführende Literatur ...1

1.2 Das Klimasystem...3

1.3 Aufgaben und Grenzen der Klimamodellierung ...6

1.4 Historische Entwicklung ...9

1.5 Einige aktuelle Beispiele zur Klimamodellierung ...13

1.6 Zusammenfassung... ...17

2 Modellhierarchie und einfache Klimamodelle ...19

2.1 Hierarchie der physikalischen Klimamodelle ...19

2.2 Punktmodell der Strahlungsbilanz ...27

2.3 Numerische Lösung einer gewöhnlichen Differentialgleichung 1. Ordnung ... ...30

2.4 Klimasensitivität im Energiebilanzmodell ... ...34

3 Advektion, Diffusion und Konvektion...41

3.1 Advektion...41

3.2 Diffusion...42

3.3 Konvektion...43

3.4 Advektions-Diffusionsgleichung und Kontinuitätsgleichung... ...44

3.5 Numerische Lösung der Advektions-Gleichung ...45

3.6 Weitere Verfahren zur Lösung der Advektions-Gleichung ... ...53

3.7 Numerische Lösung der Advektions-Diffusions Gleichung ... ...59

3.8 Numerische Diffusion ...59

4 Energietransport im Klimasystem und seine Parametrisierung ...61

4.1 Grundlagen...61

4.2 Wärmetransport in der Atmosphäre ...62

4.3 Breitenabhängiges Energiebilanzmodell...65

4.4 Wärmetransport im Ozean ...66 ...

(18)

5 Anfangswert- und Randwertprobleme...71

5.1 Allgemeine Grundlagen ...71

5.2 Direkte numerische Lösung der Poissongleichung ...72

5.3 Iterative Verfahren ...74

5.4 Successive Overrelaxation (SOR)...75

6 Gross-skalige Zirkulation im Ozean...77

6.1 Die Bewegungsgleichungen... ...77

6.2 Flachwassergleichungen als Spezialfall ...80

6.3 Verschiedene Typen von Gittern in Klimamodellen... ..81

6.4 Spektralmodelle...85

6.5 Windgetriebene Strömung im Ozean (Stommel Modell) ... ...87

6.6 Potentielle Vorticity: eine wichtige Erhaltungsgrösse ... ..93

7 Gross-skalige Zirkulation in der Atmosphäre ...97

7.1 Zonale und meridionale Zirkulation ... ....97

7.2 Das Lorenz-Saltzman Modell ...102

8 Atmosphäre-Ozean Wechselwirkung...109

8.1 Kopplung von physikalischen Modellkomponenten... ...109

8.2 Thermische Randbediungungen... ...110

8.3 Hydrologische Randbedingungen... ...114

8.4 Impulsflüsse ... ...116

8.5 Gemischte Randbedingungen ... ...116

8.6 Gekoppelte Modelle... .. ...118

9 Multiple Gleichgewichte im Klimasystem ...122

9.1 Abrupte Klimawechsel aufgezeichnet in polaren Eisbohrkernen ... ...122

9.2 Multiple Gleichgewichte in einem einfachen Atmosphärenmodell... ....124

9.3 Multiple Gleichgewichte in einem einfachen Ozeanmodell ... ...125

9.4 Multiple Gleichgewichte in gekoppelten Modellen... ...127

9.5 Schlussbemerkungen und Ausblick ...130

10 Übungsaufgaben zur Klimamodellierung...131

(19)

http://www.pik-potsdam.de/

~claussen/lectures/

physikalische_klimatologie/

physklim1.pdf zum Original

Prof. Claussen, Potsdam

(20)

IMPRS, 4 June 2003

Earth System Models

of Intermediate Complexity

Martin Claussen

Potsdam-Institut für Klimafolgenforschung / Universität Potsdam

• The spectrum of Earth system models

• Remarks on the Earth system

• Examples from CLIMBER-2 and EMIC workshops

• Perspective for Integrative Modelling

Quelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik- potsdam.de/~claussen/lectures/

1.

(21)

Climate modelling with quasi-realistic models - experiences in describing climate during the

Holocene and the Eemian, and in designing scenarios of plausible future climate change.

Hans von Storch

Institute for Coastal Research, GKSS Research Center, Geesthacht, Germany

7.5.2004 Centro de Astrobiología, Madrid

The construction and utility of quasi-realistic climate models is reviewed. Examples of reconstructing past climates are presented, in particular for the last millennium and for the last interglacial, the Eemian (120 ka bp).

In addition, the approach of constructing plausible future climates, conditional upon the extent the atmosphere is used as a dump for anthropogenic substances, is demonstrated with examples.

http://w3g.gkss.de/G/Mitarbeiter/storch/

Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;

http://w3g.gkss.de/G/Mitarbeiter/storch/

Prof. von Storch, GKSS

(22)

In s ti tu t r K ü st e n fo rs ch u n g

I f K

(23)
(24)

2. Virtueller Gastvortrag

zunächst:

Vorbereitung und Einstimmung

(25)

Die Atmosphäre über Europa im diskreten Modell

U. Cubasch

BQuelle:DLR_Schumann200_Klimawandel.ppt

(26)

Europa im diskretisierten Modell

U. Cubasch

BQuelle:DLR_Schumann2000_Klimawandel.ppt

(27)

McGuffie and Hendersson-Sellers, 1997 McGuffie and Hendersson-Sellers, 1997

BezugsQuelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/

(28)

Für die zeit- und ortsabhängigen Zustandsvariablen:

T = Temperatur  = Dichte p = Druck

{u,v,w} = Strömungsgeschwindigkeit (3 Komponenten) gelten in jeder Zelle

die Grundgleichungen der Strömungs- undThermodynamik.

(Erhaltung von Impuls [NavierStokes],

Masse [Kontinuitätsgleichung], und Energie,

und Zustandsgleichung .)

Im Ozean

wird an Stelle der Dichte  meist der Salzgehalt S benutzt, da:  =  (S,T,p) . In der Atmosphäre kommen noch wg. der Energiebilanz

der Wasserdampfgehalt q und flüssiges Wolkenwasser hinzu.

Quelle: / Storch-Güss-Heimann 99, p.99ff./

(29)

Quelle: / Storch-Güss-Heimann 99, p.99ff./

Es wird ein

auf der rotierenden Erde (Corioliskraft! ) ortsfestes (Advektionsterm! )

Koordinatensystem verwendet.

Daher treten in den Navier Stokes Gln.(Impulserhaltung) auf:

der Coriolis Parameter f: f = 2 *  * sin 

mit:  = Winkelgeschwindigkeit der Erddrehung ,  = geographische Breite und länge

der Erdradius : a

(30)

Erinnerung an die Hydrodynamik: Eulerian and Lagrangian description

BQuelle: Prof. Dick Yue, MIT_ocw 13.021 „Marine Hydrodynamics“, lecture notes „2 Basic Equations“

http:/ocw.mit.edu/OcwWeb/Ocean-Engineering/13-021MarineHydrodynamicsFall2001/CourseHome/index.htm

(31)

Erinnerung an die Hydrodynamik: D /Dt

BQuelle: Prof. Dick Yue, MIT_ocw 13.021

Behauptung : Es gilt:

(32)

Beweis :

(33)

atmosphere

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(34)

ocean

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(35)

Parameterizations

The terms F

u

, F

v

, G

q

, G

s,

G

T

and Q describe the effect of

“unresolved” processes on state variables u, v, q, ρ and T , i.e.,

F

u =

F

u,Δx

(u , v, q, ρ , T)

These functions are called „parameterizations“; they are not uniquely determined (i.e., different formulations may serve the same purpose), and the limiting process is not defined, i.e.,

F

u,Δx

(u , v, q, ρ , T) does not exist.

There is nothing like “the differential equations” of climate.

lim 0

x

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(36)

In s ti tu t r K ü st e n fo rs c h u n g

I f K

Dynamical processes in the atmosphere

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(37)

In s ti tu t r K ü st e n fo rs c h u n g

I f K

Dynamical processes in a global atmospheric model

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(38)

In s ti tu t r K ü st e n fo rs c h u n g

I f K

Dynamical processes in the ocean

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(39)

In s ti tu t r K ü st e n fo rs c h u n g

I f K

Dynamical processes in a global ocean model

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

(40)
(41)

Quasi-realistic Models

• Models of aximum complexity, which feature as many processes as is possible given the computational

resource.

• Meant as a tool to

simulate in space-time detail the trajectory of climate.

• Quasi-realistic models do not “explain” but allow for “numerical experiments”.

Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;

http://w3g.gkss.de/G/Mitarbeiter/storch/

(42)

Quasi-realistic models

Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;

http://w3g.gkss.de/G/Mitarbeiter/storch/

(43)

2.343 Virtueller Gastvortrag von Prof. Broccoli, USA:

1. Atmospheric General Circulation Modeling

2. Coupled General Circulation Modeling

Prof. Anthony J. Broccoli

Dept. of Environmental Sciences

Rutgers University, New Jersey, USA Homepage:

http://www.envsci.rutgers.edu/~broccoli/index.html

(44)

Atmospheric General Circulation Modeling

Anthony J. Broccoli

Dept. of Environmental Sciences

Zum Original:

http://climate.envsci.rutgers.edu/climod/BroccoliAtmos_gcm_env544.ppt

(45)

Coupled General Circulation Modeling

Anthony J. Broccoli

Dept. of Environmental Sciences

Zum Original:

http://climate.envsci.rutgers.edu/climod/BroccoliCoupled_gcm_env544.ppt

(46)

2.344 Übersicht : Komplexere Modelle

Ist dies Bild schöner als die Urfassung,das folgende Bild?

(47)

IPCC2001_TAR1_TS-Box3

(48)

IPCC2001_TAR1_TS-Box3

Box 3: Climate Models: How are they built and how are they applied?

Comprehensive climate models are based on physical laws represented by mathematical equations that are solved using a three-dimensional grid over the globe.

For climate simulation, the major components of the climate system must be represented in submodels (atmosphere, ocean, land surface, cryosphere and biosphere), along with the processes that go on within and between them.

Most results in this report are derived from the results of models, which include some represen- tation of all these components.

Global climate models in which the atmosphere and ocean components have been coupled together are also known as Atmosphere-Ocean General Circulation Models (AOGCMs). In the atmospheric module, for example, equations are solved that describe the large-scale

evolution of momentum, heat and moisture. Similar equations are solved for the ocean.

Currently, the resolution of the atmospheric part of a typical model is about 250 km in the horizontal and about 1 km in the vertical above the boundary layer.

The resolution of a typical ocean model is about 200 to 400 m in the vertical, with a horizontal resolution of about 125 to 250 km.

Equations are typically solved for every half hour of a model integration.

Many physical processes, such as those related to clouds or ocean convection, take place on much smaller spatial scales than the model grid and therefore cannot be modelled and

resolved explicitly. Their average effects are approximately included in a simple way by taking

advantage of physically based relationships with the larger-scale variables. This technique is

known as parametrization.

(49)
(50)

Projektionen und Szenarios für das 21. Jahrhundert

2.35

(51)

The last 160,000 years (from ice

cores) and the next 100 years

Time (thousands of years)

160 120 80 40 Now

–10 0 10

100 200 300 400 500 600 700

CO2 in 2100 (with business as usual)

Double pre-industrial CO

2

Lowest possible CO2

stabilisation level by 2100

CO

2

now

Temperature difference from now °C

C O

2

c on ce nt ra tio n (p pm v)

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

2.351 „Historische Perspektive“

CO2

(52)

2.352 Emissionsszenarien und die Komplexität der weiteren Entwicklung

Die weitere Entwicklung der Emissionen

von GHG und SO4- Aerosolen hängen

vom komplexen Zusammenwirken vieler Faktoren ab:

u.a.

Bevölkerung : Wachstum, Altersstruktur, Land-Stadt-Übergang, Wanderung Ökonomie : Wachstum, Struktur

Technik : Stand der Technik und

Marktdurchdringung „nachhaltiger“ Technologien Regierung und Kultur

• IPCC gibt einheitliche Emissionsszenarien vor:

(53)

Climate change is a sustainable development issue

Ai r p oll uti on Int era cti on s

Socio-Economic Development Paths

•Main drivers are economic growth, technology, population,

governance structures, energy and land use

•Temperature rise

•Sea level rise

•Precipitation changes Climate System

•Water resources, agriculture, forestry

•Ecological systems and biodiversity

•Human health Human &

Natural Systems

Enhanced greenhouse

effect

Feedbacks

Non-climate change stresses Environmental

impacts Climate change

impacts

•Carbon dioxide

•Methane

•Nitrous oxide

•Aerosols

Atmospheric Concentrations

Anthropogenic emissions

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 9

(54)

Summaries: SPM, TS Chapters:

1: Background and Overview

2: An Overview of the Scenario Literature 3: Scenario Driving Forces

4: An Overview of Scenarios 5: Emission Scenarios

6: Summary Discussions and Recommendations

Appendices:

...

IV: Six Modeling Approaches V: Database Description

VI: Open Process VII Data tables

IPCC gibt einheitliche Emissionsszenarien vor:

SRES = Special Report on Emission Szenarios

published in 2000 AD, 592 Seiten

(55)

Die 4 Leitszenarien der IPCC -Berichte

BQuelle: VGB-Literaturrecherche 2006 „Klimawandel und Energiewqirtschaft“, p.106, Bild 8.6, UrQuelle: Kasang, HamburgerBildungsserver, 2005, nach IPCC

(56)

The composition of the atmosphere is projected to change causing an increase in temperature and sea level

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 10

Stand: TAR 2001 Stand: TAR 2001

(57)

Main climate changes

• Higher temperatures - especially on land

• Sea level rise

• Hydrological cycle more intense

• Changes at regional level

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

3.353

(58)

Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26.

3.3531 Higher Temperatures

Understanding Near Term CC

(59)

OriginalBildunterschrift:

Model projections of global mean warming compared to observed warming.

Observed temperature anomalies, as in Figure TS.6,

are shown as annual (black dots) and decadal average values (black line).

Projected trends and their ranges

from the IPCC First (FAR) and Second (SAR) Assessment Reports are shown as green and magenta solid lines and shaded areas,

and the projected range from the TAR is shown by vertical blue bars.

These projections were adjusted to start at the observed decadal average value in 1990.

Multi-model mean projections from this report

for the SRES B1, A1B and A2 scenarios, as in Figure TS.32, are shown for the period 2000 to 2025 as blue, green and red curves with uncertainty ranges indicated against the right-hand axis.

The orange curve shows model projections of warming if greenhouse gas and aerosol concentrations were held constant from the year 2000 – that is, the committed

warming.

Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26 Bildunterschrift:

(60)

3.3531a Large Scale projections for the 21.Century

Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

Projected global surface warming at the

end of the 21st century.

(61)

Projections of Future Changes in Climate

Best estimate for low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and for high scenario (A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C).

Broadly

consistent with span quoted for SRES in TAR, but not directly comparable

Quelle:IPCC-AR4wg1_Vortrag Pachauri

(62)

Scenario B1

Scenario A1B

Scenario A2

°C

Projections of Surface Temperature

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28

(63)

Projected warming in 21st century expected to be

greatest

over land and at most high northern latitudes and

least

over the Southern Ocean and parts of the North Atlantic Ocean

(64)

Original Bildunterschrift:

Projected surface temperature changes for the early and late 21st century relative to the period 1980 to 1999.

The panels show the AOGCM multi-model average projections (°C) for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios

averaged over the decades 2020 to 2029 and 2090 to 2099 (right).

Some studies present results only for a subset of the SRES scenarios, or for various model versions. Therefore the difference in the number of

curves, shown in the left-hand panels, is due only to differences in the availability of results. {Adapted from Figures 10.8 and 10.28}

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28, Bildunterschrift

(65)

Uncertainties as the relative probabilities of estimated global average warming from several different AOGCM and EMIC studies for the same periods.

Corresponding uncertainties

to the Projected Temperature Changes

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28 (nun vollständig)

(66)

Folgerung:

Near term projections insensitive to choice of scenario

Longer term projections depend on

scenario and climate model sensitivities

(67)

Summary: Projections of Future Changes in Climate

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios.

Even if the concentrations of all

greenhouse gases and aerosols had

been kept constant at year 2000 levels, a further warming of about 0.1°C per

decade would be expected.

Earlier IPCC projections of 0.15 to 0.3 o C per decade can now be compared with observed values of 0.2 o C

Quelle:IPCC-AR4wg1_Vortrag Pachauri

(68)

Land areas warm more than the oceans

with the greatest warming at high latitudes

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the temperature for emission scenario A2

Stand: TAR 2001

(69)

3.3532 Sea Level Rise

Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

(70)

Tens of millions of people are projected to be at risk of being displaced by sea level rise

Assuming 1990s Level of Flood Protection

Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts:

A Global Perspective.

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

Stand: TAR 2001

(71)

Hydrological Cycle more intense

precipitation increases very likely in high latitudes Decreases likely in most subtropical land regions

3.3533 Hydrological Cycle

Quelle:IPCC-AR4wg1_Vortrag Pachauri

(72)

Weitere Aussagen der Modelle

(73)

Projections of Future Changes in Climate

There is now higher confidence in projected

patterns of warming and other regional-scale

features, including changes in wind patterns,

precipitation, and some aspects of extremes

and of ice.

(74)

• Snow cover is projected to contract

• Widespread increases in thaw depth most permafrost regions

• Sea ice is projected to shrink in both the Arctic and Antarctic

• In some projections, Arctic late-summer sea ice

disappears almost entirely by the latter part of the 21st century

PROJECTIONS OF FUTURE

PROJECTIONS OF FUTURE CHANGES IN CLIMATE IN CLIMATE

(75)

Very likely that hot extremes, heat waves, and heavy precipitation events will continue to

become more frequent

Likely that future tropical cyclones will become more intense, with larger peak wind speeds and more heavy precipitation

• less confidence in decrease of total number

• Extra-tropical storm tracks projected to move poleward with consequent changes in wind, precipitation, and temperature patterns

PROJECTIONS OF FUTURE CHANGES IN CLIMATE

PROJECTIONS OF FUTURE CHANGES IN CLIMATE

(76)
(77)

Was tun ?

Erste Ansätze der

Internationalen Gemeinschaft

2.36

(78)

UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE:

UNFCC92: Rio de Janeiro 1992

ARTICLE 2: OBJECTIVE

The ultimate objective of this Convention .... is to achieve, .…

stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference

with the climate system.

Such a level should be achieved within a

time-frame sufficient :

• to allow ecosystems to adapt naturally to climate change.

• to ensure that food production is not threatened, and

• to enable economic development to proceed in a sustainable manner.

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

(79)

Stabilization of the atmospheric concentration of carbon dioxide will require significant emissions reductions

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 19

(80)

Summary for Policymakers (SPM) Drafted by a team of 59

Approved ‘sentence by sentence’

by WGI plenary (99 Governments and 45 scientists)

14 chapters 881 pages

120 Lead Authors

515 Contributing Authors 4621 References quoted

IPCC: Climate Change 2001- The Scientific Basis

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

(81)

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

(82)

IPCC Website

http://www.ipcc.ch

(83)

Ansatzpunkte zur Wende

1. CO2-freie Energiequellen

Erneuerbare Energien ( RE =Renewable Energies)

Wasserkraft, Wind, Biomasse, Sonne (themisch, Strom)

Kernenergie , Generation IV ; Kernfusion

Geothermie (Oberflächennah, Tiefe Geothermie)

2. CO2 Sequester und GeoEngineering

CCS, Storage: in geologischen Schichten, im Meer

Eisendüngung zum Algenwachstum, Aufforsten

Sulfat in die Stratoposhäre

3. Rationelle Energieverwendung

Gleiche Energiedienstleistung mit geringerem Energieeinsatz

Höhere Wirkungsgrade bei Kraftwerken, Motoren etc.

4. Verhaltensänderung

• Leben mit weniger Energiedienstleistungen,

aus Knappheit oder Bescheidenheit

• Ernährung: „Weniger Fleisch“

(84)

Spruch von JWG vom bescheidenen aber endlichen Beitrag eines Wasserträgers

Pflicht für jeden

Immer strebe zum Ganzen,

und kannst Du selber kein Ganzes Werden,

als dienendes Glied schließ an ein Ganzes Dich an

Quelle: J.W. Goethe: Gedichte, Herausgeber ErichTrunz, Verlag C.H. Beck. p.226 ;

Urquelle:JWG: Distichon im Zusammenhang der Xenien entstanden, aber außerhalb des Xenien Zyklus veröffentlicht

(85)

Wichtigste benutzte Literatur für 0.2 :

1. IPCC-COP6a_Bonn2001_WatsonSpeech: Redemanuskript + Bilder 2. IPCC2001_TAR1: Climate Change 2001, The Scientific Basis

insbesondere Technical Summary und

die jeweils als Quelle oder „Urquelle“ angegebenen Seiten.

(86)

Reste

(87)

CO2, temperature, precipitation and sea level in the 21.th century

All IPCC projections show that the atmospheric concentration of CO2 will increase significantly during the 21th century in the absence of climate change policies;

 Climate models project that the Earth will warm 1.4 to 5.8 °C between

1990 and 2100, with most land areas warming more than the global average;

Precipitation will increase globally, with increases and decreases locally, with an increase in heavy precipitation events over most land areas;

Sea level is projected to increase 8-88 cm between 1990 and 2100;

Models project an increase in extreme weather events,

e.g. heatwaves, heavy precipitation events, floods, droughts, fires, pest outbreaks, mid-latitude continental summer soil moisture deficits,

and increased tropical cyclone peak wind and precipitation intensities .

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

(88)

Global mean surface temperature is projected to increase during the 21st century

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 11

(89)

Projected surface temperatures for the 21st century

would be unheralded in the last 1000 years

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 12

(90)

Land areas warm more than the oceans

with the greatest warming at high latitudes

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the temperature for emission scenario A2

(91)

There is significant inertia in the climate system

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 14

Scenario: Stabilisation of [CO2] at 550 ppm

(92)

Some areas are projected to become wetter, others drier

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 15 UrQuelle: IPCC2001_TAR: Fig.9.11d, p.550 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the precipitation for emission scenario A2

(93)

Projected Changes in Extreme Climate Events and Resulting Impacts

Projected Changes during the 21

st

Century in Extreme Climate Phenomena and their Likelihood

a

Representative Examples of Projected Impacts

b

(all high confidence of occurrence in some areas

c

)

1. Simple Extremes

Higher maximum temperatures , more hot days and heat waves

d

over nearly all land areas (Very likely

a

)

• Increased incidence of death and serious illness in older age groups and urban poor [4.7]

• Increased heat stress in livestock and wildlife [4.2 and 4.3]

• Shift in tourist destinations [Table TS-2 and 5.7]

• Increased risk of damage to a number of crops [4.2]

• Increased electric cooling demand and reduced energy supply reliability [Table TS-4 and 4.5]

Higher [Increasing]

minimum temperatures ,

fewer cold days, frost days and cold waves

d

over nearly all land areas (Very likely

a

)

• Decreased cold-related human morbidity and mortality [4.7]

• Decreased risk of damage to a number of crops, and increased risk to others [4.2]

• Extended range and activity of some pest and disease vectors [4.2 and 4.3]

• Reduced heating energy demand [4.5]

More intense precipitation events

(Very likely

a

, over many areas)

• Increased flood, landslide, avalanche, and mudslide damage [4.5]

• Increased soil erosion [5.2.4]

• Increased flood runoff could increase recharge of some floodplain aquifers [4.1]

• Increased pressure on government and private flood

insurance systems and disaster relief [Table TS-4 and 4.6]

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1

(94)

Projected Changes in Extreme Climate Events and Resulting Impacts (cont.)

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1 continued

2. Complex Extremes

Increased summer drying

over most mid-latitude continental interiors and

associated risk of drought

(Likely

a

)

• Decreased crop yields [4.2]

• Increased damage to building foundations caused by ground shrinkage [Table TS-4]

• Decreased water resource quantity and quality [4.1 and 4.5]

• Increased risk of forest fire [5.4.2]

Increase in tropical cyclone peak wind intensities, mean and peak precipitation intensities (Likely

a

, over some areas)

e

• Increased risks to human life, risk of infectious disease epidemics and many other risks[4.7]

• Increased coastal erosion and damage to coastal buildings and infrastructure [4.5 and 7.2.4]

• Increased damage to coastal ecosystems such as coral reefs and mangroves [4.4]

Intensified droughts and floods

associated with El Niño events in many different regions (Likely

a

)

[See also under droughts and intense precipitation events]

• Decreased agricultural and rangeland productivity in drought- and flood-prone regions [4.3]

• Decreased hydro-power potential in drought-prone regions [5.1.1 and Figure TS-7]

Increased Asian summer monsoon

precipitation variability (Likely

a

)

• Increase in flood and drought magnitude and damages in temperate and tropical Asia [5.2.4]

Increased intensity of

mid-latitude storms

(Little agreement between current models)

d

• Increased risks to human life and health [4.7]

• Increased property and infrastructure losses [Table TS-4]

• Increased damage to coastal ecosystems [4.4]

(95)

Crop yields are projected to decrease throughout the tropics and sub-tropics, but increase at high latitudes

Percentage change in

average crop yields for the climate change scenario.

Effects of CO

2

are taken into account. Crops

modeled are: wheat, maize and rice.

Jackson Institute, University

College London / Goddard Institute for Space Studies / International Institute for Applied Systems

Analysis 97/1091 16

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 17

2020‘s

2050‘s

2080‘s

(96)

Tens of millions of people are projected to be at risk of being displaced by sea level rise

Assuming 1990s Level of Flood Protection

Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts:

A Global Perspective.

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

(97)

Biological systems have already been affected

Biological systems have already been affected in many parts of the world by changes in climate, particularly increases in regional temperature

Bird migration patterns are changing and birds are laying their eggs earlier;

 the growing season in the Northern hemisphere has lengthened by about 1-4 days per decade

during the last 40 years; and

 there has been a pole-ward and upward migration of plants, insects and animals.

Projected changes in climate will have both beneficial and adverse effects on water

resources, agriculture, natural ecosystems and human health, but the larger the changes in climate the more the adverse effects dominate

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

(98)

Projected changes in climate will have

both beneficial and adverse effects on

water resources ,

agriculture,

natural ecosystems

human health ,

but:

the larger the changes in climate -

- - the more the adverse effects dominate

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

(99)

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5

BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Early Results for 2007-Report IPCC-AR4

(100)

Early Results for 2007-Report IPCC-AR4

Model calculations with 3 emissions scenarios, representing 550, 700 and 800 ppm CO2 by 2100 AD , give:

Global temperatures are likely to rise by 2.5 – 4 °C by 2100,

Arctic will become ice-free during summer by 2090 AD . (even in the 550 ppmCO2 case)

The global sea level will rise by up to 40 cm ,

composed of up to 30 cm as water warms and expands, and by an additional 10 cm as part of Greenland’s ice sheet melts.

weakening of the Atlantic ocean circulation. (not a shut down !)

more rain and snow at high latitudes and in the tropics

,

and

less rainfall in Mediterranean and subtropical regions.

extreme precipitation and drought increase worldwide

.

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5

BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

(101)

Early Results for 2007-Report IPCC-AR4

Originaltext:

Global temperatures are likely to rise by 2.5–4 C by 2100, according to the latest calculations by scientists at the Max Planck Institute for Meteorology in Hamburg, Germany.

The institute is one of 15 asked by the Intergovernmental Panel on Climate Change to run extended climate simulations for its fourth assessment report. The

researchers ran six parallel experiments, requiring 400,000 computing hours, using their atmospheric general circulation model ECHAM5.

They looked at three emissions scenarios, representing carbon dioxide concentrations of 550, 700 and 800 parts per million (p.p.m.) by 2100 (see graph). Even under the most optimistic

assumptions, the model suggests that the Arctic will become ice-free during summer by 2090, says Erich Roeckner, who heads the group. The global sea level will rise by up to 30 centimetres as water warms and expands, and by an additional 10 centimetres as part of Greenland’s ice sheet melts. The scientists also expect a weakening — but not a shut-down — of the Atlantic ocean circulation. There will be more rain and snow at high latitudes and in the tropics, and less rainfall in Mediterranean and subtropical regions.

Extreme precipitation and extreme drought are likely to increase worldwide. Q.S.

(Q.S.Quirin Schiermeier)

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5

BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

(102)
(103)

Referenzen

ÄHNLICHE DOKUMENTE